
Principal Component Analysis Review Slide 1/8

Principal Component Analysis

Robert B. Fisher

School of Informatics

University of Edinburgh

c©2014, School of Informatics, University of Edinburgh

Principal Component Analysis Review Slide 2/8

? Component Analysis

Given a set of D dimension points {~xi} with mean ~m
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Find a new set of D perpendicular coordinate axes {~aj} such that

~xi = ~m +
∑

j

wij~aj

Ie. point ~xi represented as a mean plus weighted sum of axis

directions
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Transforming points to the new

representation

Transforming ? is easy as ~ak · ~aj = 0 and ~ak · ~ak = 1

for k 6= j
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Computing wik is easy:

~ak · (~xi − ~m) = ~ak ·
∑

j

wij~aj =
∑

j

wij~ak · ~aj = wik
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How to do PCA I

1. Choose axis ~a1 as the direction of the most ? in

the dataset:
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2. Project each ~xi onto a D − 1 dimensional subspace

perpendicular to ~a1 (ie removing the component of variation in

direction ~a1) to give ~x′
i

3. Calculate the axis ~a2 as the direction of the most remaining

variation in {~x′
i}
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4. Project each ~x′
i onto a D − 2 dimension ?

5. Continue like this until all D new axes ~ai are found.
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Why PCA

Many possible axis sets {~ai}

? chooses axis directions ~ai in order of largest

remaining variation

Gives an ordering on dimensions from most to least significant

Allows us to omit low significance axes. Eg, projecting ~a2 gives:
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How to Do PCA II

Via Eigenanalysis

Given N D-dimensional points {~xi}

1. Mean ~m = 1

N

∑
i ~xi

2. Compute ? matrix

S =
∑

i(~xi − ~m)(~xi − ~m)′

3. Compute Singular Value Decomposition (SVD): S =

U D V’, where D is a diagonal matrix and U’ U = V’

V = I

4. PCA: i
th column of V is axis ~ai (ith eigenvector of S)

dii of D is a measure of significance (ith eigenvalue)

c©2014, School of Informatics, University of Edinburgh

Principal Component Analysis Review Slide 8/8

What We Have Learned

1. Using ? to find the ‘natural’ axes

of a dataset

2. Algorithm for computing PCA
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