The Reachability Problem for Petri Nets
Where do we stand in 2017?
(LFCS Lab Lunch Talk)

Patrick Totzke

24/01/2017
Petri Nets.
Petri Nets.
Petri Nets.
Petri Nets.

\[
\begin{pmatrix}
1 \\
2 \\
0
\end{pmatrix} + \begin{pmatrix}
-1 \\
-1 \\
+1
\end{pmatrix}
\]
Petri Nets.

\[
\begin{pmatrix}
1 \\
2 \\
0
\end{pmatrix} + \begin{pmatrix}
-1 \\
-1 \\
+1
\end{pmatrix} = \begin{pmatrix}
0 \\
1 \\
1
\end{pmatrix}
\]
\begin{align*}
\begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 \\ -1 \\ +1 \end{pmatrix} &= \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}
\end{align*}
Petri Nets.

... e.g. representing chemical reactions:

\[
C + O_2 \rightarrow CO_2
\]

\[
CO_2 + NaOH \rightarrow NaHCO_3
\]

\[
NaHCO_3 + HCl \rightarrow H_2O + NaCl + CO_2
\]
Petri Nets: Modelling the Dining Philosophers
Petri Nets: Modelling the Dining Philosophers

Diagram of a Petri net model of the Dining Philosophers problem, showing places (circles) and transitions (diamonds) with tokens and arcs.
Petri Nets: Modelling the Alternation Bit Protocol
Petri Nets: Modelling the Alternation Bit Protocol
Petri nets: Modelling gone wrong
Vector Addition Systems with States

Definition

A d-VASS is a finite automaton
Definition

A d-VASS is a finite automaton with designated states $i, f \in Q$.

Vector Addition Systems with States

Definition

A \(d \)-VASS is a finite automaton with designated states \(i, f \in Q \) and alphabet \(A \subseteq \mathbb{Z}^d \).
Definition

A \(d\)-VASS is a finite automaton with designated states \(i, f \in Q\) and alphabet \(A \subseteq \mathbb{Z}^d\).

The step-relation between configurations in \(Q \times \mathbb{N}^d\) is

\[(q, v) \longrightarrow (q', v')\]

if there is an edge \(q \xrightarrow{a} q'\) such that \(v' = v + a\).
Vector Addition Systems with States

Definition
A \(d \)-VASS is a finite automaton with designated states \(i, f \in Q \) and alphabet \(A \subseteq \mathbb{Z}^d \).

The step-relation between configurations in \(Q \times \mathbb{N}^d \) is
\[
(q, v) \rightarrow (q', v')
\]
if there is an edge \(q \xrightarrow{a} q' \) such that \(v' = v + a \).

Reachability
\((i, 0) \overset{*}{\rightarrow} (f, 0) \)?

Coverability
\((i, 0) \overset{*}{\rightarrow} (f, v) \) for some \(v \)?
On the Category of Petri Net Computations

In Memory and Dedication to my Beloved mother Liana

Vladimiro Sassone°

BRICS° – Computer Science Dept., University of Aarhus

Abstract. We introduce the notion of strongly concatenable process as a refinement of concatenable processes [3] which can be expressed axiomatically via a functor $Q[-]$ from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net N, the strongly concatenable processes of N are isomorphic to the arrows of $Q[N]$. In addition, we identify a coreflection right adjoint to $Q[-]$ and characterize its replete image, thus yielding an axiomatization of the category of net computations.

Introduction

Petri nets, introduced by C.A. Petri [8] (see also [10]), are unanimously considered among the most representative models for concurrency, since they are a fairly simple and natural model of concurrent and distributed computations. However, Petri nets are, in our opinion, not yet completely understood.

Among the semantics proposed for Petri nets, a relevant role is played by the various notions of process [9, 4, 1], whose merit is to provide a faithful account of computations involving many different transitions and of the causal connections between the events occurring in a computation. However, process models, at least in their standard forms, fail to bring to the foreground the algebraic structure of nets and their computations. Since such a structure is relevant to the understanding of nets, they fail, in our view, to give a comprehensive account of net behaviours.

The idea of looking at nets as algebraic structures [10, 7, 13, 14, 2] has been given an original interpretation by considering monoidal categories as a suitable framework [6]. In fact, in [6, 3] the authors have shown that the semantics of Petri nets can be understood in terms of symmetric monoidal categories—where objects are states, arrows processes, and the tensor product and the arrow
On the Category of Petri Net Computations

In Memory and Dedication to my Beloved mother Liana

Vladimiro Sassone°

BRICS° – Computer Science Dept., University of Aarhus

Abstract. We introduce the notion of strongly concatenable process as a refinement of concatenable processes [3] which can be expressed axiomatically via a functor $Q[\cdot]$ from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net N, the strongly concatenable processes of N are isomorphic to the arrows of $Q[N]$. In addition, we identify a coreflection right adjoint to $Q[\cdot]$ and characterize its replete image, thus yielding an axiomatization of the category of net computations.
On the Category of Petri Net Computations

In Memory and Dedication to my Beloved mother Liana

Vladimiro Sassone

BRICS* – Computer Science Dept., University of Aarhus

Abstract. We introduce the notion of strongly concatenable process as a refinement of concatenable processes [3] which can be expressed axiomatically via a functor \(\mathcal{Q}[-] \) from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net \(N \), the strongly concatenable processes of \(N \) are isomorphic to the arrows of \(\mathcal{Q}[N] \). In addition, we identify a coreflection right adjoint to \(\mathcal{Q}[-] \) and characterize its replete image, thus yielding an axiomatization of the category of net computations.

Definition 1.1 (Petri Nets)
A Petri net is a structure \(N = (\partial^0_N, \partial^1_N : T_N \rightarrow S^\oplus_N) \), where \(T_N \) is a set of transitions, \(S_N \) is a set of places, and \(\partial^0_N \) and \(\partial^1_N \) are functions.
A morphism of Petri nets from \(N_0 \) to \(N_1 \) is a pair \((f, g) \), where \(f : T_{N_0} \rightarrow T_{N_1} \) is a function and \(g : S^\oplus_{N_0} \rightarrow S^\oplus_{N_1} \) is a monoid homomorphism such that \((f, g) \) respects source and target, i.e., \(\partial_i^0 \circ f = g \circ \partial_i^0 \), for \(i = 0, 1 \).
This defines the category \(\text{Petri} \) of Petri nets.
On the Category of Petri Net Computations

In Memory and Dedication to my Beloved mother Liana

Vladimiro Sassone°

BRICS® – Computer Science Dept., University of Aarhus

Abstract. We introduce the notion of strongly concatenable process as a refinement of concatenable processes [3] which can be expressed axiomatically via a functor \(\mathcal{Q}[-] \) from the category of Petri nets to an appropriate category of symmetric strict monoidal categories, in the precise sense that, for each net \(N \), the strongly concatenable processes of \(N \) are isomorphic to the arrows of \(\mathcal{Q}[N] \). In addition, we identify a coreflection right adjoint to \(\mathcal{Q}[-] \) and characterize its replete image, thus yielding an axiomatization of the category of net computations.

Definition 1.1 (Petri Nets)
A Petri net is a structure \(N = (\partial_0^N, \partial_1^N : T_N \to S_N^\oplus) \), where \(T_N \) is a set of transitions, \(S_N \) is a set of places, and \(\partial_0^N \) and \(\partial_1^N \) are functions.

A morphism of Petri nets from \(N_0 \) to \(N_1 \) is a pair \((f, g)\), where \(f : T_{N_0} \to T_{N_1} \) is a function and \(g : S_{N_0}^\oplus \to S_{N_1}^\oplus \) is a monoid homomorphism such that \((f, g)\) respects source and target, i.e., \(\partial_i^{N_0} \circ f = g \circ \partial_i^{N_0} \), for \(i = 0, 1 \).

This defines the category \(\mathcal{P}[N] \) of Petri nets.

Definition 1.3 (The Category \(\mathcal{P}[N] \))
The category \(\mathcal{P}[N] \) is the monoidal quotient of \(\mathcal{F}(N) \), the symmetric strict monoidal category whose monoid of objects is \(S_N^\oplus \) and whose arrows are freely generated from the transitions of \(N \), modulo the axioms

\[
\begin{align*}
\gamma_{a,b} &= id_{a \otimes b} & \text{if } a, b &\in S_N \text{ and } a \neq b, \\
(t; (id_u \otimes \gamma_{a,a} \otimes id_v)) &= t & \text{if } t &\in T_N \text{ and } a \in S_N, \\
(id_u \otimes \gamma_{a,a} \otimes id_v); t &= t & \text{if } t &\in T_N \text{ and } a \in S_N,
\end{align*}
\]

where \(\gamma \) is the symmetry isomorphism of \(\mathcal{F}(N) \).
Some Equivalent Decision Problems

Database Theory

Satisfiability of $\mathit{FO}^2(\sim, <, +1)$ over (finite and infinite) data words.
Some Equivalent Decision Problems

Database Theory
Satisfiability of $FO^2(\sim, <, +1)$ over (finite and infinite) data words.

Formal languages
Emptiness of $\sqcap \sqcap (R_1) \cap R_2$, for regular languages R_1, R_2.
Some Equivalent Decision Problems

Database Theory
Satisfiability of $FO^2(\sim, <, +1)$ over (finite and infinite) *data words*.

Formal languages
Emptiness of $\sqcap \sqcap (R_1) \cap R_2$, for regular languages R_1, R_2.

Linear Logic
Validity for the $!$-Horn Fragment of Linear Logic.
Some Equivalent Decision Problems

Database Theory
Satisfiability of $FO^2(\sim, <, +1)$ over (finite and infinite) data words.

Formal languages
Emptiness of $\sqcap (R_1) \cap R_2$, for regular languages R_1, R_2.

Linear Logic
Validity for the !-Horn Fragment of Linear Logic.

Program Verification
fair-PTL model checking of communicating processes $C \times U^n$.
The Reachability Problem – Milestones
1962 · · · Petri: “Kommunikation mit Automaten”.
The Reachability Problem – Milestones

1962
· · · • Petri: “Kommunikation mit Automaten”.

1969
· · · • Karp and Miller: “Parallel program schemata”.

The Reachability Problem – Milestones

1962 • Petri: “Kommunikation mit Automaten”.
1969 • Karp and Miller: “Parallel program schemata”.
1974 • van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
The Reachability Problem – Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Petri: “Kommunikation mit Automaten”.</td>
</tr>
<tr>
<td>1969</td>
<td>Karp and Miller: “Parallel program schemata”.</td>
</tr>
<tr>
<td>1974</td>
<td>van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.</td>
</tr>
<tr>
<td>1976</td>
<td>Lipton: The reachability problem requires exponential space.</td>
</tr>
</tbody>
</table>
The Reachability Problem – Milestones

1962 · · · • Petri: “Kommunikation mit Automaten”.
1969 · · · • Karp and Miller: “Parallel program schemata”.
1974 · · · • van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · • Lipton: The reachability problem requires exponential space.
The Reachability Problem – Milestones

1962 • • • Petri: “Kommunikation mit Automaten”.
1969 • • • Karp and Miller: “Parallel program schemata”.
1974 • • • van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 • • • Lipton: The reachability problem requires exponential space.
1977 • • • Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.

The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Petri: “Kommunikation mit Automaten”</td>
</tr>
<tr>
<td>1969</td>
<td>Karp and Miller: “Parallel program schemata”</td>
</tr>
<tr>
<td>1974</td>
<td>van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”</td>
</tr>
<tr>
<td>1976</td>
<td>Lipton: The reachability problem requires exponential space.</td>
</tr>
<tr>
<td>1977</td>
<td>Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”</td>
</tr>
<tr>
<td>1978</td>
<td>Rackoff: “The covering and boundedness problems for vector addition systems”</td>
</tr>
<tr>
<td>1979</td>
<td>Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”</td>
</tr>
</tbody>
</table>
Finite control costs 3 extra dimensions: d-VASS can be simulated by $(d + 3)$-VAS.
Finite control costs 3 extra dimensions: d-VASS can be simulated by $(d + 3)$-VAS.

2-VASS have effectively semilinear reachability sets.
Hopcroft and Pansiot ’79
“On the Reachability Problem for 5-Dimensional VAS”

- Finite control costs 3 extra dimensions: d-VASS can be simulated by $(d + 3)$-VAS.

- 2-VASS have effectively semilinear reachability sets.
 - Their reachability problem is decidable
Finite control costs 3 extra dimensions: d-VASS can be simulated by $(d + 3)$-VAS.

2-VASS have effectively semilinear reachability sets.
 - Their reachability problem is decidable

This is not true for dimensions $d \geq 3$:
Finite control costs 3 extra dimensions: d-VASS can be simulated by $(d + 3)$-VAS.

2-VASS have effectively semilinear reachability sets.
- Their reachability problem is decidable

This is not true for dimensions $d \geq 3$:

```
(0, 0, 0)  
(0, 1, -1)  
(0, -1, 2)  
(1, 0, 0)  
```

Hopcroft and Pansiot '79
“On the Reachability Problem for 5-Dimensional VAS”
The Reachability Problem – Milestones

1962 • • • Petri: “Kommunikation mit Automaten”.
1969 • • • Karp and Miller: “Parallel program schemata”.
1974 • • • van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 • • • Lipton: The reachability problem requires exponential space.
1977 • • • Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 • • • Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 • • • Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
The Reachability Problem – Milestones

1962
Petri: “Kommunikation mit Automaten”.

1969
Karp and Miller: “Parallel program schemata”.

1974
van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.

1976
Lipton: The reachability problem requires exponential space.

1977
Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.

1978
Rackoff: “The covering and boundedness problems for vector addition systems”.

1979
Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.

1981
The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · · Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · · Kosaraju: “Decidability of reachability in VAS”.

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Petri: “Kommunikation mit Automaten”.</td>
</tr>
<tr>
<td>1969</td>
<td>Karp and Miller: “Parallel program schemata”.</td>
</tr>
<tr>
<td>1974</td>
<td>van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.</td>
</tr>
<tr>
<td>1976</td>
<td>Lipton: The reachability problem requires exponential space.</td>
</tr>
<tr>
<td>1977</td>
<td>Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.</td>
</tr>
<tr>
<td>1978</td>
<td>Rackoff: “The covering and boundedness problems for vector addition systems”.</td>
</tr>
<tr>
<td>1979</td>
<td>Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.</td>
</tr>
<tr>
<td>1982</td>
<td>Kosaraju: “Decidability of reachability in VAS”.</td>
</tr>
<tr>
<td>1986</td>
<td>Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.</td>
</tr>
</tbody>
</table>
The Reachability Problem – Milestones

1962 · · ·• Petri: “Kommunikation mit Automaten”.
1969 · · ·• Karp and Miller: “Parallel program schemata”.
1974 · · ·• van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · ·• Lipton: The reachability problem requires exponential space.
1977 · · ·• Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · ·• Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · ·• Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · ·• Kosaraju: “Decidability of reachability in VAS”.
1986 · · • Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.

• Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.

12 / 21
Howell, Rosier, Huynh, and Yen ’86
“A Multiparameter Analysis of the Boundedness Problem for VAS”
“Some complexity bounds for problems concerning finite and two-dimensional VASS”

- Reachability is NP-hard for 2-VASS
- The Hopcroft and Pansiot algorithm works in $2^{2^O(|T| \cdot \| T \|)}$ time.
The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · · Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · · Kosaraju: “Decidability of reachability in VAS”.
1986 · · · Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.

Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.
The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · · Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · · Kosaraju: “Decidability of reachability in VAS”.
1986 · · · Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
 Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning
 finite and two-dimensional VASS”.
1992 · · · Lambert: “A Structure to Decide Reachability in Petri Nets”.

14 / 21
The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · · Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · · Kosaraju: “Decidability of reachability in VAS”.
1986 · · · Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
 · · · Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.
1992 · · · Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 · · · Leroux and Sutre: “On Flatness for 2-VASS”.
Linear Path Schemes

A language $\Lambda = \alpha_0 \beta_1^* \alpha_1 \beta_2^* \ldots \beta_k^* \alpha_k$, is called a *linear path scheme*.

Leroux and Sutre '04
Every 2-VASS is flattable.
Linear Path Schemes

A language $\Lambda = \alpha_0 \beta_1^* \alpha_1 \beta_2^* \ldots \beta_k^* \alpha_k$, is called a linear path scheme.
Linear Path Schemes

A language $\Lambda = \alpha_0\beta_1^*\alpha_1\beta_2^*\ldots\beta_k^*\alpha_k$, is called a *linear path scheme*.

A VAS $L \subseteq (\mathbb{Z}^d)^*$ is called *flattable* if

$$L \rightarrow \ orall \ S$$

for a finite union S of LPSs.
Linear Path Schemes

A language $\Lambda = \alpha_0 \beta_1^* \alpha_1 \beta_2^* \ldots \beta_k^* \alpha_k$, is called a linear path scheme.

A VAS $L \subseteq (\mathbb{Z}^d)^*$ is called flattable if

$$\xrightarrow{L} = \xrightarrow{S}$$

for a finite union S of LPSs.

Leroux and Sutre ’04
Every 2-VASS is flattable.
2-dim. VASS are flattable

A language $\Lambda = \alpha_0 \beta \alpha_1 \beta \ast \ldots \beta \ast \alpha_k \beta$, is called a linear path scheme.

A VASS $L \subseteq (\mathbb{Z}^d)^\ast$ is called flattable if $L \longrightarrow = S \longrightarrow$ for a finite union S of LPSs.

Leroux and Sutre '04

Every 2-VASS is flattable.
The Reachability Problem – Milestones

1962 • Petri: “Kommunikation mit Automaten”.
1969 • Karp and Miller: “Parallel program schemata”.
1974 • van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 • Lipton: The reachability problem requires exponential space.
1977 • Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 • Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 • Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 • Kosaraju: “Decidability of reachability in VAS”.
1986 • Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
 • Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.
1992 • Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 • Leroux and Sutre: “On Flatness for 2-VASS”.

• Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.

• Lambert: “A Structure to Decide Reachability in Petri Nets”.

• Leroux and Sutre: “On Flatness for 2-VASS”.
The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · · Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · · Kosaraju: “Decidability of reachability in VAS”.
1986 · · · Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
 Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.
1992 · · · Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 · · · Leroux and Sutre: “On Flatness for 2-VASS”.
2010 · · · Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.

• Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.
The Reachability Problem – Milestones

1962 • Petri: “Kommunikation mit Automaten”.
1969 • Karp and Miller: “Parallel program schemata”.
1974 • van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 • Lipton: The reachability problem requires exponential space.
1977 • Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 • Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 • Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 • Kosaraju: “Decidability of reachability in VAS”.
1986 • Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
 • Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning
 finite and two-dimensional VASS”.
1992 • Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 • Leroux and Sutre: “On Flatness for 2-VASS”.
2010 • Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.
2013 • Leroux: “Presburger VAS”.

• Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning
 finite and two-dimensional VASS”.

• Lambert: “A Structure to Decide Reachability in Petri Nets”.
• Leroux and Sutre: “On Flatness for 2-VASS”.
• Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.
• Leroux: “Presburger VAS”.

16 / 21
The Reachability Problem – Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Petri: “Kommunikation mit Automaten”.</td>
</tr>
<tr>
<td>1969</td>
<td>Karp and Miller: “Parallel program schemata”.</td>
</tr>
<tr>
<td>1974</td>
<td>van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.</td>
</tr>
<tr>
<td>1976</td>
<td>Lipton: The reachability problem requires exponential space.</td>
</tr>
<tr>
<td>1977</td>
<td>Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.</td>
</tr>
<tr>
<td>1978</td>
<td>Rackoff: “The covering and boundedness problems for vector addition systems”.</td>
</tr>
<tr>
<td>1979</td>
<td>Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.</td>
</tr>
<tr>
<td>1982</td>
<td>Kosaraju: “Decidability of reachability in VAS”.</td>
</tr>
<tr>
<td>1986</td>
<td>Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.</td>
</tr>
<tr>
<td>1992</td>
<td>Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.</td>
</tr>
<tr>
<td>2004</td>
<td>Lambert: “A Structure to Decide Reachability in Petri Nets”.</td>
</tr>
<tr>
<td>2010</td>
<td>Leroux and Sutre: “On Flatness for 2-VASS”.</td>
</tr>
<tr>
<td>2015</td>
<td>Leroux: “Presburger VAS”.</td>
</tr>
<tr>
<td>2015</td>
<td>Leroux and Schmitz: “Demystifying Reachability in VAS”.</td>
</tr>
</tbody>
</table>
The Reachability Problem – Milestones

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Contributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Petri:</td>
<td>“Kommunikation mit Automaten”</td>
</tr>
<tr>
<td>1969</td>
<td>Karp and Miller:</td>
<td>“Parallel program schemata”</td>
</tr>
<tr>
<td>1974</td>
<td>van Leeuwen:</td>
<td>“A Partial Solution to the Reachability-Problem for VAS”</td>
</tr>
<tr>
<td>1976</td>
<td>Lipton:</td>
<td>The reachability problem requires exponential space.</td>
</tr>
<tr>
<td>1977</td>
<td>Sacerdote and Tenney:</td>
<td>“The Decidability of the Reachability Problem for VAS”</td>
</tr>
<tr>
<td>1978</td>
<td>Rackoff:</td>
<td>“The covering and boundedness problems for vector addition systems”</td>
</tr>
<tr>
<td>1979</td>
<td>Hopcroft and Pansiot:</td>
<td>“On the Reachability Problem for 5-Dimensional VAS”</td>
</tr>
<tr>
<td>1982</td>
<td>Kosaraju:</td>
<td>“Decidability of reachability in VAS”</td>
</tr>
<tr>
<td>1986</td>
<td>Rosier and Yen:</td>
<td>“A Multiparameter Analysis of the Boundedness Problem for VAS”</td>
</tr>
<tr>
<td></td>
<td>Howell, Rosier, Huynh, and Yen:</td>
<td>“Some complexity bounds for problems concerning finite and two-dimensional VASS”</td>
</tr>
<tr>
<td>1992</td>
<td>Lambert:</td>
<td>“A Structure to Decide Reachability in Petri Nets”</td>
</tr>
<tr>
<td>2004</td>
<td>Leroux and Sutre:</td>
<td>“On Flatness for 2-VASS”</td>
</tr>
<tr>
<td>2010</td>
<td>Leroux:</td>
<td>“The General VAS Reachability Problem by Presburger Inductive Invariants”</td>
</tr>
<tr>
<td>2013</td>
<td>Leroux:</td>
<td>“Presburger VAS”</td>
</tr>
<tr>
<td>2015</td>
<td>Leroux and Schmitz:</td>
<td>“Demystifying Reachability in VAS”</td>
</tr>
</tbody>
</table>
The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · · Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · · Kosaraju: “Decidability of reachability in VAS”.
1986 · · · Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
 Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.
1992 · · · Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 · · · Leroux and Sutre: “On Flatness for 2-VASS”.
2010 · · · Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.
2013 · · · Leroux: “Presburger VAS”.
2015 · · · Leroux and Schmitz: “Demystifying Reachability in VAS”.
 Blondin et al.: “Reachability in 2-VASS Is PSPACE-Complete”.

• Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”.

The Reachability Problem – Milestones

1962 · · · Petri: “Kommunikation mit Automaten”.
1969 · · · Karp and Miller: “Parallel program schemata”.
1974 · · · van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”.
1976 · · · Lipton: The reachability problem requires exponential space.
1977 · · · Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”.
1978 · · · Rackoff: “The covering and boundedness problems for vector addition systems”.
1979 · · · Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”.
1982 · · · Kosaraju: “Decidability of reachability in VAS”.
1986 · · · Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”.
1992 · · · Lambert: “A Structure to Decide Reachability in Petri Nets”.
2004 · · · Leroux and Sutre: “On Flatness for 2-VASS”.
2010 · · · Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”.
2013 · · · Leroux: “Presburger VAS”.
2015 · · · Leroux and Schmitz: “Demystifying Reachability in VAS”.
2016 · · · Blondin et al.: “Reachability in 2-VASS Is PSPACE-Complete”.

2016 · · · Engler, Lazić, and T.: “Reachability in Two-Dimensional Unary VASS is NL-Complete”.

Define the size of a d-VASS $A = (Q, T)$ as

$$|A| \overset{\text{def}}{=} d \cdot |Q| \cdot |T| \cdot \|T\|$$

where $\|T\|$ is the maximal absolute value of any integer in T.

The encoding of the input is irrelevant in general.

Not so for the subproblems with dimensions fixed!
What is the size of the input?

Define the size of a d-VASS $A = (Q, T)$ as

$$|A|_2 \overset{\text{def}}{=} d \cdot |Q| \cdot |T| \cdot \log(\|T\|)$$

where $\|T\|$ is the maximal absolute value of any integer in T.

Lemma A_d-VASS can be translated in logspace into an equivalent $(d+n)$-VASS A', with $n = \log(\|T\|)$ and $|A'| = |A|^2$.

▶ The encoding of the input is irrelevant in general.

▶ Not so for the subproblems with dimensions fixed!
What is the size of the input?

Define the size of a d-VASS $A = (Q, T)$ as

$$|A|_2 \overset{\text{def}}{=} d \cdot |Q| \cdot |T| \cdot \log(\|T\|)$$

where $\|T\|$ is the maximal absolute value of any integer in T.

Lemma

A d-VASS can be translated in logspace into an equivalent $(d + n)$-VASS A', with $n = \log(\|T\|)$ and $|A'| = |A'|_2$
What is the size of the input?

Define the size of a d-VASS $A = (Q, T)$ as

$$|A|_2 \overset{\text{def}}{=} d \cdot |Q| \cdot |T| \cdot \log(\|T\|)$$

where $\|T\|$ is the maximal absolute value of any integer in T.

Lemma

A d-VASS can be translated in logspace into an equivalent $(d + n)$-VASS A', with $n = \log(\|T\|)$ and $|A'| = |A'|_2$
What is the size of the input?

Define the size of a d-VASS $A = (Q, T)$ as

$$|A|_2 \overset{\text{def}}{=} d \cdot |Q| \cdot |T| \cdot \log(\|T\|)$$

where $\|T\|$ is the maximal absolute value of any integer in T.

Lemma

A d-VASS can be translated in logspace into an equivalent $(d + n)$-VASS A', with $n = \log(\|T\|)$ and $|A'| = |A'|_2$

- The encoding of the input is irrelevant in general.
What is the size of the input?

Define the size of a d-VASS $A = (Q, T)$ as

$$|A|_2 \overset{\text{def}}{=} d \cdot |Q| \cdot |T| \cdot \log(\|T\|)$$

where $\|T\|$ is the maximal absolute value of any integer in T.

Lemma

A d-VASS can be translated in logspace into an equivalent $(d + n)$-VASS A', with $n = \log(\|T\|)$ and $|A'| = |A'|_2$

- The encoding of the input is irrelevant in general.
- Not so for the subproblems with dimensions fixed!
2-dim. VASS are flattable

A language $\Lambda = \alpha_0 \beta^* \alpha_1 \beta^* \ldots \beta^*_k \alpha_k$, is called a linear path scheme.

A VAS $L \subseteq (\mathbb{Z}^d)^*$ is called flattable if $L \rightarrow S \rightarrow$ for a finite union S of LPSs.

Leroux and Sutre '04

Every 2-VASS is flattable.
2-dim. VASS are flattable

A language \(\Lambda = \alpha_0 \beta_1 \alpha_1 \beta_2 \alpha_2 \cdots \beta_k \alpha_k \), is called a linear path scheme.

A VAS \(L \subseteq (\mathbb{Z}^d)^* \) is called flattable if \(L \longrightarrow = S \longrightarrow \) for a finite union \(S \) of LPSs.

Leroux and Sutre '04

Every 2-VASS is flattable.
2-dim. VASS are polynomially flattable

A language $\Lambda = \alpha_0 \beta \alpha_1 \beta^* \alpha_2 \beta^* \cdots \beta^* \alpha_k$, is called a linear path scheme.

A VASS $L \subseteq (\mathbb{Z}^d)^*$ is called flattable if $L \rightarrow \rightarrow = S \rightarrow \rightarrow$ for a finite union S of LPSs.

Leroux and Sutre '04

Every 2-VASS is flattable.
Blondin et al. ’15

“Reachability in 2-VASS Is PSPACE-Complete”
Polynomial Flattability Lemma

For any regular $L \subseteq (\mathbb{Z} \times \mathbb{Z})^*$, there exist finitely many LPSs $\Lambda_1, \Lambda_2, \ldots, \Lambda_k \subseteq L$ such that

1. $L \xrightarrow{} = \bigcup_{i=1}^{k} \xrightarrow{} \Lambda_i$

2. $|\Lambda_i| \leq (\|L\| + |L|)^{O(1)}$ for all $1 \leq i \leq k$.

Witnesses have the form $\alpha_0 \beta_{n_1} \alpha_1 \beta_{n_2} \cdots \beta_{n_m} \alpha_m$ for small m.

Small solutions lemmas from linear programming lead to a $2^{|L|} \cdot \|L\|^{O(1)}$ bound on the n_i and thus shortest witnesses.

PSPACE upper bound for 2-VASS Reachability (binary)

NP upper bound for 2-VASS Reachability (unary)
Polynomial Flattability Lemma

For any regular $L \subseteq (\mathbb{Z} \times \mathbb{Z})^*$, there exist finitely many LPSs $\Lambda_1, \Lambda_2, \ldots, \Lambda_k \subseteq L$ such that

1. $L \rightarrow = \bigcup_{i=1}^k \Lambda_i$
2. $|\Lambda_i| \leq (\|L\| + |L|)^{O(1)}$ for all $1 \leq i \leq k$.

witnesses have the form

$$\alpha_0 \beta_1^{n_1} \alpha_1 \beta_2^{n_2} \ldots \beta_m^{n_m} \alpha_m$$

for small m.

▶ Small solutions lemmas from linear programming lead to a $2|L|O(1)$ bound on the n_i and thus shortest witnesses.

▶ PSPACE upper bound for 2-VASS Reachability (binary)

▶ NP upper bound for 2-VASS Reachability (unary)
Polynomial Flattability Lemma

For any regular \(L \subseteq (\mathbb{Z} \times \mathbb{Z})^* \), there exist finitely many LPSs \(\Lambda_1, \Lambda_2, \ldots, \Lambda_k \subseteq L \) such that

1. \(L \rightarrow = \bigcup_{i=1}^{k} \Lambda_i \rightarrow \)

2. \(|\Lambda_i| \leq (||L|| + |L|)^{O(1)} \) for all \(1 \leq i \leq k \).

Witnesses have the form

\[
\alpha_0 \beta_1^{n_1} \alpha_1 \beta_2^{n_2} \ldots \beta_m^{n_m} \alpha_m
\]

for small \(m \).

- Small solutions lemmas from linear programming lead to a \(2|L|^{O(1)} \cdot ||L|| \) bound on on the \(n_i \) and thus shortest witnesses.
Polynomial Flattability Lemma

For any regular \(L \subseteq (\mathbb{Z} \times \mathbb{Z})^* \), there exist finitely many LPSs \(\Lambda_1, \Lambda_2, \ldots, \Lambda_k \subseteq L \) such that

1. \(L \rightarrow = \bigcup_{i=1}^{k} \Lambda_i \rightarrow \)
2. \(|\Lambda_i| \leq (\|L\| + |L|)^{O(1)} \) for all \(1 \leq i \leq k \).

Witnesses have the form

\[\alpha_0 \beta_1^{n_1} \alpha_1 \beta_2^{n_2} \ldots \beta_m^{n_m} \alpha_m \]

for small \(m \).

- Small solutions lemmas from linear programming lead to a \(2|L|^{O(1)} \cdot \|L\| \) bound on on the \(n_i \) and thus shortest witnesses.
- \(\text{PSPACE} \) upper bound for 2-VASS Reachability (binary)
Polynomial Flattability Lemma

For any regular $L \subseteq (\mathbb{Z} \times \mathbb{Z})^*$, there exist finitely many LPSs $\Lambda_1, \Lambda_2, \ldots, \Lambda_k \subseteq L$ such that

1. $L \xrightarrow{} = \bigcup_{i=1}^{k} \Lambda_i$
2. $|\Lambda_i| \leq (\|L\| + |L|)^{O(1)}$ for all $1 \leq i \leq k$.

witnesses have the form

$$\alpha_0\beta_1^{n_1}\alpha_1\beta_2^{n_2}\cdots\beta_m^{n_m}\alpha_m$$

for small m.

- Small solutions lemmas from linear programming lead to a $2|L|^{O(1)} \cdot \|L\|$ bound on on the n_i and thus shortest witnesses.
- $PSPACE$ upper bound for 2-VASS Reachability (binary)
- NP upper bound for 2-VASS Reachability (unary)
Polynomial Flattability Lemma

For any regular \(L \subseteq (\mathbb{Z} \times \mathbb{Z})^* \), there exist finitely many LPSs \(\Lambda_1, \Lambda_2, \ldots, \Lambda_k \subseteq L \) such that

1. \(L \rightarrow = \bigcup_{i=1}^k \Lambda_i \rightarrow \)
2. \(|\Lambda_i| \leq (\|L\| + |L|)^{O(1)} \) for all \(1 \leq i \leq k \).

witnesses have the form

\[\alpha_0 \beta_1^{n_1} \alpha_1 \beta_2^{n_2} \cdots \beta_m^{n_m} \alpha_m \]

for small \(m \).

- Small solutions lemmas from linear programming lead to a \(2|L|^{O(1)} \cdot \|L\| \) bound on on the \(n_i \) and thus shortest witnesses.
- \(PSPACE \) upper bound for 2-VASS Reachability (binary)
- \(NP \) upper bound for 2-VASS Reachability (unary)
Polynomial Flattability Lemma

For any regular $L \subseteq (\mathbb{Z} \times \mathbb{Z})^*$, there exist finitely many LPSs $\Lambda_1, \Lambda_2, \ldots, \Lambda_k \subseteq L$ such that

1. $L \rightarrow = \bigcup_{i=1}^{k} \Lambda_i \rightarrow$
2. $|\Lambda_i| \leq (|L| + |L|)^{O(1)}$ for all $1 \leq i \leq k$.

witnesses have the form

$$\alpha_0 \beta_1^{n_1} \alpha_1 \beta_2^{n_2} \ldots \beta_m^{n_m} \alpha_m$$

for small m.

- Small solutions lemmas from linear programming lead to a $2|L|^{O(1)} \cdot \|L\|$ bound on on the n_i and thus shortest witnesses.
- $PSPACE$-completeness for 2-VASS Reachability (binary)
- NL-completeness for 2-VASS Reachability (unary)
<table>
<thead>
<tr>
<th>Year</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>1962</td>
<td>Petri: “Kommunikation mit Automaten”</td>
</tr>
<tr>
<td>1969</td>
<td>Karp and Miller: “Parallel program schemata”</td>
</tr>
<tr>
<td>1974</td>
<td>van Leeuwen: “A Partial Solution to the Reachability-Problem for VAS”</td>
</tr>
<tr>
<td>1976</td>
<td>Lipton: The reachability problem requires exponential space.</td>
</tr>
<tr>
<td>1977</td>
<td>Sacerdote and Tenney: “The Decidability of the Reachability Problem for VAS”</td>
</tr>
<tr>
<td>1978</td>
<td>Rackoff: “The covering and boundedness problems for vector addition systems”</td>
</tr>
<tr>
<td>1979</td>
<td>Hopcroft and Pansiot: “On the Reachability Problem for 5-Dimensional VAS”</td>
</tr>
<tr>
<td>1982</td>
<td>Kosaraju: “Decidability of reachability in VAS”</td>
</tr>
<tr>
<td>1986</td>
<td>Rosier and Yen: “A Multiparameter Analysis of the Boundedness Problem for VAS”</td>
</tr>
<tr>
<td>1992</td>
<td>Howell, Rosier, Huynh, and Yen: “Some complexity bounds for problems concerning finite and two-dimensional VASS”</td>
</tr>
<tr>
<td>1992</td>
<td>Lambert: “A Structure to Decide Reachability in Petri Nets”</td>
</tr>
<tr>
<td>2004</td>
<td>Leroux and Sutre: “On Flatness for 2-VASS”</td>
</tr>
<tr>
<td>2010</td>
<td>Leroux: “The General VAS Reachability Problem by Presburger Inductive Invariants”</td>
</tr>
<tr>
<td>2013</td>
<td>Leroux: “Presburger VAS”</td>
</tr>
<tr>
<td>2015</td>
<td>Leroux and Schmitz: “Demystifying Reachability in VAS”</td>
</tr>
<tr>
<td>2016</td>
<td>Blondin et al.: “Reachability in 2-VASS Is PSPACE-Complete”</td>
</tr>
<tr>
<td>2016</td>
<td>Englert, Lazić, and T.: “Reachability in Two-Dimensional Unary VASS is NL-Complete”</td>
</tr>
</tbody>
</table>
Outlook

Flattable VASS
Does this generalise to \((d > 2)\)-dimensional flattable VASS?
Outlook

Flattable VASS
Does this generalise to \((d > 2)\)-dimensional *flattable* VASS?

Pushdown VASS

\[\xrightarrow{L} \text{ for context-free } L \subseteq \mathbb{Z}^d \]

- Reachability for dim. \(d = \) Coverability for dim. \(d + 1\)
- Decidability is open for dim. \(\geq 1\)
Outlook

Flattable VASS
Does this generalise to \((d > 2)\)-dimensional flattable VASS?

Pushdown VASS
\[\xrightarrow{L} \] for context-free \(L \subseteq \mathbb{Z}^d\)
- Reachability for dim. \(d = \) Coverability for dim. \(d + 1\)
- Decidability is open for dim. \(\geq 1\)

Data Nets (also Coloured Petri nets)
tokens a carry “datum” from an infinite domain.
- For ordered domains (e.g. representing time), Reach is undecidable.
- For unordered domains decidability is open.
Outlook

Flattable VASS
Does this generalise to \((d > 2)\)-dimensional *flattable* VASS?

Pushdown VASS
\[L \xrightarrow{_} \text{for context-free } L \subseteq \mathbb{Z}^d \]
- Reachability for dim. \(d\) = Coverability for dim. \(d + 1\)
- Decidability is open for dim. \(\geq 1\)

Data Nets (also Coloured Petri nets)
tokens a carry “datum” from an infinite domain.
- For ordered domains (e.g. representing time), Reach is undecidable.
- For unordered domains decidability is open.

Other Extensions...
Outlook

Flattable VASS

Does this generalise to $(d > 2)$-dimensional flattable VASS?

Pushdown VASS

\overrightarrow{L} for context-free $L \subseteq \mathbb{Z}^d$

Reachability for dim. d = Coverability for dim. $d + 1$

Decidability for dimension d. $d \geq 1$

Data Nets (also known as Petri nets)

Tokens carry a "datum" from an infinite domain.

For ordered domains (e.g., representing time), Reach is undecidable.

For unordered domains, decidability is open.

Other Extensions...