
Geometric Models of Varying Shapes

Robert B. Fisher
School of Informatics
University of Edinburgh

Modeling Classes of Shapes

Suppose you have a class of shapes with a range of variations:

How to represent whole class?

Statistical shape models

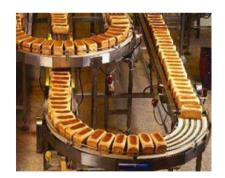
Deformable Part Modelling and Recognition Overview

System processes

Previous Systems: Thresholding, Boundary Tracking, Corner Finding (but here with better threshold)

This System:

Orientation to standard position

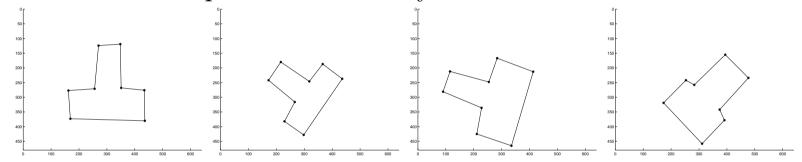

Training: Point Distribution Model calculation

Recognition: likelihood calculation

Motivation

Not all objects

- are made equal: variations in production
- grow equally: eg. fruit classification
- appear equal: movement, configurations



But if they belong to the same **class of object**, we want to recognize them as such

How to recognize shape classes?

All TEE parts belong to the same shape class, but have large variations in shape in common ways

Need to:

- 1. Identify common modes (ie. directions) of variation for each class
- 2. Represent the shape class as statistical variation over these modes
- 3. Use **statistical recognition** based on comparison to statistical shape representation

Lecture Overview

Principal Component Analysis

Point Distribution Models

Model Learning and Data Classification

Rotating TEEs to Standard Position

Representing TEEs using Point Distribution Models

Recognize new examples w/statistical classifier