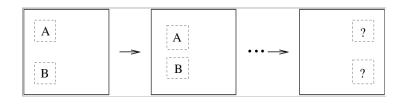
Maintaining Persistence when Tracking

Robert B. Fisher School of Informatics University of Edinburgh

O2014, School of Informatics, University of Edinburgh Persistent Tracking

TARGET 1 & 2 PERSISTENCE

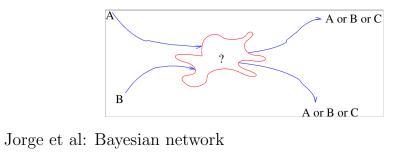


$\odot 2014$, School of Informatics, University of Edinburgh

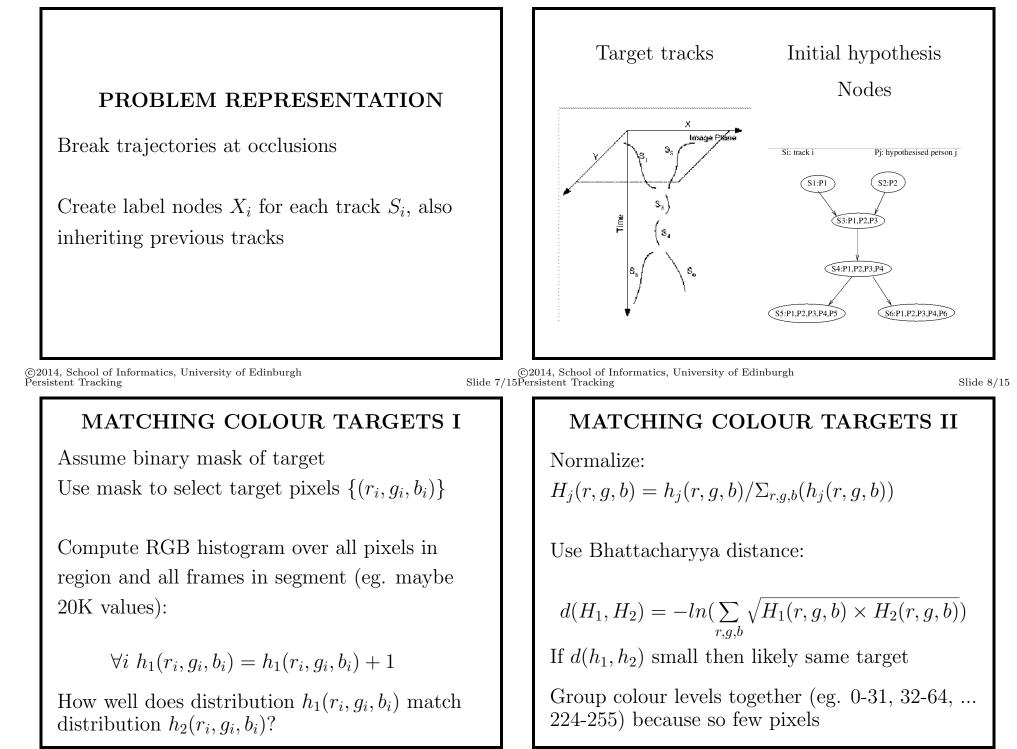
NORMAL TARGET TRACKING

General problem: in first image have R targets $\{F_i\}$ In next image have L targets $\{N_i\}$ How to pair the targets out of the $(R+1)^L$ possibilities?

Video rate fast \rightarrow targets don't move much Kalman Filter predicts position Overlap with detected target makes correspondences


C2014, School of Informatics, University of Edinburgh Slide 3/15Persistent Tracking

Slide 4/15

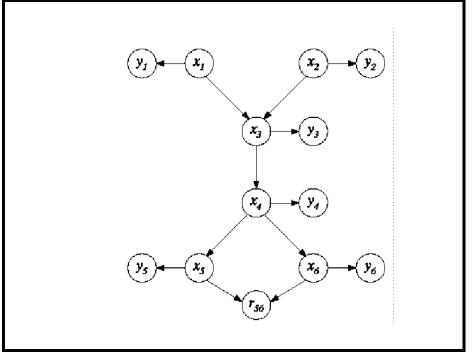

MAINTAINING TARGET PERSISTENCE

Issue: tracking targets breaks down when close or occluded

Solution: need identity persistence through occlusion

©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh


O2014, School of Informatics, University of Edinburgh

EXTENDING NETWORK

Create label nodes X_i for each segment section S_i

Add data matching nodes Y_i (color histogram of target appearance)

Add restriction nodes R_i enforcing mutual exclusion between sibling nodes

O2014, School of Informatics, University of Edinburgh Persistent Tracking

O2014, School of Informatics, University of Edinburgh Slide 11/15
Persistent Tracking

Slide 12/15

EVALUATING PERSISTENCE

Find labeling \vec{X} that maximizes

 $p(\vec{X} \mid \vec{Y}, \vec{R})$

Probability of labeling \vec{X} given data \vec{Y} and restrictions \vec{R}

Gives probability that each person P_i is observed in track X_j

Use standard conditional probability propagation algorithm

PROBLEM 1: REAL-TIME ANSWERS

Full network evaluation is expensive

Incremental evaluation, using Bayes rule after the k^{th} block of T frames:

$$p(x_i \mid \vec{Y}_0^t, \vec{R}_0^t) = \alpha p(\vec{Y}_{kT}^t, \vec{R}_{kT}^t \mid x_i) p(x_i \mid \vec{Y}_0^{kT}, \vec{R}_0^{kT})$$

ACTIVE NODES AT 3 TIMES PROBLEM 2: GROWTH OF NETWORK (a Each new track inherits labels plus adds a new one: network grows large Solution: freeze all but N most recent nodes Freeze: fix most probable identity for track S_i rather than keep all possible ids (which could change with future evidence) (b)(c)©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh Persistent Tracking

Slide 15/15

SUMMARY

Problem with occlusion: lose identity

Formulate matching problem as a Bayesian network

Use colour histogram matching for image evidence

Propagate probability of identity through network

Periodically 'freeze' network to limit computational complexity