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Several recent models have proposed the use of precise timing of spikes
for cortical computation. Such models rely on growing experimental ev-
idence that neurons in the thalamus as well as many primary sensory
cortical areas respond to stimuli with remarkable temporal precision.
Models of computation based on spike timing, where the output of the
network is a function not only of the input but also of an independently
initializable internal state of the network, must, however, satisfy a critical
constraint: the dynamics of the network should not be sensitive to initial
conditions. We have previously developed an abstract dynamical system
for networks of spiking neurons that has allowed us to identify the cri-
terion for the stationary dynamics of a network to be sensitive to initial
conditions. Guided by this criterion, we analyzed the dynamics of several
recurrent cortical architectures, including one from the orientation selec-
tivity literature. Based on the results, we conclude that under conditions
of sustained, Poisson-like, weakly correlated, low to moderate levels of
internal activity as found in the cortex, it is unlikely that recurrent cor-
tical networks can robustly generate precise spike trajectories, that is,
spatiotemporal patterns of spikes precise to the millisecond timescale.

1 Introduction

In recent years, there has been growing experimental evidence that neurons
in the thalamus as well as many primary sensory cortical areas respond to
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stimuli with remarkable temporal precision. For example, Reinagel and
Reid (2000) have shown that neurons in the cat lateral geniculate nucleus
(LGN) respond to randomly modulated visual stimuli in a highly repro-
ducible manner, with individual spikes occurring with a precision of better
than 1 msec (see also Panzeri, Petersen, Schultz, Lebedev, & Diamond, 2001,
for coding of sensory stimuli in the rat somatosensory cortex). Since these
experiments strictly relate external stimuli to the response of neurons, they
are however, by design, confined to the analysis of computation that occurs
in a functionally feedforward1 manner, where the output of the system un-
der consideration is mostly a function of the present and past input. Stated
formally, the model underlying such systems is assumed to be O(t) =F (I(t)),
where O(t) and I (t) represent, respectively, the time-varying output and in-
put of the system and F (·) represents the functional that maps the input to
the output. It is now well recognized that for behaviorally relevant inputs,
F (·) can be highly precise (Rieke, Warland, de Ruyter van Steveninck, &
Bialek, 1997). Simulation results within this framework, such as that in Dies-
mann, Gewaltig, and Aertsen (1999), have also shown that for particular
classes of inputs and outputs, it is possible to maintain spike timing in feed-
forward networks. In particular, it was demonstrated that a synchronous
volley comprising approximately 100 spikes can be propagated robustly
across several layers of a feedforward network of integrate-and-fire neu-
rons in the presence of approximately 2 Hz of random background activity
and a small amount of jitter in the spike timings.

In contrast, experiments that assess working memory, such as delayed
response and delayed match-to-sample tasks, have hitherto shown that the
spike trains generated by the constituent neurons of the system, under
identical stimulus presentations, are highly variable (Compte et al., 2003),
although there is evidence of occasional coincidental spikes between neu-
rons. In themselves, these results do not preclude the possibility that the
cortical structures in question are capable of robustly generating precise
spike trajectories, since the output in these cases is a function not only of
the input but also of the internal state of the network. With little or no
experimental control over the internal states of such systems, it is hardly
surprising that variable spike trains are generated under identical input
presentations. The significant impact of the rich internal dynamics of these
systems is also only recently coming to the light, with evidence showing
that neurons as far as the prefrontal cortex can on average phase-lock to
the theta oscillations generated by the hippocampus (Siapas, Lubenov, &
Wilson, 2005). In essence, the form of computation explored by these ex-
periments is of a more general nature where the output of the system is

1We label such systems functionally feedforward to highlight the fact that they are
not constrained to be architecturally feedforward. Such systems are distinguished by the
property that their output is determined solely by the input, with the internal state of the
network not playing an independent role in the mapping.



976 A. Banerjee, P. Seriès, and A. Pouget

a function not only of the input but also of an independently initializable
internal state of the network.2

Such systems cannot be modeled under the framework O(t) = F (I (t)) as
the following simple example demonstrates. Consider a recurrent network
that is capable of sustained reverberatory activity. The system, under the
trivial input drive of I (t) = 0 for t = 0 to −∞, can be in either the quiescent
state or the sustained reverberatory state. Since the output of the system
is not uniquely determined by the input, the system cannot be modeled
using O(t) = F (I (t)). Instead, it has to be modeled as O(t) = F (I (t), s(t0)),
where s(t0) denotes the internal state of the system at any particular time
t0. Whether such systems in the cortex can perform computation using the
precise timing of spikes is an issue that remains to be resolved. It is this
question that we address in this letter. To elaborate, we investigate whether
input-driven recurrent cortical networks can generate spike trajectories pre-
cise to the millisecond timescale. We must emphasize here that this is quite
distinct from the issue of patterns of spiking at coarser (on the order of
25+ msec) timescales that are induced primarily by network oscillations,
for which there is considerable experimental evidence (Nadasdy, Hirase,
Czurko, Csicsvari, & Buzsaki, 1999; Hahnloser, Kozhevnikov, & Fee, 2002).

Experimental determination in the case of the dynamics at the finer
timescale is substantially more challenging because it is practically impos-
sible to ascertain or control the internal state of cortical networks in vivo.
Without knowledge of the internal state of a network, the variability in the
output resulting from the variability in the internal state of the network can
be confounded with noise.

With recent proposals for neural computation that rely on the timing
of spikes to represent and manipulate information (Maass, 1997; Maass,
Natschläger, & Markram, 2003), the question of whether recurrent cortical
networks can reliably compute using the precise timing of spikes has taken
on added importance. If information is to be coded in the precise timing
of spikes of the internal neurons of a network, the timing of such spikes
must be robust to perturbations, that is, small perturbations in the spike
timing of the internal neurons induced by thermal or other noise must not
result in successively larger fluctuations in the timing of subsequent spikes
generated in the network. In the parlance of dynamical systems theory, the
dynamics of cortical networks should not be sensitive to initial conditions.

The issue of the stability of spike timing in recurrent networks of ex-
citatory and inhibitory neurons has been explored by other researchers.
Hansel and Sompolinsky (1996), for example, have suggested that spike
timing in such networks might be unstable. However, their conclusions

2In the case of digital computers, this would correspond to the distinction between
combinatorial circuits, where the output is a function solely of the input, and sequential
circuits/finite-state machines, where the output is a function of both the input and the
internal state of the circuit.
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were based only on simulation results from individual networks. In con-
trast, van Vreeswijk and Sompolinsky (1998) have derived formal results
consistent with the above conclusion, but their analysis was based on a
highly simplified model of the cortical circuit: a network of randomly con-
nected binary stochastic units receiving uncorrelated external inputs.

In this letter, we investigate through simulations and formal analysis
whether spike trajectories emanating from input-driven recurrent cortical
networks, with spatiotemporal characteristics similar to those found in the
cortices of awake behaving animals (i.e., weakly correlated, Poisson like,
with spike rates in the 0.1–50 Hz range), can be generated robustly to within
the precision set by the noise intrinsic to the neurons in the system (widely
estimated to be in the 1–5 msec range; Mainen & Sejnowski, 1995; Novak,
Sanches-Vives, & McCormick, 1997). We have previously developed an ab-
stract dynamical system for recurrent networks of spiking neurons that
supports a general model of the spiking neuron and is amenable to formal
analysis (Banerjee, 2001a). The dynamical system has allowed us to iden-
tify the formal criterion for the stationary dynamics of a system of spiking
neurons to be sensitive to initial conditions (Banerjee, 2001b, 2006; Banerjee
& Pouget, 2003). Guided by the criterion, we analyzed the dynamics of sev-
eral recurrent cortical architectures whose internal activity (as compared to
the input) contributed to determining the output of the network to varying
degrees. The networks ranged from ones that could sustain internal spike
activity even after the input had ceased, to one from the orientation selec-
tivity literature where the network eventually returned to quiescence after
cessation of input. The results indicate that under conditions of sustained,
Poisson-like, weakly correlated, low to moderate levels of internal activity
as found in the cortex, the dynamics of the networks ought to be almost
surely sensitive to initial conditions.

2 Materials and Methods

2.1 Model of the Neuron and Network. The abstract dynamical system
for a network of spiking neurons is described in detail in Banerjee (2001a).
Briefly, the dynamical system is formulated based on the assumption that
the internal state of a network can be specified by enumerating the temporal
positions of all spikes generated in the network over a bounded past. This
assumption is valid if the neurons are finite precision devices with fading
memory. To illustrate, in Figure 1, the present state of the system is specified
by the positions of all spikes (solid lines) in the shaded region at t = 0, and
the state at a future time T is specified by their positions in the shaded region
at t = T . Each internal neuron i (as opposed to an input neuron) is assigned
a membrane potential function Pi (·) that maps the spike configuration given
by the present state to the instantaneous potential at the soma of neuron i.
Internal neuron i generates a new spike whenever Pi (·) reaches the threshold
from below. The particular instantiation of the Pi (·)’s determines both the
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Past           t=0                                                                                     t=T   Future

Figure 1: Schematic diagram of the dynamics of a system of neurons. Input
neurons are colored gray and internal neurons black. Spikes are shown as solid
lines and their perturbations as dotted lines. Note that the spikes generated by
input neurons are not perturbed. Gray boxes demarcate a bounded past history
starting at time t. The temporal position of all spikes in the boxes specifies the
state of the system at t = 0 and t = T .

electrophysiological properties of the neurons and their connectivity in the
network.

2.2 Sensitive Dependence on Initial Conditions. Whether a spike tra-
jectory is sensitive to initial conditions can be tested as follows. Consider
the network in Figure 1 initialized at the state described by the shaded
region at t = 0. We let the dynamics of the network unfold for a time T and
record the positions of all spikes (solid lines). We then reset the network to
its initial state, perturb the initial set of internal spikes (dotted lines), and
let the dynamics of the network unfold for the same time T. The initial set
of perturbations will propagate from spike to spike, affecting the timing of
subsequent spikes. Stated informally, the dynamics of the network is sensi-
tive if the successive perturbations tend to grow larger with each new spike
generated in the network, and is insensitive otherwise.

Formally, let column vectors ��x0 and ��xT denote, respectively, infinites-
imal perturbations on the spikes of internal neurons (as opposed to input
neurons) at t = 0 and t = T . The dimensionality of ��x0 and ��xT is then the
number of internal spikes in the respective state descriptions. Since we are
concerned with sensitive dependence with respect to the internal state of the
network, spikes emitted by the input neurons are not perturbed, and there-
fore we pad ��x0 and ��xT with as many zeros as there are input spikes in the
respective states. The dimensionality of ��x0 and ��xT is now the number of
total (internal and input) spikes in the respective state descriptions. Let AT

denote the matrix such that ��xT = AT��x0. In the current framework, both
��x0 and ��xT have components that are parallel to the trajectory, that is,
components correspond to simple translation in time. To identify whether
the spike trajectory is sensitive, these components have to be discarded. To
better comprehend this subtlety, consider a perturbation ��xT that lies par-
allel to the trajectory. This would correspond to the spikes in the perturbed
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trajectory being advanced in time, with the relative positions of all spikes in
the perturbed trajectory being identical to those in the original trajectory. In
dynamical systems theory, the original trajectory would not be considered
sensitive, however large the magnitude of ��xT might be. This issue is high-
lighted in the following extreme example. Consider a system all of whose
spikes, internal as well as input, have been advanced in time by 1 msec.
The ensuing dynamics of the system, assuming that all future input spikes
are also advanced in time by 1 msec, would simply be a 1 msec advanced
version of the dynamics of the original system. Clearly, this scenario has
little relevance to the question of sensitive dependence. Banerjee (2001b)
showed that the discarding of the noted components can be achieved by
pre-and postmultiplications with particular projection matrices. Let B and
C be, respectively, these matrices that discard the noted component from
the final and initial perturbations. B ∗ AT ∗ C then maps an initial pertur-
bation that lies orthogonal to the spike trajectory to a corresponding final
perturbation that also lies orthogonal to the spike trajectory. The spike
trajectory is sensitive to initial conditions if limT→∞ ‖B ∗ AT ∗ C‖ = ∞.
If instead limT→∞ ‖B ∗ AT ∗ C‖ = 0, the trajectory is insensitive to initial
conditions.

2.3 Simulation of Single (Spike Response) Model Pyramidal
Neuron. A model pyramidal neuron was constructed using the spike re-
sponse model (Gerstner & van Hemmen, 1992), with 10,000 synapses, 85%
of which were chosen to be excitatory and the rest inhibitory. The threshold
of the neuron was set at 15 mV above resting potential. The membrane
potential function Pi (·) for the neuron was modeled as the sum of excita-
tory and inhibitory postsynaptic potentials (PSP) triggered by the arrival
of spikes at synapses, and afterhyperpolarization potentials (AHP) trig-
gered by the spikes generated by the neuron. PSPs were modeled using the
function

P(t) = Q
d
√

t
e−βd2/te−t/τ , (2.1)

(see MacGregor & Lewis, 1977) to fit the physiological data reported in
Mason, Nicoll, and Stratford (1991). Here Q denotes the connection strength
of the synapse, d denotes the distance (in dimensionless units) of the synapse
from the soma, and β and τ control the rate of rise and fall of the PSP.
For excitatory postsynaptic potentials (EPSPs), β was set at 1.0, and for
inhibitory postsynaptic potentials (IPSPs) at 1.1. τ was set at 20 msec for
all PSPs. d was sampled uniformly from the range [1.0,2.5]. Finally, Q for
EPSPs and IPSPs were sampled uniformly from different ranges so as to
satisfy the following final profiles. For EPSPs, the peak amplitudes ranged
between 0.045 and 1.2 mV with the median around 0.15 mV, 10 to 90 rise
times ranged from 0.75 to 3.35 msec, and widths at half-amplitude ranged
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from 8.15 to 18.5 msec. For IPSPs, the peak amplitudes were on average
twice as large, and the 10 to 90 rise times and widths at half-amplitude
were slightly larger. The AHP was modeled as the sum of a rectangular
pulse that lasted 1 msec (and introduced an absolute refractory period)
and −30 ∗ e−t/30 (and introduced a relative refractory period). Slow EPSPs,
IPSPs, and AHPs were not modeled since their corresponding αi ’s would,
by definition, be small. (see equation 3.1 for the precise definition of αi .
Briefly, αi is the normalized slope of the EPSP, IPSP, or AHP generated
by spike i, computed at the instant of the generation of the output spike.)
Finally, the length of the bounded past described in the previous section
was set at 200 msec.

Whenever the neuron generated a new spike, the αi ’s for all contributing
spikes were recorded and

∑
α2

i was computed. The sensitivity indicator,
that is, the mean 〈∑ α2

i 〉, was then computed over the set of all spike gen-
erations. In order to produce conservative estimates of the mean, samples
with value above 104 (which was found to be about 0.1% of the data)
were discarded. The data sets ranged in size from 3000 to 15,000 spike
generations.

2.4 Simulation of Recurrent Systems of Neurons. A system compris-
ing 1000 internal neurons (modeling a cortical column, with 80% percent of
the neurons set to be excitatory and the rest inhibitory) and 800 excitatory
input neurons (modeling the input into the column) was constructed. Each
internal neuron received 100 synapses from other (internal and input) neu-
rons in the system. Two kinds of input drives were modeled; input neurons
were set to generate random independent Poisson spike trains at either a
fixed rate of 5 Hz or a rate (common across all input neurons) that modu-
lated sinusoidally between 2.5 Hz and 7.5 Hz at a rate of 5 Hz. Pi (·)’s for
internal neurons were modeled using equation 2.1 as in the previous case,
with parameters set to fit physiological data (Mason et al., 1991). Through
exploratory simulations, a fixed set of synaptic strengths for excitatory and
inhibitory synapses was found such that under the fixed rate input drive,
the internal neurons spiked at a mean rate of 5 Hz for excitatory and 15 Hz
for inhibitory. These and all other parameters were then held constant over
the entire system (under both input drive conditions), leaving the network
connectivity and axonal delays as the only free parameters. After the gen-
eration of a spike, an absolute refractory period of 1 msec was introduced.
There was no voltage reset. However, each spike triggered an AHP with a
decay constant of 30 msec that led to a relative refractory period. Some of
the networks thus generated were found to be capable of sustaining internal
activity in the absence of input, albeit at a higher spike rate. Simulations
were performed in 0.1 msec time steps. Whenever an internal neuron gen-
erated a new spike, the αi ’s for all contributing spikes were recorded, and∑

α2
i was computed. The sensitivity indicator, that is, the mean 〈∑α2

i 〉, was
then computed over the set of all such spike generations. To compare this
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local indicator to the global rate of convergence or divergence, additional
experiments were performed where the spike trajectory (for identical input
spike trains) resulting from an internal state where exactly one randomly
chosen spike was perturbed by 1 msec was recorded. The divergence be-
tween the original and the perturbed spike trajectory was then computed
using the spike time metric Dspike[q] (Victor & Purpura, 1996). Dspike[q]
measures the distance between two spike trajectories as the minimal cost
of transforming one train into the other by a sequence of elementary steps:
inserts, deletions, and shifts of spikes. Each elementary step is associated
with a fixed cost. For eliminating or inserting a spike, the cost is 1. To shift a
spike, the cost is equal to q�t, where �t is the extent of the shift. We used a
high value of q, making the metric sensitive to small spike time differences.
However, we found that the results were similar for a wide range of values
for q. The temporal course of the metric Dspike[q] between the original and
perturbed spike trains was analyzed. Intuitive understanding of the value
taken by Dspike[q] can be obtained by noting that for high values of q, the
distance between two independent spike trains is primarily controlled by
the rate of firing of the two trains. Consider, for example, two indepen-
dent spike trains with a rate of 10 Hz. This rate corresponds to an average
of 1 spike in any window of 100 msec. If the spike trains are sufficiently
different, the minimal cost of transforming one spike train into the other
is obtained by deleting each spike (at a cost of 1) and replacing it (at an
additional cost of 1). The average Dspike[q] per window of 100 msec is thus
2, or more generally 0.2 times the average firing rate.

2.5 Simulation of Orientation Model. The orientation model that was
simulated is similar to the model of Somers, Nelson, and Sur (1995). The de-
tails of our particular implementation can be found in Seriès, Latham, and
Pouget (2004). Briefly, the model represented three stages: retina, lateral
geniculative nucleus (LGN) and V1. The retinal stage spanning a 4◦ × 4◦

monocular patch of the central visual field, corresponded to 21 × 21 grid
of ON and OFF ganglion cells, modeled by difference-of-gaussian filters.
The output of each filter was used to drive the LGN cells, which generated
Poisson spike trains. The output of the LGN cells was pooled using Ga-
bor receptive fields and acted as input to V1. The V1 stage, representing
one hypercolumn of layer IV, was composed of 1260 simple cells, mod-
eled as conductance-based integrate-and-fire neurons, 80% (1008 cells) of
which were regular-spiking excitatory and the rest (252 cells) fast-spiking
inhibitory neurons. These cells were coupled through lateral projections. Ex-
citatory cells formed short-range connections, while inhibitory cells could
target cells with a broad range of preferred orientations. Specifically, the
probability of a connection between two cells was a gaussian function of
the difference between their preferred orientations. The standard deviation
for the gaussian was 7.5 degrees for excitatory projections and 60 degrees
for inhibitory projections. The sampling was done in a manner such that
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each cell (excitatory as well as inhibitory) received input from 40 excitatory
V1 cells and 30 inhibitory V1 cells. The values of the synaptic conductances
and all other parameters can be found in (Seriès et al., 2004). Exploratory
simulations showed that the network eventually became quiescent with the
cessation of input. Oriented flashed bar stimuli were presented to the retinal
cells, and the responses of the cortical cells were recorded. The dynamics of
the network during a normal simulation was then compared to a simulation
in which one spike of one excitatory cortical cell was perturbed by 1 msec
(the LGN spike trains being identical). To quantify the divergence of the
spike trajectory, only the spike time metric Dspike[q] was used since the local
perturbation matrix or the sensitivity indicator, 〈∑ α2

i 〉, could not be recov-
ered from the dynamics of the conductance-based model of the neuron.

3 Results

Every time a spike is generated by a neuron in a network, it is due to
the combined effects of the postsynaptic potentials (PSP) of all the spikes
that have already arrived at the synapses of the neuron and the AHPs of
the previous spikes generated by the neuron. As illustrated in Figure 2,
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Figure 2: Schematic diagram of the membrane potential of a neuron that reaches
threshold soon after the arrival of two spikes. The threshold is shown as a
horizontal line, and the EPSPs resulting from the spikes are shown as solid
lines. (A, resp. B) The result of perturbing the second (resp. first) spike forward
in time is shown as a dotted curve. Whereas in A, the threshold is reached later,
causing the output spike to be perturbed forward in time, in B, it is reached
earlier, causing the output spike to be perturbed backward in time. The reason
for this behavior lies in the sign of the slope of the respective PSPs at the instant
of generation of the output spike; the second PSP is rising, whereas the first
is falling. The magnitude of the slope also matters. The larger the slope is, the
greater is the perturbation on the output spike.
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perturbing any of these spikes affects the timing of the output spike (only
presynaptic spikes are considered in the diagram, but the result applies
just as well to the previous spikes generated by the neuron). Let �xnew =∑n

i=1 αi�xi , where �xnew is the perturbation in the output spike and �xi

is the perturbation in the ith contributing spike (a presynaptic spike of the
neuron or a spike generated by the neuron). Banerjee (2001b) showed that
the weight αi is proportional to the slope, ρi , of the PSP (or AHP) triggered
by spike i (the partial derivative of the membrane potential with respect to
spike i, in the general case) at the instant of the generation of the output
spike. The weight is given by the normalized slope,

αi = ρi

/
n∑

j=1

ρ j , (3.1)

where j ranges over all the contributing spikes. To further elucidate, con-
sider the membrane potential of a neuron that has just crossed threshold,
causing the neuron to generate a spike. Had any of the contributing pre- or
postsynaptic spikes of this neuron been perturbed, the neuron would not
have generated a spike at the noted time, and therefore the membrane po-
tential would not have been at threshold at that time. ρi corresponds to the
ratio of this putative change in the membrane potential, to the perturbation
in the timing of the ith contributing spike, in the limit as the perturbation
goes to zero. In the case of a spike-response model, this reduces to the slope
of the PSP or AHP generated by the ith contributing spike. αi is computed
by normalizing ρi across all contributing spikes.

For each internal spike generated in a network, one can in principle com-
pute the scalar quantity

∑
α2

i , the summation taken over all those spikes
that contributed to the generation of that spike. Banerjee (2001b) demon-
strated that the mean of the

∑
α2

i ‘s computed over the history of spike
generations in the network determines the sensitivity of the spike trajec-
tory to initial conditions (see also Coombes & Bressloff, 1999). We have
refined this approach for systems receiving stationary inputs (Banerjee &
Pouget, 2003; Banerjee, 2006) and have found under a reasonable set of
assumptions (described next) that if

〈
n∑

i=1

α2
i

〉
>

(2 + O(1/m))
µ

− 1, (3.2a)

then the spike trajectory is almost surely sensitive to initial conditions, that
is, limT→∞ ‖B ∗ AT ∗ C‖ = ∞ with probability 1 (see section 2). If instead,

〈
n∑

i=1

α2
i

〉
<

1
µ

− 1, (3.2b)
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then the spike trajectory is almost surely insensitive to initial conditions,
that is, limT→∞ ‖B ∗ AT ∗ C‖ = 0 with probability 1. The angular brackets
〈·〉 in equations 3.2a and 3.2b denote the mean computed over the entire
spike trajectory, O(1/m) denotes a term on the order of (1/m) where m is
the number of total (internal and input) spikes in the state and µ denotes
the average ratio of the number of internal spikes to the number of total
(internal and input) spikes in the state.

Under stationary conditions (when the stochastic process modeling
the spike generation process can be described by a time-invariant, fixed-
probability distribution), one can assume that at the generation of each
internal spike, the ρi ’s for internal and input contributing spikes arise from
stationary distributions and the ratio of the number of internal to the total
(internal plus input) spikes in any state remains close to a fixed quantity
µ at all times. We assume in addition that at the generation of each spike,
the ρi ’s for both internal and input contributing spikes arise from the same
fixed distribution independent of one another and of all ρi ’s for spikes that
were generated earlier in the system (an assumption that we have tested
to hold well in our simulations). This assumption is quite unlike the more
restrictive assumptions made by van Vreeswijk and Sompolinsky (1998),
such as random connectivity and uncorrelated inputs, because it applies
to the local gradients around spike trajectories rather than the trajectories
themselves. The proof of equation 3.2 is based on a small modification to
the one presented in Banerjee (2001b) and is reported in Banerjee (2006).

If we assume that input spikes, on average, account for as many as half
the total number of spikes in state descriptions (µ = 0.5, a liberal assump-
tion by cortical network standards), then since the number of total spikes
in any state description is very large, constraint 3.2 reduces to 〈∑α2

i 〉 > 3
for spike trajectories to be almost surely sensitive to initial conditions.

An examination of
∑

α2
i , taking equation 3.1 into consideration, reveals

that its value rises as the size of the subset of ρi ’s that are negative grows
larger. Indeed, negative ρi ’s reduce the value of

∑n
j=1 ρ j , thus increasing∑

α2
i . A spike trajectory is therefore more likely to be sensitive when a

substantial number of the EPSPs are on their falling phase (and IPSPs on
their rising phase) at the instant of the generation of each spike. This is the
case, for instance, in a network containing excitatory and inhibitory neurons
firing unsynchronized, near Poisson spike trains—as observed in cortex.
Conversely, if spikes are generated soon after the arrival of synchronized
bursts of spikes all of whose EPSPs are presumably on their rising phase,
the spike trajectory is less likely to be sensitive.

3.1 Single (Spike Response) Model Pyramidal Neuron. One of the
advantages of the criteria in equation 3.2 is that if we were to assume that
the individual neurons in a network are operating under similar conditions,
we could estimate the value of 〈∑ α2

i 〉 for the dynamics of the entire network
by computing its value for a single neuron. We therefore simulated a single
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pyramidal neuron under various input scenarios to identify conditions
under which the dynamics of a network would be almost surely sensitive
or insensitive to initial conditions (see section 2).

Three experiments simulating various levels of uncorrelated input-
output activity were conducted. In particular, excitatory Poisson inputs
at 2, 20, and 40 Hz were balanced by inhibitory Poisson inputs at 6.3, 63,
and 124 Hz to generate output rates of approximately 2, 20, and 40 Hz,
respectively. The output in all three cases was Poisson like (CV = 0.77, 0.74,
and 0.89, respectively). The mean 〈∑ α2

i 〉 for the three experiments was 4.37,
5.66, and 9.52, respectively.

Next, two sets of experiments simulating the arrival of regularly spaced
synchronized bursts of spikes were conducted. In the first set, the random
background activity was set at 2 Hz and in the second at 20 Hz. The syn-
chronized bursts of spike volleys arrived every 50 msec. Four experiments
were conducted within each set: volleys were composed of either 100 or
200 spikes (producing jolts of around 10 and 20 mV, respectively) that were
either fully synchronized or were dispersed over a gaussian distribution
with σ = 1 msec. The mean 〈∑ α2

i 〉 for the experiments was as follows.
At 2 Hz background activity, it was 0.49 (200 spikes per volley, synchro-
nized), 0.60 (200 spikes per volley, dispersed), 2.46 (100 spikes per volley,
synchronized), and 2.16 (100 spikes per volley, dispersed). We can therefore
conclude that the corresponding spike trains are unlikely to be sensitive,
which is similar to the finding of Diesmann et al. (1999), except that our
result applies to recurrent activity. By contrast, at 20 Hz background activ-
ity, we found that the spike trains are likely to be sensitive; 〈∑α2

i 〉 was 4.39
(200 spikes per volley, synchronized), 8.32 (200 spikes per volley, dispersed),
6.77 (100 spikes per volley, synchronized), and 6.78 (100 spikes per volley,
dispersed).

Finally, two sets of experiments simulating the arrival of randomly
spaced synchronized bursts of spikes were conducted. In the first set, the
random background activity was set at 2 Hz and in the second at 20 Hz.
The synchronized bursts of a sequence of spike volleys arrived randomly at
a rate of 20 Hz. Two experiments were conducted within each set: volleys
were composed of either 100 or 200 synchronized spikes. The mean 〈∑α2

i 〉
for the experiments was as follows. At 2 Hz background activity, it was 4.30
(200 spikes per volley) and 4.64 (100 spikes per volley). At 20 Hz background
activity, it was 5.24 (200 spikes per volley) and 6.28 (100 spikes per volley).
Therefore, when the synchronized bursts arrive randomly, the spike trains
are likely to be sensitive regardless of the level of background activity.

3.2 Recurrent Systems of Neurons. The results from the simulations of
a single pyramidal neuron indicated that networks composed of a majority
of excitatory neurons that operated at low to moderate levels of sustained,
Poisson-like, weakly correlated activity, as found in the cortex, would
likely be sensitive to initial conditions. In order to determine whether
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this conclusion applied to the particular spike trajectories generated by
recurrent networks of neurons, we simulated several instantiations of
model cortical networks and applied the preceding analysis to the recorded
spike trajectories.

Each network was composed of 1000 neurons driven by Poisson input
spike trains at fixed or sinusoidally modulating rates, from 800 excitatory
neurons (see section 2). While the input was asynchronous in the fixed
rate case, it was bursty in the modulating rate case. Several connectivity
patterns were considered. On the one extreme was an ordered two-layer
ring network with input neurons forming the lower layer and internal
neurons (with the inhibitory neurons placed evenly among the excitatory
neurons) forming the upper layer. Each internal neuron received inputs
from a sector of internal and input neurons centered on that neuron. As a
result, any two neighboring internal neurons shared 96 of their 100 inputs
(with the same axonal delay of 0.8 msec). This led the system to generate
spikes in bursts, regardless of whether the input drive was at a fixed rate or a
sinusoidally modulating rate (as is apparent from the streaks or coincidental
spikes in the spike rasters in Figures 4A and 4B). On the other extreme was
a network where each internal neuron received inputs from 100 randomly
chosen neurons from the entire population of internal and input neurons
with random axonal delays of 0.5 to 1.1 msec. Here the system generated
spikes asynchronously when the input drive was at a fixed rate and in
bursts when the input drive was at a sinusoidally modulating rate (as is
apparent from the presence and absence of streaks or coincidental spikes in
the spike rasters in Figures 3B and 3A, respectively). Several other networks
where neighboring internal neurons shared an intermediate percentage of
their inputs were also simulated.

In each case, two sets of experiments were performed. In the first set, a
randomly chosen spike in the state description was perturbed by 1 msec,
and the subsequent spike trajectory was recorded. The global divergence
between the original and the perturbed spike trajectory was then computed
using the metric Dspike[q] for intervals of 100 msec at every 10 msec, averaged
over several trials. In each case we found that the systems were sensitive and
the spike trajectories desynchronized within 100 to 200 msec, eventually
reaching a distance Dspike[q] similar to the one that would be observed
between completely independent spike trains with the same statistics (as is
apparent from the blue and red spikes in Figures 3A, 3B, 4A, and 4B, and
the leveling off of the Dspike[q] graphs in Figures 3C and 4C).

In the second set of experiments, the statistic 〈∑α2
i 〉 was computed

from data recorded from the sequence of births of internal spikes in the
trajectory. The value of the statistic was found to be consistent with the
formal result. The value of 〈∑ α2

i 〉 was 47.7 for the fixed rate input and 25.9
for the modulating rate input for the ring network, and 11.3 for the fixed
rate input and 5.6 for the modulating rate input for the random network.
〈∑ α2

i 〉 for all the other networks were also greater than 3.
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3.3 Orientation Model. The statistic 〈∑ α2
i 〉 can be difficult to com-

pute for neuronal models such as the conductance-based integrate-and-fire
neuron. To test whether the results of the previous experiments general-
ized to such models, we perturbed the dynamics of a model of orientation
selectivity in V1, consisting of a recurrent network of conductance-based
neurons (see section 2). The cortical neurons in this model received Poisson
spike trains from the LGN and in turn generated spike trains with near
Poisson statistics.

Model cortical cells exhibited sharp orientation selectivity despite receiv-
ing weakly tuned thalamocortical inputs. We compared the dynamics of the
network during normal simulations to simulations in which one spike of
an excitatory cortical cell was perturbed by 1 msec. Just as in the previous
experiments, all our simulations revealed that perturbing a single spike by
1 msec desynchronized the spike trajectory within 100 to 200 msec (as is
apparent from the blue and red spikes in Figures 5A and 5B).

4 Discussion

In Banerjee (2001b), Banerjee and Pouget (2003), and Banerjee (2006), we
derived formal results that showed that whether the dynamics of a recurrent
network of spiking neurons depends sensitively on its internal state is
intimately tied to the value of 〈∑ α2

i 〉 computed over the set of all internal
spikes generated in the network. In order to identify scenarios in which the
dynamics of a system would (or would not) be sensitive to initial conditions,
we computed the value of 〈∑ α2

i 〉 for the dynamics of a single model neuron
operating under such conditions. The underlying assumption was that the
results from the single neuron experiments would be indicative of the value
of 〈∑α2

i 〉 for a system with all of its neurons operating under Similar
conditions.

In these simulations, we considered among other cases, the neuron firing
at near Poisson statistics in response to independent (i.e., unsynchronized)
Poisson input spike trains from excitatory and inhibitory neurons. For all the
input rates tested, 〈∑ α2

i 〉 was above 3, indicating that the corresponding
dynamics of the system would almost surely be sensitive. The only case
where 〈∑ α2

i 〉 was found to be less than 3 was when the neuron received
synchronized bursts of 100 or more spikes at regular intervals of 50 msec
in the presence of 2 Hz of random background activity. Apart from the fact
that our result concerns recurrent activity, this scenario is much like that
simulated in Diesmann et al. (1999). However, when the neuron received
these bursts of spikes randomly (as opposed to regularly) with a mean
interval of 50 msec between bursts, 〈∑ α2

i 〉 was found to be larger than 3.
Finally, for higher values of background activity (20 Hz), 〈∑ α2

i 〉 was found
to be substantially larger than 3 in all scenarios.

To confirm whether these findings applied to entire spike trajectories,
we simulated the dynamics of several recurrent systems under a variety
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Figure 3: (A, B) Spike trains of 50 neighboring neurons for 700 msec from the
random network, for two types of input drives, constant (A) or sinusoidally
modulated at 5 Hz (B). In both cases, the same system was initialized at identi-
cal states except for 1 spike (highlighted) generated at approximately 100 msec
that was perturbed by 1 msec. Origin is set at the time of this perturbation.
Simultaneous spikes (precise to within 1 msec) in the normal and perturbed
simulations are depicted in green. The spikes whose timing were affected by
more than 1 msec are shown in red (normal) and blue (perturbed). As is evi-
dent, the two spike trajectories diverge rapidly. (C) Mean divergence of the spike
trains after the perturbation, for the entire population. The curves correspond
to the distance Dspike[q] between the normal and perturbed spike trains, for
constant (full lines) and oscillatory (dashed lines) input, averaged over all neu-
rons and 10 trials. At each time step t, Dspike[q] was computed over [t − 100, t]
msec, with cost q set at 100 msec−1. The black and white diamonds indicate the
baseline value of Dspike[q] that would be obtained by comparing independent
spike trains with the same response statistics, for constant and oscillatory input,
respectively. This value is computed by measuring, for each neuron the distance
between two spike trains recorded on independent trials (different seeds). Al-
though Dspike[q] depends on q for small q, the temporal course of the divergence
was found to be similar for a large range of q’s.

Figure 4: (A, B) Spike trains of 50 neighboring neurons for 700 msec from the
ring network for two types of input drives, constant (A) or sinusoidally mod-
ulated at 5 Hz (B). In both cases, the same system was initialized at identical
states except for one spike (highlighted) generated at approximately 100 msec
that was perturbed by 1 msec. Origin is set at the time of this perturbation.
Simultaneous spikes (precise to within 1 msec) in the normal and perturbed
simulations are depicted in green. The spikes whose timing were affected by
more than 1 msec are shown in red (normal) and blue (perturbed). For neurons
located in the neighborhood of the perturbed neuron, divergence is very fast.
(C) Mean divergence of the spike trains after the perturbation for the entire pop-
ulation. The curves correspond to the distance Dspike[q] between the normal and
perturbed spike trains, for constant (solid lines) and oscillatory input (dashed
lines), averaged over all neurons and 10 trials. The black and white diamonds
indicate the baseline value of Dspike[q] as in Figure 3.

Figure 5: (A) Spike trains of 50 neurons with preferred orientation in [45◦–135◦]
in response to a bar oriented at 90◦, during a normal run and after perturbing
one cortical spike (highlighted) by 1 msec, from a model of orientation selectiv-
ity in VI. Perturbation occurred around t = 0 msec for a neuron with preferred
orientation 80◦. Simultaneous spikes (precise to within 1 msec) in the normal
and perturbed simulations are depicted in green. The spikes whose timing were
affected by more than 1 msec are shown in red (normal) and blue (perturbed).
(B) Divergence of the spike trains after the perturbation, for the neuron receiv-
ing the initial perturbation (red) and other neurons picked at random (other
curves). Each curve corresponds to the distance Dspike[q] between the normal
and perturbed spike trains, averaged over 50 trials.
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of input conditions. The spike trajectories generated by the recurrent sys-
tems of spiking neurons of both the spike-response type as well as the
conductance-based integrate-and-fire type were also found to be sensitive
to the internal state of the network in all scenarios. This included cases
where the dynamics of the network was either bursty or asynchronous and
when the input drive was at either a fixed rate or a sinusoidally modulating
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rate. In addition to computing 〈∑ α2
i 〉, we also confirmed that the dynamics

was in fact sensitive by perturbing a randomly chosen internal spike and
recording the subsequent spike trajectory under identical input drive. The
perturbed trajectories of the systems driven by sinusoidally varying inputs
were particularly instructive in that they demonstrated that a system could
generate synchronized bursts of spikes and at the same time be sensitive.
Not only were the bursts themselves perturbed in time, but also the bursts
were generated by different subsets of neurons (as can be seen in the spike
rasters in Figures 3B and 4B). These results indicate that it is unlikely that
recurrent cortical networks of integrate-and-fire, bounded memory neurons
can robustly generate precise spike trajectories under conditions prevalent
in the cortex, where the constituent neurons generate sustained, weakly
correlated, Poisson-like spike trains at low to moderate rates. We must em-
phasize that this conclusion is quite independent of the observation that
neurons on average phase-lock to oscillations in either the input drive (as
seen in Figure 3B) or the intrinsic dynamics of the network (as seen in
Figures 4A and 4B).

As mentioned earlier, the interplay between rising and falling PSPs at
the births of spikes plays a role in our findings. Indeed, approximate bal-
ance between the slopes of the EPSPs and IPSPs at the birth of spikes
makes the sum of the slopes,

∑n
j=1 ρ j , small on average. This makes the αi ‘s

large, which in turn leads to sensitivity. This presents an interesting and
testable experimental prediction. If we are correct about the sensitivity of
the dynamics of recurrent cortical networks, the distribution of the slopes
of the membrane potentials of cortical neurons near the firing threshold
should be skewed toward small values, that is, most threshold crossings
should take place with small slopes. Under such conditions, small jitters
in the timing of the presynaptic spikes would result in a large change in
the timing of the postsynaptic spike. This prediction could be tested with
patch, or intracellular recordings, in awake animals.

One potential concern with our result is our assumption that cortical
neurons fire with near-Poisson statistics, which is not strictly true in the
cortex. For instance, the Fano factor (the ratio of the variance to the mean of
the spike counts), which is equal to one for a Poisson process, varies between
0.3 and 1.8 in the cortex (Tolhurst, Movshon, & Dean, 1982; Gershon, Wiener,
Latham, & Richmond, 1998; Gur & Snodderly, 2005). The assumption of
near-Poisson variability, however, is not critical to our results. As we have
just discussed, the critical factor is 〈∑ α2

i 〉, which depends on the slope of the
contributing PSPs and AHPs at threshold crossings. If the input spike trains
are Poisson-like and weakly correlated, then the slope at threshold is small,
as indicated by our single neuron simulations. But this can also be true when
spike statistics deviate from Poisson. In fact, in our network simulations
using both the spike response and the conductance-based integrate-and-
fire neurons, the Fano factor varied from 0.4 to 0.8, and yet the networks
were found to be sensitive to initial conditions.
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It must be noted that whether spike trajectories are robust to perturba-
tions depends not only on the details of the network architecture and the
statistics of the spike trains, but also on the range of firing rates. For in-
stance, if neurons in a network fire at approximately 500 Hz, the average
spike timing is likely to be precise to a 2 msec timescale, because of the
refractory period. In fact, we have found in other simulation experiments
(not reported here) that the value of 〈∑ α2

i 〉 drops sharply as the spike
rates of the neurons in a network rise beyond 200 Hz. This was found to
be due to the positive αi ‘s contributed by the AHPs of the efferent spikes
of the neurons. In this letter, we have focused instead on the question of
whether entire spike trajectories—with spike timing precise to within a 1
to 5 msec range—can be generated in recurrent networks in the cortex of
awake, behaving animals. Accordingly, we considered situations in which
the internal neurons fire in the 0.1 to 50 Hz range with near-Poisson statis-
tics and are weakly correlated, because these are the most common type
of responses reported in the cortex of awake, behaving animals (Tolhurst
et al., 1982; Gershon et al., 1998; Gur & Snodderly, 2005). We also focused
on recurrent networks where the output is a function not only of the in-
put but also the internal state of the network, as opposed to feedforward
networks, because lateral connections are ubiquitous throughout the cor-
tex (Braitenberg & Schuz, 1991). Our results demonstrated that even spike
trajectories that may not be strictly categorized as Poisson like were sen-
sitive to initial conditions, when the neurons spiked at low to moderate
rates.

Naturally, our results do not imply that neural circuits in general cannot
utilize precise timing of spikes to represent and manipulate information,
and there are documented examples of such usage in functionally feed-
forward systems (Carr & Konishi, 1990; Kawasaki, Rose, & Heiligenberg,
1988). Since our analysis is based on perturbations of the internal state of a
network, systems where the output is solely a function of the input do not
fall within the purview of our result. Several researchers have also reported
spike patterns at a coarser timescale in the cortex, on the order of 25+ msec
(Nadasdy et al., 1999; Hahnloser et al., 2002). Such reports do not contradict
our result due to the coarseness of their timescale (the average spike in a 40
Hz Poisson spike train has a precision of 25 msec or more).

Finally, it must be noted that sensitive dependence in the cortex does not
preclude all kinds of temporal codes. On the contrary, it makes the question
even more tantalizing by ruling out the most basic form of temporal code
where information is represented in the precise (modulo the jitter intro-
duced by thermal noise at each component neuron estimated to be in the
1–5 msec range) spike trajectory generated by the entire network. In fact,
the predominant impact of sensitive dependence is likely to be an increased
complexity in the topology of the attractors (detectable only when all input
into a network is withdrawn) in the dynamics of cortical networks, which
would in turn cause the spatiotemporal signature of any information coded
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in its dynamics to be vastly more complex. Several researchers (Skarda &
Freeman, 1987; van Vreeswijk & Sompolinsky, 1998) have also noted other
advantages of chaotic dynamics for computational systems. The precise
implications that sensitive dependence has for the computational nature of
systems of spiking neurons are, however, far from clear.
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