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Point Distribution Models

Given:

Set of objects from the same class

Set of point positions {~xi} for each object instance

Assume:

Point positions have a systematic structural variation plus a

Gaussian noise point distribution

Thus, point position variations are correlated

Goals:

Construct a model that captures structural as well as statistical

position variation.

Use model for recognition
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Data Example

A family of objects with shape variations

How to represent?
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Point Distribution Models - PDMs

Given a set of N observations, each with P
boundary points {(rik, cik)}, k = 1..P, i = 1..N
in corresponding positions.

Key Trick: rewrite {(rik, cik)} as a new 2P
vector ~xi = (ri1, ci1, ri2, ci2, ..., rip, cip)

′

Gives N vectors {~xi} of dimension 2P
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PDMs II

If shape variations are random, then
components of {~xi} will be uncorrelated.

If there is a systematic variation, then
components will be correlated.

Use PCA to find correlated variations.
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PDM II: The Structural Model

PCA over the set {~xi} gives a set of 2P axes such that

~xi = ~m +
2P∑

j=1

wij~aj

2P axes gives complete representation for {~xi}.

Approximate shapes using a subset M of the most

significant axes (based on the eigenvalue size from PCA):

~xi
.
= ~m +

M∑

j=1

wij~aj (1)
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PDM II: The Structural Model

Represent ~xi using ~wi = (wi1, ..., wiM)′

A smaller representation as M << 2P

Goal: represent the essential structure variations

Approximate full shape reconstruction using ~wi and (1)

Can vary ~wi to vary shape
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Structural model - varying the weights

Each row here varies one of top 3 eigenvectors of model
from hand outlines

Visualisation of the main modes of structural variation
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PDM III: The Statistical Model

If we have a good structural model, then the component weights

should characterise the shape.

A family of shapes should have a distribution that characterises

normal shapes (and abnormal shapes are outliers).

We assume that the distribution of normal shape weights is

Gaussian.

Statistical Model:

Given a set of N component projection vectors {~wi}

Mean vector is ~t = 1
N

∑
i
~wi

Covariance matrix C = 1
N−1

∑
i
(~wi − ~t)(~wi − ~t)′
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What We Have Learned

1. Using PDMs to model shape variation

2. Extracting the structural and statistical

models
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