Principal Component Analysis

Robert B. Fisher School of Informatics University of Edinburgh

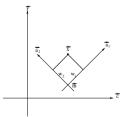
©2014, School of Informatics, University of Edinburgh

Principal Component Analysis Review

Slide 3/8

Transforming points to the new representation

Transforming points is easy as $\vec{a}_k \cdot \vec{a}_j = 0$ and $\vec{a}_k \cdot \vec{a}_k = 1$ for $k \neq j$

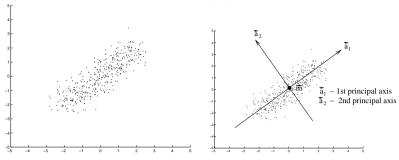


Computing w_{ik} is easy:

$$\vec{a}_k \cdot (\vec{x}_i - \vec{m}) = \vec{a}_k \cdot \sum_j w_{ij} \vec{a}_j = \sum_j w_{ij} \vec{a}_k \cdot \vec{a}_j = w_{ik}$$

Principal Component Analysis

Given a set of D dimension points $\{\vec{x}_i\}$ with mean \vec{m}



Find a new set of D perpendicular coordinate axes $\{\vec{a}_i\}$ such that

$$\vec{x}_i = \vec{m} + \sum_j w_{ij} \vec{a}_j$$

Ie. point \vec{x}_i represented as a mean plus weighted sum of axis directions

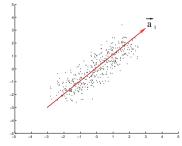
©2014, School of Informatics, University of Edinburgh

Principal Component Analysis Review

Slide 4/8

How to do PCA I

1. Choose axis \vec{a}_1 as the direction of the most variation in the dataset:



- 2. Project each \vec{x}_i onto a D-1 dimensional subspace perpendicular to \vec{a}_1 (ie removing the component of variation in direction \vec{a}_1) to give \vec{x}_i'
- 3. Calculate the axis \vec{a}_2 as the direction of the most remaining variation in $\{\vec{x}_i'\}$

©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh

4. Project each \vec{x}'_i onto a D-2 dimension subspace

5. Continue like this until all D new axes \vec{a}_i are found.

©2014, School of Informatics, University of Edinburgh

Principal Component Analysis Review

Slide 7/8

How to Do PCA II

Via Eigenanalysis

Given N D-dimensional points $\{\vec{x}_i\}$

- 1. Mean $\vec{m} = \frac{1}{N} \sum_i \vec{x}_i$
- 2. Compute scatter matrix $S = \sum_{i} (\vec{x}_i \vec{m})(\vec{x}_i \vec{m})'$
- 3. Compute Singular Value Decomposition (SVD): S = U D V', where D is a diagonal matrix and U' U = V'V = I
- 4. PCA: i^{th} column of V is axis \vec{a}_i (i^{th} eigenvector of S) d_{ii} of D is a measure of significance (i^{th} eigenvalue)

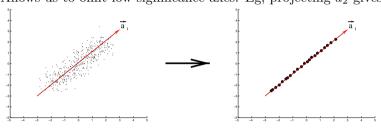
Why PCA

Many possible axis sets $\{\vec{a}_i\}$

PCA chooses axis directions \vec{a}_i in order of largest remaining variation

Gives an ordering on dimensions from most to least significant

Allows us to omit low significance axes. Eg, projecting \vec{a}_2 gives:



©2014, School of Informatics, University of Edinburgh

Principal Component Analysis Review

Slide 8/8

What We Have Learned

- 1. Using PCA to find the 'natural' axes of a dataset
- 2. Algorithm for computing PCA