Modeling Classes of Shapes

Suppose you have a class of shapes with a range of variations:

Statistical shape models

©2014, School of Informatics, University of Edinburgh

Deforming Part Recognition Introduction

Slide 4/6

Motivation

Not all objects

- are made equal: variations in production
- grow equally: eg. fruit classification
- appear equal: movement, configurations

AND S

But if they belong to the same **class of object**, we want to recognize them as such

©2014, School of Informatics, University of Edinburgh

Geometric Models of Varying Shapes

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

Deforming Part Recognition Introduction

Slide 3/6

Deformable Part Modelling and Recognition Overview

System processes

Previous Systems: Thresholding, Boundary Tracking, Corner Finding (but here with better threshold)

This System:

Orientation to standard position

Training: Point Distribution Model calculation

Recognition: likelihood calculation

©2014, School of Informatics, University of Edinburgh

variations in shape in common ways

Lecture Overview

Principal Component Analysis

Point Distribution Models

Model Learning and Data Classification

Rotating TEEs to Standard Position

Representing TEEs using Point Distribution Models

Recognize new examples w/statistical classifier

©2014, School of Informatics, University of Edinburgh

Need to:

1. Identify common modes (ie. directions) of variation for each class

How to recognize shape classes?

All TEE parts belong to the same shape class, but have large

- 2. **Represent the shape class** as statistical variation over these modes
- 3. Use **statistical recognition** based on comparison to statistical shape representation

O2014, School of Informatics, University of Edinburgh