Point Distribution Models

Robert B. Fisher
School of Informatics
University of Edinburgh

Point Distribution Models

Given:

Set of objects from the same class
Set of point positions $\left\{\vec{x}_{i}\right\}$ for each object instance

Assume:

Point positions have a systematic structural variation plus a Gaussian noise point distribution

Thus, point position variations are correlated

Goals:

Construct a model that captures structural as well as statistical position variation.
Use model for recognition

Data Example

A family of objects with shape variations

How to represent?
© 2014 , School of Informatics, University of Edinburgh

Point Distribution Models - PDMs

Given a set of N observations, each with P boundary points $\left\{\left(r_{i k}, c_{i k}\right)\right\}, k=1 . . P, i=1 . . N$ in corresponding positions.

Key Trick: rewrite $\left\{\left(r_{i k}, c_{i k}\right)\right\}$ as a new $2 P$ vector $\vec{x}_{i}=\left(r_{i 1}, c_{i 1}, r_{i 2}, c_{i 2}, \ldots, r_{i p}, c_{i p}\right)^{\prime}$

Gives N vectors $\left\{\vec{x}_{i}\right\}$ of dimension $2 P$

PDMs II

If shape variations are random, then components of $\left\{\vec{x}_{i}\right\}$ will be uncorrelated.

If there is a systematic variation, then components will be correlated.

Use PCA to find correlated variations.

PDM II: The Structural Model

PCA over the set $\left\{\vec{x}_{i}\right\}$ gives a set of $2 P$ axes such that

$$
\vec{x}_{i}=\vec{m}+\sum_{j=1}^{2 P} w_{i j} \vec{a}_{j}
$$

$2 P$ axes gives complete representation for $\left\{\vec{x}_{i}\right\}$.

Approximate shapes using a subset M of the most significant axes (based on the eigenvalue size from PCA):

$$
\begin{equation*}
\vec{x}_{i} \doteq \vec{m}+\sum_{j=1}^{M} w_{i j} \vec{a}_{j} \tag{1}
\end{equation*}
$$

© 2014 , School of Informatics, University of Edinburgh

PDM II: The Structural Model

Represent \vec{x}_{i} using $\vec{w}_{i}=\left(w_{i 1}, \ldots, w_{i M}\right)^{\prime}$
A smaller representation as $M \ll 2 P$
Goal: represent the essential structure variations
Approximate full shape reconstruction using \vec{w}_{i} and (1)
Can vary \vec{w}_{i} to vary shape

Structural model - varying the weights

Each row here varies one of top 3 eigenvectors of model from hand outlines

Visualisation of the main modes of structural variation
(C)2014, School of Informatics, University of Edinburgh

PDM III: The Statistical Model

If we have a good structural model, then the component weights should characterise the shape.

A family of shapes should have a distribution that characterises normal shapes (and abnormal shapes are outliers).
We assume that the distribution of normal shape weights is Gaussian.

Statistical Model:

Given a set of N component projection vectors $\left\{\vec{w}_{i}\right\}$

Mean vector is $\vec{t}=\frac{1}{N} \sum_{i} \vec{w}_{i}$
Covariance matrix $\mathrm{C}=\frac{1}{N-1} \sum_{i}\left(\vec{w}_{i}-\vec{t}\right)\left(\vec{w}_{i}-\vec{t}\right)^{\prime}$
(c)2014, School of Informatics, University of Edinburgh

What We Have Learned

1. Using PDMs to model shape variation
 2. Extracting the structural and statistical models

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

