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Performance of subjects in detection and estimation task
In order to ensure that participants performed adequately in the psychophysical task we used a 

predetermined performance criteria for inclusion into the study. Firstly, participants were 
required to detect the motion stimuli on more than 80% of trials with the high contrast motion 
stimuli and also make active estimates of the motion directions by clicking the mouse. Secondly, 
their average estimation performance on the high contrast stimuli had to be within 30° of the 
correct angle. 

We discounted 3/20 participants who did not meet our first criterion in either experimental 
session. The included participants managed to both detect stimuli and click on the mouse during 
stimulus presentation to make an estimation of motion direction, on almost every trial with the 
high contrast stimuli (97±0.3% of trials).

The 17/20 participants who passed the criterion for the detection task could be separated 
according to their estimation performance into two distinct groups (supplementary figure 1a): 
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Supplementary figure 1: Performance of different participants in estimation task, with the high contrast stimuli. (a) 
The mean absolute estimation error is plotted separately for each experimental session (session 1 and 2 are plotted in 
blue and red respectively), and for each participant. Participants whose rms estimation error was less than 30° in both 
sessions were included in our analysis, and are denoted by filled dots while participants who did not meet this 
criterion were discounted from our analysis are denoted by crosses. The mean absolute error that corresponds to 
chance performance in the task (90°) and our criterion rms error (30°)  are denoted by horizontal dashed lines. (b) 
Response probability histogram of estimation error with the high contrast stimuli, for included (red) and excluded 
participants (red). (c) Fraction of trials where participants moved the bar less than 1° from its initial position during 
the estimation task. Included and excluded participants are shown in red and black respectively.



12/20 participants who passed our criterion and performed well in the estimation task 
(population averaged absolute error of 12.8±0.9°) and 5/20 participants who failed our criterion 
for the estimation task, performing at near chance levels (with an average rms error of 77.0±4.9°, 
compared to an average absolute error of 90° that would be expected if they made completely 
random estimations). Supplementary figure 1b illustrates the estimation error response 
probability histograms for included participants (blue) and excluded participants (red) in 
response to the high contrast stimuli. It is clear from this plot that the excluded participants 
performed extremely badly at the estimation task, with a distribution of estimation errors that 
was almost uniform (p = 0.19, 2-way within-subjects ANOVA), even with the highly visible high 
contrast stimuli.

If excluded participants really were not attempting the estimation task at all, then we thought it 
likely that they would click on the bar immediately during the estimation task, without moving it 
from its initial (random) orientation. This is indeed what we found: on average the excluded 
participants did not move the bar more than 1° from its initial position on 79±5% of trials with 
the high contrast stimuli; significantly more than 7±1% of trials for included participants 
(p<0.001 rank-sum test; supplementary figure 1, right panel). Excluded participants also 
performed the estimation task more quickly than included participants, further supporting the 
argument that they were not really trying to do well in this task (average reaction time of 
1.44±0.07s as opposed to 0.89±0.12s for the included versus the excluded participants; p = 
0.027, rank-sum test). 

In summary, this evidence suggests that rather than just performing worse in the estimation task 
due to finding it difficult, excluded participants did not try to perform the estimation task at all: 
as they left the estimation bar in its initial position and performed at near chance levels, even 
with the highly visible high contrast motion stimuli.
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Supplementary figure 2: (a)  Population averaged stimulus contrast, relative to background contrast, for the 4/1 
(blue)  and 2/1 (red) staircased contrast levels, plotted against trial number (from the 1st experimental session only). 
(b) Fraction of stimuli detected at each of the 4 different contrast levels. In both plots, results are averaged over all 
participants, and the standard deviation is denoted by shaded curves and error bars respectively.



Contrast levels
For each session, the staircases converged to stable luminance levels after roughly 100 trials 

(~25  trials per contrast staircase; supplementary figure 2a). The 2/1 and 4/1 staircases tracked 
contrasts where detection performance was near-threshold (stimulus detected on 70±0.4% and 
83±0.2% of trials respectively; supplementary figure 2b). After discounting the first 100 trials 
from each session, the population averaged mean luminance (averaged over all trials) for the 2/1 
and the 4/1 staircased contrast levels were 0.50±0.004cd/m2 and 0.55±0.005cd/m2 above 
background luminance respectively (errors are standard error on the mean). The population 
averaged standard deviation in the luminance of the 2/1 and the 4/1 staircased levels over the 
course of one experimental session was 0.051±0.001cd/m2 and 0.054±0.001cd/m2 respectively 
(errors are standard error on the mean). Notably, this was similar to the average luminance 
difference between the two levels (0.052±0.001cd/m2). Finally, there was no significant 
difference between the luminance levels achieved for both staircases (p = 0.23, 3-way within-
subjects ANOVA). 

Development of ‘no-stimulus’ estimation bias
On trials where no stimulus was presented, but where participants reported detecting a 

stimulus, they were most likely to report motion directions close to the most frequently presented 
directions (see main paper). We quantified how likely individual participants were to make 
estimates that were close to the most frequently presented motion directions relative to other 
directions, by multiplying the probability that they estimated within 8° of these motion directions 
by the number of 16° bins (prel = p(θest = ±32(±8)◦|detected) · Nbins). This probability ratio 
would be equal to 1 if participants were equally likely to estimate within 8° of ±32° as they were 
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Supplementary figure 3: Probability ratio that individual participants estimated within 8° from the most frequently 
presented motion directions (±32°) relative to other 16° windows, for trials where no stimulus was presented, but 
where they reported detecting a stimulus. This probability ratio is calculated for each participant after every 100 
trials (this calculation takes into account data from all trials up to that point; here we show the first 500 trials from 
the first session only). Median values are indicated by horizontal red lines, 25th and 75th percentiles by horizontal 
blue lines. Dashed lines correspond to the ‘trajectories’ of individual participants’ ‘ prel’ values. p-values indicate 

whether the probability ratio (’prel’) was significantly different from 1 at each point in time.
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to estimate within other 16° bins. To investigate how quickly these biases developed, we 
calculated this probability ratio for individual participants every 100 trials (including all 
responses up to that point; supplementary figure 3). For participants who had not reported 
detecting stimuli on any trials where none was presented, this probability ratio was undefined, so 
these data points were omitted from the plot (e.g. after 100 trials, only 4 participants were 
included, 11 participants were included after 200 trials, and 12 participants after 300 trials). After 
only 200 trials of the first session, the median probability ratio (‘ prel ‘) was significantly greater 

than 1, indicating that on trials where no stimulus was 
presented, but where participants reported detecting a 
stimulus, they were biased to estimate motion in the 
most frequently presented directions after only 200 
trials. Thus, expectations about which motion 
directions were most likely to occur were learned 
extremely rapidly, after a few minutes of task 
performance.

Full ‘unfolded’ plots of estimation 
performance
In the main text we averaged data from both sides of 
the central motion direction. Here we present versions 

of the plots where this has not been done. 
Supplementary figure 4 plots participants average 
estimation bias (left) and estimation standard deviation 
(right), plotted as a function of the presented stimulus 
motion direction. Supplementary figure 5 shows the 
estimation response probability when no stimulus was 
present, plotted for trials where participants detected a 
stimulus and click the mouse to make and estimation 
(black), alongside trials where participants didn’t 
detect a stimulus (but still clicked the mouse to make 
an estimation; red).
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Supplementary figure 5: Probability 
distributions of participants’ estimates of 
motion direction when no stimulus was 
present. The two most frequently presented 
motion directions (±32°) are indicated by 
vertical dashed lines. Responses were divided 
into trials where participants reported detecting 
a stimulus (blue) and trials where they didn’t 
(red). Results are averaged over all participants 
and error bars represent within-subject 
standard error.

Supplementary figure 4: The average estimation bias (a) and standard deviation of estimation responses (b), is 
plotted against stimulus motion direction. In both plots, results are averaged over all participants and error bars 
represent within-subject standard error.



Estimation biases at different contrast levels
We were interested to see how changes in stimulus contrast affected participants’ estimation 

behaviour. To do this, we first fitted psychometric curves to each participants detection 
responses, of the form: pdetect(c) = γ + F (c)(1− γ). Here pdetect(c) represents the probability 
that a participant detected a stimulus presented at a contrast c, γ  is a constant representing the 
probability that a participant reported detecting a stimulus when none was displayed (the ‘guess 
rate’), and F (c) is a cumulative normal distribution (specified by two parameters; the mean and 
standard deviation of the corresponding normal distribution). To fit this function to each 
participants detection response data we set γ  to be equal to the fraction of trials where the 
participant reported detecting a stimulus when none was presented, before fitting the two 
parameters of the cumulative normal distribution (F (c)) to the data, using a simplex algorithm 
(the Matlab function, ‘fminsearch’) that maximized the likelihood of generating the observed 
detection responses.

From the psychometric curves obtained for each participant, we selected a ‘threshold contrast’ 
cthresh  for each participant, where F (c) = 0.75 . We then divided participants’ estimation 
responses into two subsets: trials where the stimulus contrast was greater than cthresh,  (referred 
to as ‘high contrast trials’) and trials where the stimulus contrast was less than cthresh  (referred 

to as ‘low contrast trials’). The population averaged 
mean luminance for the ‘low’ and ‘high’ contrast trials 
were 0.49±0.02cd/m2 and 0.61±0.02cd/m2 above 
background luminance respectively.
Supplementary figure 6 plots participants’ estimation 
biases separately for ‘low contrast trials’ (black) and 
‘high contrast trials’ (red) against the presented motion 
direction. Both curves exhibit a qualitatively similar 
shape: at both contrast levels, estimations of motion 
stimuli far away from the central motion direction 
(±64°) were biased towards the central motion 
direction. This bias reversed close to the central 
motion direction, so that for both contrast levels, 
estimations of motion stimuli presented at ±16° were 
biased away from the central motion direction, and 
towards the most frequently presented motion 
directions (±32°).
Importantly however, the magnitude of the estimation 
biases for stimuli moving far away from the central 
motion direction (±48° and ±64°) was much larger 
with the lower contrast stimuli than with the higher 
contrast stimuli. Overall there was a significant 
interaction between the effects of the two contrast 
levels and motion direction on the estimation bias (p < 
0.001, 3-way within-subjects ANOVA). 
In general the estimation standard deviation was 
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Supplementary figure 6: Estimation bias at 
different contrasts levels. Participants’ estimation 
bias for the higher contrast trials (red) and lower 
contrast trials (black) are plotted against presented 
motion direction. Data points from either side of 
the central motion direction have been averaged 
together, so that the furthest left point corresponds 
to the central motion direction, and the vertical 
dashed line corresponds to data taken from the 
two most frequently presented motion directions 
(±32°). Results are averaged over all participants, 
and error bars represent the within-subjects 
standard error. 



significantly larger at the lower contrast level than at the higher contrast level (an average value 
of 17.8±1.7° at the higher contrast level versus 14.4±1.3° at the lower contrast level; p = 0.017, 
3-way within-subjects ANOVA). However, there was no significant interaction between the 
effects of contrast level and presented motion direction on the estimation standard deviation (p = 
0.10, 3-way within-subjects ANOVA).

Overall, these results are consistent with what we would expect if participants behaved as ideal 
Bayesian observers. When the contrast was decreased the width of participants’ sensory 
likelihood should increase, with a corresponding increase in their estimation standard deviations. 
As a result, participants’ estimates of motion direction would be more strongly influenced by 
their expectations, leading to stronger biases towards the most frequently presented motion 
directions, as we observed in our experimental data.

We attempted to model the observed contrast-dependent variations in participants’ estimation 
behaviour using the Bayesian framework described in the main paper. However, for many 
participants’ there were a relatively few number of data points per experimental condition when 
we divided the trials into different contrast levels. As a result we were unable to adequately 
constrain the model to fit the (relatively small) changes in participants’ estimation behaviour with 
varying contrast levels. Future experiments, possibly with more data points per experimental 
condition, or a modified experimental design (e.g. using fixed, rather than staircased contrast 
levels), will be required to more accurately probe how participants’ estimation behaviour varies 
with contrast.
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Supplementary figure 7: Reaction time changes with stimulus motion direction. (a) Time taken for participants to 
click on the mouse and during stimulus presentation, measured from the initial presentation time. Data points from 
either side of the central motion direction have been averaged together, so that the furthest left point corresponds to 
the central motion direction, and the vertical dashed line corresponds to the most frequently presented motion 
directions (±32°). Results are averaged over all participants and error bars represent within-subject standard error. 
(b) Individual average reaction time for stimuli moving at ±32°, plotted against the reaction time over all other 
motion directions. The black cross marks the population mean, with the length of the lines on the cross equal to the 
standard error.
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Reaction times
We measured participants reaction time in clicking the mouse during stimulus presentation, 

from trials where they also detected a stimulus. Supplementary figure 7a plots the reaction times 
in the estimation task as a function of stimulus motion direction. Supplementary figure 7b plots 
individual participants’ reaction time for stimuli presented at ±32° versus their average reaction 
time for stimuli presented at all other motion directions. There was a significant effect of 
stimulus motion direction on participants’ reaction time (p = 0.003, 3-way within-subjects 
ANOVA). For trials where participants detected a stimulus, there was a small, but highly 
significant reduction in their reaction time for the most frequently presented motion directions, 
relative to other motion directions (1924±86ms at ±32° versus 1991±85ms over all other motion 
directions; p < 0.001, signed rank test). 

‘Full’ Bayesian model: including the detection task
In the main text we presented a simple Bayesian model (BAYES_L-const), which ignored the 

detection component of the task, looking exclusively at trials where participants correctly 
detected a stimulus. Here we present a model (BAYES_dual), which incorporates the detection 
task also. 

The reasons for doing this were twofold. First, we were concerned that participants’ behaviour 
in the detection task could have altered their behaviour in the estimation task. Therefore, it was 
important to check whether our model of participants’ behaviour in the estimation task only 
(BAYES_L-const) gave consistent results to a model incorporating both the estimation and the 
detection task (BAYES_dual). Second, we were interested to see whether participants’ behaviour 
in the detection task could also be explained within a Bayesian framework.

On a single trial, stimuli moved in a direction θ , and could either be present (s = 1) or not 
present (s = 0). On each trial participants made sensory measurements, {θobs, sobs}  with 
likelihood given by, pl(θobs, sobs|θ, s) . From Bayes’ rule, the posterior probability, 
p(θ, s|θobs, sobs), is obtained by multiplying the likelihood function (pl(θobs, sobs|θ, s)), with the 
prior probability (pprior(θ, s)):	

 	

 	



p(θ, s|θobs, sobs) ∝ pl(θobs, sobs|θ, s) · pprior(θ, s)	

 	

 	

 	

 	

 	

 (1)

As explained in the main text, while participants cannot access the ‘true’ prior, directly, we 
hypothesized that they learned an approximation of this distribution, pexp(θ, s).

For simplicity, we made the assumption that sensory observations of whether the stimulus was 
present (sobs) were independent of sensory observations of motion direction (θobs), given θ  and 
s, such that:

pl(θobs, sobs|θ, s) = pl(θobs|θ, s)pl(sobs|θ, s)	

 	

 	

 	

 	

 	

 	

 (2)

The sensory likelihood function for observations of the stimulus motion direction was 
parameterized as:

pl(θobs|θ, s) =
�

1
2π if s = 0
V (θ,κl) if s = 1	

 	

 	

 	

 	

 	

 	

 	

 (3)
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where V (θ, κl)  denotes a von Mises (circular normal) distribution centered on θ , and with 
width determined by 1/κl. Thus, for trials where no stimulus was presented, we assumed that 
participants were equally likely to make sensory observations that the stimulus was moving in 
any direction. 

The sensory likelihood function for observations of whether the stimulus was present or not, 
was parameterized as:
	



pl(sobs = {0, 1}|θ, s) =
�

{1− c, c} if s = 0
{1− d, d} if s = 1

    	

 	

 (4)

Previously, we found that the Bayesian model described in the main text, did not fit the data 
better when κl was allowed to vary with motion direction (BAYES_L-var), compared to when it 
was held constant (BAYES_L-const; figure 8). Consistent with this, for the BAYES_dual model 
presented here, the shape of the likelihood function was held constant with stimulus motion 
direction (i.e. ‘ κl’ and ‘d’ were held constant with presented motion direction).

We parameterized participants’ learned approximation of the true prior (pexp(θ, s)) as:

pexp(θ, s) =
�

1
2π (1− b) if s = 0
b [V (−θexp, κexp) + V (θexp, κexp)] /2 if s = 1	

	

 	

 	

 (5)

where the parameter ‘ b’ describes participants’ average expectation that a stimulus would be 
presented on each trial. Thus, we assumed that participants’ expectation distributions did not  
vary with motion direction for trials where no stimulus was presented. On the other hand, their 
expectation distributions for trials where stimuli were presented varied with motion direction in 
the same way as the BAYES_L-const model described in the main text (compare equation 5 in the 
supplementary materials with equation 2 in the main text).

We hypothesized that participants performed the detection task by taking the maximum of the 
posterior distribution on each trial (as ‘ sperc’ was required to be a discrete binary variable they 
could not take the mean of the posterior), such that:

sperc = argmaxs[p(s|θobs, sobs)] = argmaxs

�
pl(sobs|s)

�

θ
pl(θobs|θ, s)pexp(θ, s)dθ

�

  (6)
To be consistent with the BAYES_L-const model, the estimation task was performed on each 

trial by taking the mean of the posterior:

θperc =
�

θ · p(θ|θobs, sobs)dθ =
1
Z

�
θ
�

s

[pl(sobs|s)pl(θobs|θ, s)pexp(θ, s)] dθ         (7)

where Z  is a normalization constant, chosen so that the sum of probability distribution 
(summed over both θ  and s) was equal to one. As with the BAYES_L-const model, qualitatively 
similar results were obtained when we used the maximum of the posterior in our simulations, 
instead of the mean. 

We allowed for ‘motor noise’ associated with participants indicating the estimated motion 
direction, as well as allowing for a fraction of trials (‘ α’ ﻿) where they made estimations that were 
completely random, so that estimation responses (θest) were related to perceptual estimates 
(θperc) according to:

p(θest|θperc) = (1− α)V (θperc, κm) + α 	

 	

 	

 	

 	

 	

 	

 	

 (8)
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In total, the BAYES_dual model had 7 free parameters that were fitted to the data for each 
participant: α, κl, c, d, θexp, κexp, and b. As described in the main text, we fitted these parameters 
to the data for each participant by choosing the parameter set that maximized the log-likelihood 
of generating the experimental data from the model.

Now, as both pl(θobs|θ, s) and pexp(θ, s) were assumed to be uniform with θ  when s = 0 (from 
supplementary equation 4 and 5), supplementary equation 6 could be simplified to: 

      
This is essentially identical to the expression that we derived for the BAYES_L-const model in 

the main text, (compare this equation with equation 9 in the main text). Therefore, we might 
expect the predictions for the estimation task to be the same for both models. However, 
differences emerge between the structure of the two models if participants behave differently 
depending on whether they detected a stimulus. For example, we assume for the BAYES_dual 
model that on trials where participants did not detect a stimulus, they treated the estimation task 
as meaningless, making estimations that were completely random. This strategy would be 
consistent with our data: participants estimation distributions from trials where they both did not 
detect a stimulus or click on the mouse to indicate its motion direction was essentially uniform (p 
= 0.18, 3-way within-subjects ANOVA). Given this assumption, it is possible that the estimation 
distributions obtained for trials where a stimuli were detected would differ from the estimation 
distribution obtained for all trials.

Results

The BAYES_dual model provided a 
reasonable qualitative fit for 
participants’ responses in the detection 
task (with a mean absolute error of 
1.50±0.58% detected; supplementary 
figure 8). The model exhibited increased 
detection performance for the most 
frequently presented motion directions, 
similar to what was observed 
experimentally (the model predicted 
71.2±1.6% detected at ±32° versus 
64.8±1.5% over all other motion 
directions compared to experimental 
observations of 71.5±2.5% detected at 
±32°, versus 64.2±2.5% over all other 
motion directions). Overall our results 
were consistent with the hypothesis that 
participants behaved as optimal Bayesian 
observers in the detection task.

The estimation bias and standard 
deviation predicted by the BAYES_dual model are shown in supplementary figure 9 (blue), 
plotted alongside the predictions from the BAYES_L-const model  (black) and the experimental 
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(9)θperc =
1
Z

�
θ · pexp(θ, s = 1) · pl(θobs|θ, s = 1) · dθ
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Supplementary figure 8: Fraction of motion stimuli that were 
detected, plotted against presented motion direction. Model 
predictions are plotted in black, experimental data is plotted in 
red. Data points from either side of the central motion direction 
have been averaged together, so that the furthest left point 
corresponds to the central motion direction, and the vertical 
dashed line corresponds to data taken from the two most 
frequently presented motion directions (±32°). Results are 
averaged over all participants and error bars represent within-
subject standard error. 



data (red). Similar to the BAYES_L-const model, the BAYES_dual model provided a good fit for 
both participants’ estimation biases and standard deviations (mean absolute error of 0.83° & 
1.33°, for the fits of the estimation bias and standard deviation respectively; compared with 0.75° 
& 2.17° obtained with the BAYES_L-const model). 

We considered the possibility that the detection task could have influenced participants’ 
behaviour in the estimation task. For example, the BAYES_dual model predicted increased 
detection performance for the most frequently presented motion directions, so that stimuli that 
were perceived to be moving close to these directions would be more likely to be detected. This 
would then have increased the magnitude of the estimation biases that we measured, as we 
looked only at trials where stimuli were detected. 

This interaction between the detection and the estimation task could also have been present in 
our analysis of the estimation responses of real participants. However, for the BAYES_dual 
model, the detection task had only a relatively minor influence on the magnitude of the measured 
estimation biases (verified by comparing the magnitude of the predicted estimation biases for 
trials where the stimulus was predicted to be detected, versus the the magnitude of the predicted 
estimation biases for all trials), suggesting that the detection task would also have had only a 
small influence on the measured estimation biases. Therefore, while it is possible that there could 
have been a small interaction between the two tasks, our modeling work suggests that 
participants’ behaviour in the detection task had a small, and possibly negligible, impact on the 
experimentally measured estimation biases. 

Finally, the BAYES_dual model was used to predict participants’ estimation responses for trials 
where no stimulus was presented. These results are presented in the main text (figure 10).
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Supplementary figure 9: Predicted biases (a) and standard deviations (b) for the BAYES_dual model (which also 
models the detection task; blue) plotted alongside the BAYES_L-const model predictions (black), and the 
experimental data (red). Data points from either side of the central motion direction have been averaged together, so 
that the furthest left point corresponds to the central motion direction, and the vertical dashed line corresponds to the 
most frequently presented motion directions (±32°). Results are averaged over all participants and error bars 
represent the within-subject standard error.
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Shape of the prior

Supplementary  figure 10 plots the shape of participants’ ‘learned prior’ required by the 
BAYES_L-const model and the BAYES_L-dual model to fit  the experimental data (supplementary 
figure 10a and 10b respectively). The exact shape of the predicted distributions varied between 
the two models: the BAYES_L-const model produced a broader distribution than the BAYES_dual 
model. Indeed, even within each model, there were considerable variations in the location and 
width of the peaks between individual participants. However, the shape of the population 
averaged ‘learned prior’ distributions were qualitatively similar for both models: with a peak 
lying close to the most frequently  presented motion directions (±32°), falling off close to the 
central motion direction (0°) and to either side of the most frequently  presented motion directions 
(greater than +64° or less than -64°). Notably, the qualitative shape of both of these distributions 
was similar to the actual probability distribution of presented motion directions (figure 2), 
suggesting that participants learned a close approximation of this ‘true’ prior. 
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Supplementary figure 10: Participants ‘learned’ prior distribution of presented motion directions, as predicted by 
the BAYES_L-const model (a) and the BAYES_dual model (b). Data points from either side of the central motion 
direction have been averaged together in both plots, so that the furthest left data point corresponds to the central 
motion direction, and the vertical dashed line corresponds to the most frequently presented motion directions (±32°). 
Results are averaged over all participants and error bars represent within-subject standard error. 
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