Principal Component Analysis

Robert B. Fisher
School of Informatics
University of Edinburgh

Principal Component Analysis

Given a set of D dimension points $\left\{\vec{x}_{i}\right\}$ with mean \vec{m}

Find a new set of D perpendicular coordinate axes $\left\{\vec{a}_{j}\right\}$ such that

$$
\vec{x}_{i}=\vec{m}+\sum_{j} w_{i j} \vec{a}_{j}
$$

Ie. point \vec{x}_{i} represented as a mean plus weighted sum of axis directions

Transforming points to the new representation

Transforming points is easy as $\vec{a}_{k} \cdot \vec{a}_{j}=0$ and $\vec{a}_{k} \cdot \vec{a}_{k}=1$ for $k \neq j$

Computing $w_{i k}$ is easy:

$$
\vec{a}_{k} \cdot\left(\vec{x}_{i}-\vec{m}\right)=\vec{a}_{k} \cdot \sum_{j} w_{i j} \vec{a}_{j}=\sum_{j} w_{i j} \vec{a}_{k} \cdot \vec{a}_{j}=w_{i k}
$$

How to do PCA I

1. Choose axis \vec{a}_{1} as the direction of the most variation in the dataset:

2. Project each \vec{x}_{i} onto a $D-1$ dimensional subspace perpendicular to \vec{a}_{1} (ie removing the component of variation in direction \vec{a}_{1}) to give \vec{x}_{i}^{\prime}
3. Calculate the axis \vec{a}_{2} as the direction of the most remaining variation in $\left\{\vec{x}_{i}^{\prime}\right\}$
(c)2014, School of Informatics, University of Edinburgh
4. Project each \vec{x}_{i}^{\prime} onto a $D-2$ dimension subspace
5. Continue like this until all D new axes \vec{a}_{i} are found.

Why PCA

Many possible axis sets $\left\{\vec{a}_{i}\right\}$

PCA chooses axis directions \vec{a}_{i} in order of largest remaining variation

Gives an ordering on dimensions from most to least significant

Allows us to omit low significance axes. Eg, projecting \vec{a}_{2} gives:

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

How to Do PCA II

Via Eigenanalysis
Given $N D$-dimensional points $\left\{\vec{x}_{i}\right\}$

1. Mean $\vec{m}=\frac{1}{N} \sum_{i} \vec{x}_{i}$
2. Compute scatter matrix $\mathrm{S}=\sum_{i}\left(\vec{x}_{i}-\vec{m}\right)\left(\vec{x}_{i}-\vec{m}\right)^{\prime}$
3. Compute Singular Value Decomposition (SVD): $\mathrm{S}=$ U D V', where D is a diagonal matrix and $\mathrm{U}^{\prime} \mathrm{U}=\mathrm{V}^{\prime}$ $\mathrm{V}=\mathrm{I}$
4. PCA: $i^{\text {th }}$ column of V is axis \vec{a}_{i} ($i^{\text {th }}$ eigenvector of S) $d_{i i}$ of D is a measure of significance ($i^{\text {th }}$ eigenvalue)

What We Have Learned

1. Using PCA to find the 'natural' axes of a dataset
2. Algorithm for computing PCA
