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Supplemental Data

Detailed Results (Figure S1)

Figure S1A indicates that perceptions of motion direction for both groups was accurate at high 

contrast, and initially biased towards perpendicular judgments at low contrast and short durations. 

For the low-speed group, this illusion was unaltered after exposure to slow speeds. However, in the 

high-speed group, exposure to high speeds modulated this initial bias gradually until the illusion 

reversed and the motion direction was most often perceived as being more oblique. The rate of 

learning in the high-speed group was very close to linear. To quantify these observations, linear 

models (both separately for pre- and post-training blocks and with these blocks combined) were fit to 

the 133 and 266 ms data (separately and combined) for each group. The fitted models were then 

evaluated for significance via linear hypothesis tests (linhyptest, MATLAB).

All linear fits for the high-speed group were significant at the 5% level, with the exception of the 

pre-training fit for the 133 ms condition, which only approaches significance. The most significant 

fits are observed for the 266 ms condition. Also, models that combine pre- and post-training blocks are 

more significant. In particular, the p values for the 133 ms condition were 0.0503, 0.0339, 0.0049 for 

the first, the second, and both test blocks within the session, respectively. The respective values for the 

266 ms condition are 0.012, 0.0284, 0.0011 and for the combined 133 and 266 ms conditions, the values 

are 0.0242, 0.0437, 0.0037. In the low-speed group, p > 0.398 for all conditions.

 Fig S1B indicates that the high-speed group continues to be biased towards perpendicular 

judgments during the training block, when it is exposed to high speeds, with a tendency for the bias 

to decrease with time. However, this tendency is not significant: a one-way ANOVA does show a 

mild but significant difference in po across sessions for the training block in the test group (p = 

0.0111) but there is no consistent upward tendency as the one observed in the test blocks (p = 0.28, 

0.2 and 0.09 for the 133, 266 and 532 ms conditions, respectively, linear hypothesis test). These 

results provide evidence against the observed changes found in the testing blocks being due to a 

response bias that develops through the training sessions.

Current Biology, in press



Fig S1C and D show that the changes in the perception of direction of motion affects both 

oblique and horizontal motion conditions: with exposure to high speeds, subjects show less and less 

bias towards perceiving oblique motion as being perpendicular (Fig S1D), but also develop a new 

bias towards perceiving perpendicular motion as being oblique (Fig S1C).



 Figure S1: (A) Proportion of oblique responses plotted against session number for the low-speed 

and high-speed groups and for all durations and contrast levels. Dashed lines correspond to data from 

the first test block in each session (before training) whereas full lines correspond to the third block 

(after training). A three-way ANOVA on proportion of oblique responses with factors session, duration 

and block showed that for the low-speed group, neither session number nor duration had a significant 

effect (p > 0.85 and p > 0.29, respectively), whereas the effect of block (before vs after training) was 

borderline significant at the 5% level (p=0.046). For the high-speed group, duration also had no 

effect (p=0.52); however, the effect of session number was highly significant (p<0.001), as was the 

effect of block (p=0.0047). There were no higher-level interactions. (B) Proportion of oblique 

responses in the training (middle) block for each group. (C) and (D) Performance in trials with 

normal and oblique (respectively) veridical motion. Error bars are ±1 between-subjects SEM.

Bayesian Model

To investigate quantitatively whether our results are consistent with the idea of a changing speed 

prior, we adapted the Bayesian model of motion perception proposed by Weiss et al (2002). This 

model suggests that motion perception can be described as an optimal estimation of object velocities 

under the assumption of local measurement noise and an a priori preference for slower velocities 

(in Weiss et al (2002), the prior is centered at zero). The idea of our extension of this model is that 

the speed prior is initially centered close to zero but varies further away from zero from session to 

session due to exposure. As described below, the model and parameters of this learning were 

determined to best fit the group-averaged data.

When receiving as inputs the moving stimulus image, the model produces a velocity estimate, 

which is given by a variant of the solution of Weiss et al (2002), generalized to include a velocity prior 

with a non-zero mean:

	

 	



where Ix, Iy, It are the spatial (two dimensions) and temporal (partial) derivatives of the image intensity 

function, σ2/σp2 is the ratio of the likelihood and prior variances, the only free parameter in the original 

model of Weiss et al (2002), and μx, μy are the means (two dimensions) of the velocity prior. The 

sums were computed over the pixels in the stimulus images. The spatial derivatives were computed 



using MATLAB’s gradient() function, which performs a simple subtraction of the values of 

neighboring pixels along each axis. The temporal derivative is given by:

It = -( Ix vx + Iy vy)

where vx, vy are the local velocity measurements in the two axes (and equal to the veridical velocity 

of the stimulus and to each other, since the stimulus translates rigidly).

Following Weiss et al (2002), we simulated our 2-alternative forced choice experiment by 

assuming that the decision (‘up’ or ‘down’) is corrupted by Gaussian noise. The model response in the 

presence of this ‘decision noise’ is given by: 

r = sign(φest + η)

where φest is the angle between the estimated velocity vector and the horizontal and η a zero-mean 

Gaussian random variable of standard deviation σD. The direction estimate φest>0° corresponds to 

right-upward motion and φest < 0° to right-downward motion. 

 Updating the Prior. 

The mean of the velocity prior μp =(μx , μy) was allowed to vary within a session and between session. 

We modeled this learning using the following assumptions:

(i) Based on observed performance differences between successive sessions, we assumed that 

only a proportion (1-γ) of the shift of the prior within a session would be retained in the next session. 

We call γ the ‘unlearning rate’ parameter.

(ii) To describe the trajectory of the prior, two variants of the model were investigated:

• In the first (non-parametric) model, the prior mean is determined independently for each session, 

by fitting to the data. In total, this model has 10 parameters: 5 for the prior mean locations after training 

(one for each session), 1 for the ‘unlearning rate’ γ, 1 for the "decision noise" standard deviation σD and 

3 for the ratio σ2/σp2 for each duration.

• In the second (parametric) model, the post-training prior mean was assumed to vary linearly with time 

(or session). This model was chosen after observing a roughly linear relation between prior means 

and session number using the non-parametric model above. The prior mean was modeled as: μx(s) = 

as + b, where s denotes the session number. This reduces the number of the prior-related parameters 

from 5 to 2. 

(iii) Only the horizontal component μx, of μp was allowed to vary; μy was fixed at zero. Given that in 

our model vy is a Gaussian, a nonzero value of μy would correspond to an artificially imposed vertical 

directional bias that would mask the “up/down” bias that we wish to investigate, which is a result of a 

prior favoring high speeds in general (without assuming a preference for either vertical direction). A 



more accurate alternative would be to use a bimodal distribution for vy. Such a prior could 

potentially track exactly  the stimulus distribution (which is defined by 2 points during training for 

the high-speed group: {μx= 8cos(θ1); μy=8 sin(θ1)}; {μx= 8cos(θ2); μy=8 sin(θ2)}, where θ1 = -20 deg 

and θ2 = 20 deg represents the oblique and perpendicular conditions). However, the closed-form 

solution of Eq. 1 would no longer apply, as it is based on assumptions of Gaussianity.

(iv) All aforementioned parameters were fit with MATLAB's fminsearch function using the low-

contrast data group averaged data1, using Maximum Likelihood estimation. 

The results shown in Figure 1D of the main text correspond to the non-parametric version of the 

model.

Figure S2 shows the means of the speed prior (i.e. the magnitudes of the velocity means) fitted to 

the group-averaged data both parametrically and non-parametrically. It is observed that in the high-

speed group the prior shifts towards speeds approaching the testing speed with training -- reaching a 

value of 6.2 deg/s at the end of the last session -- whereas the prior for the low-speed group remains 

almost fixed. The fitted σ2/σp2 values decrease monotonically with duration. This reflects the fact that 

with longer durations, as the visual evidence is becoming more reliable, the likelihood becomes 

sharper. 

The other best-fitting parameters were  σD =5 deg (both groups) for the motor noise and γ=0.17 

and 0.99 (high-speed and low-speed group, respectively) for the unlearning rate.  This large 

difference in γ across the groups reflects the fact that, for the low speed group, the within-session 

learning seems to be forgotten from one day to another. One explanation for this might be that the 

amount of learning should exceed a threshold in the short-term for it to be consolidated in the long-

term. 

The root mean squared error (RMSE) of the non-parametric model fit for the high-speed and low-

speed group was 0.026 and 0.0403, respectively. The respective values for the parametric variant are 

0.0304 and 0.0486. As expected, the non-parametric model fits the data better at the cost of greater 

complexity (number of parameters). To compare the two models, we used the ‘corrected Akaike 

information criterion’ [2], defined as

AICc = 2kn/(n-k-1) - 2L

where L is the likelihood of the data given the model, k the number of model parameters and n the 

number of data points. The model favored by AICc (the one with the lowest score2) was the 

parametric one in the case of the high-speed group (8709.3 parametric vs 8717.5 non-parametric) but 

1 Fitting including the high-contrast data too gave slightly worse results, presumably due to fitting more noise: 
probabilities at high contrasts are theoretically all close to 0.5 and thus are not informative.

2 The reported values are up to an additive constant that is common to all models (only depends on the data) and thus 
ignored.



the non-parametric one for the low-speed group (8603.8 parametric vs 8601.6 non-parametric).

In theory, not only the mean of the prior could change with exposure, but also its shape. Variants 

of the model where the prior variance (σp2) was also allowed to vary across sessions were also 

examined. In the first variant, σp2 is a linear function of session number (requiring 3 additional 

parameters); in the second variant, σp2 is allowed to vary freely in each session (requiring 6 

additional parameters). These models predict that the prior mean increases in the experimental 

group, qualitatively similar to the previous model, while the variance of the prior remains mostly 

stable (data not shown). The RMSEs of the best-fitting linear-variance model for the high-speed and 

low-speed group were 0.026 and 0.0388, respectively. The respective RMSEs for the free-variance 

model were 0.0249 and 0.0384. Both variants fit the data slightly better than the fixed-variance 

model, however the AICc of the former are greater. In particular, the AICc for the fixed-variance 

model were 8717.5 and 8599.2 (high-speed and low-speed group, respectively); the respective AICc 

for the linear-variance model were 8730.9 and 8605.2; and the AICc for the free-variance model 

were 8758.8 and 8637.2. This suggests that the model which varying prior mean and fixed variance 

is a better description of the data. However, it was found that these models were difficult to fit as the 

optimization process was prone to local minima, due to the increased number of parameters 

compared to data points. Future work will aim at a more detailed characterization of the prior 

variance with exposure.

 

 Figure S2: (A) Ratio of the variances of the likelihood (visual evidence) and the prior (expectations) 

as a function of trial duration. With longer durations, visual evidence becomes more reliable and 

thus the likelihood is sharper and σ2/σp2 decreases. (B, C) Evolution of the speed prior (magnitude of 

the velocity prior) through training: mean of the speed prior as a function of session number for the 

non-parametric and parametric (linear) prior model, respectively. For comparison, the dotted line 



shows the actual stimulus speed during testing. 



Supplemental  Experimental  Procedures

The stimulus consists of a field of parallel lines, translating rigidly and coherently (see Figure 1A in the 

main text, and movie of stimulus - here shown for 0.5 seconds and at a contrast that is much higher than 

in the actual experiment). Line elements had a length of 4° of visual angle and an orientation of 110° 

i.e. approximately 11 o'clock. Motion direction was either perpendicular to the line, which means 

20° from horizontal (upward motion), or oblique, that is, -20° from horizontal (downward motion). The 

equal distance of the two directions from the horizontal ensured that any bias towards the horizontal [1] 

would have the same effect in both conditions (‘up’ and ‘down’). In each trial, the direction was 

picked randomly without replacement. Stimulus presentation durations were uniform randomly chosen 

from the set {133, 266, 532 ms}. Stimulus speed was either 4 deg/sec (test session and training session 

of low-speed group, see below) or 8 deg/sec (training session of high-speed group). With the 

exception of line length, all above parameters were the same as in the first experiment in Lorenceau 

et al (1993).

 The field of parallel lines was visible through a circular mask of 24o (of visual angle) in 

diameter, as in previous work (Lorenceau et al, 1993). The circular mask is much larger than 

individual lines, so most of the lines (excluding those near the circumference of the aperture) are 

visible in their entirety (ie including their endpoints). The background was black (luminance 0.29 

cd/m2) whereas the lines were gray. Two gray levels were used for the lines: they were either shown 

with a luminance of 0.342 cd/m2 corresponding to a Michelson contrast of 8% (“low” contrast) or 

with a luminance of 0.948 cd/m2 corresponding to a Michelson contrast of 53% (“high”  contrast). 

Lines were 2.4' (minutes of arc) thick.

Twelve naive subjects participated in this experiment, evenly divided in two groups, test and 

low-speed. Each subject conducted 5 high-speed sessions, each on a separate day with each session 

at the same time of day for a given subject. Each session lasted 35-45 minutes and was divided into 3 

blocks - a small test block, followed by a large training block, followed by a small test block identical 

to the first. Stimulus contrasts, durations and directions were randomly interleaved in each block. 

Motion speed was kept constant and equal to 4 deg/sec in the test blocks and in the training block of the 

low-speed group, while it was fixed at 8 deg/sec in the training block of the high-speed group. 



The number of trials in each test block was chosen so that each condition was presented 18 times. 

Since there were 2 (equiprobable) contrast levels, 3 (equiprobable) durations and 2 directions, the total 

number of trials was 2 x 3 x 2 x 18 = 216. The number of trials in the training block was chosen to be 

larger than both test blocks. In particular, each condition was presented 60 times, so that each training 

block consisted of 2 x 3 x 2 x 60 = 720 trials. In total, the number of trials in a session was 1152.

The structure of an individual trial was as follows:

· A 200 ms fixation period, during which the static stimulus (line field) was displayed, together 

with a red central fixation dot (diameter = 24 arcmin).

· A stimulus presentation period. The fixation dot disappeared at the beginning of this period 

and motion of the line field was initiated. All lines moved in the same direction and at the same 

speed, so the apparent motion is a global translation of the entire field. The duration of this 

period was either 133, 266 or 532 ms.

·  A response period. The stimulus disappeared and the fixation dot reappeared. Subjects reported 

the perceived direction of motion by pressing the ‘Up’ /‘Down’ arrow key on the keyboard. 

When a response was made or when 3 seconds had elapsed, the trial ended.

Data analysis

Following Lorenceau et al. (1993), the proportion of oblique responses (hereafter referred to as po) 

was measured for each duration and contrast level. Performance (proportion of correct responses in the 

task) before and after training was also calculated separately for the upward- and downward-motion 

trials. ANOVA was used to determine whether there was a change in po across sessions and training 

blocks and whether there was a difference between test and low-speed groups. Significant results 

from ANOVA were followed up by Tukey's HSD tests in order to examine these differences.
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