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Principal Component Analysis

Given a set of D dimension points {Z;} with mean m

'51 - 1st principal axis
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Find a new set of D perpendicular coordinate axes {@;} such that
fz' = 771 -+ Z wij C_ij
J

Ie. point x; represented as a mean plus weighted sum of axis
directions
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Transforming points to the new

representation

Transforming points is easy as d - d; =0 and dy - ar = 1 for k # 3
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How to do PCA 1

1. Choose axis a; as the direction of the most variation in the

dataset:

)
5

2. Project each #; onto a D — 1 dimensional subspace
perpendicular to @; (ie removing the component of variation in
direction @) to give &,

3. Calculate the axis a» as the direction of the most remaining
variation in {}
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4. Project each & onto a D — 2 dimension subspace

5. Continue like this until all D new axes a; are found.
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Why PCA

Many possible axis sets {a;}

PCA chooses axis directions a; in order of largest remaining

variation

Gives an ordering on dimensions from most to least significant

Allows us to omit low significance axes. Eg, projecting ds gives:

5 5
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How to Do PCA 11

Via Eigenanalysis
Given N D-dimensional points {;}

- 1 —
I. Mean m = + >, @;

2. Compute scatter matrix S = >, (7; — m)(Z; —

3. Compute Singular Value Decomposition (SVD): S =
U D V’, where D is a diagonal matrix and U’ U = V’
V=I

4. PCA: i column of V is axis d@; (i'" eigenvector of S)
d;; of D is a measure of significance (i'" eigenvalue)
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What We Have Learned

1. Using PCA to find the ‘natural’ axes of a
dataset

2. Algorithm for computing PCA
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