2D Pose Estimation from Lines

Robert B. Fisher

School of Informatics
University of Edinburgh
© 2014, School of Informatics, University of Edinburgh

2D Pose Estimation
Slide 3/10

Estimating Rotation

Given model line i endpoints $\left\{\left(\vec{m}_{i 1}, \vec{m}_{i 2}\right)\right\}$
Corresponding data line endpoints $\left\{\left(\vec{d}_{i 1}, \vec{d}_{i 2}\right)\right\}$

$$
\vec{u}_{i}
$$

Model line ? \square unit vector:

$$
\vec{u}_{i}=\frac{\vec{m}_{i 2}-\vec{m}_{i 1}}{\left\|\vec{m}_{i 2}-\vec{m}_{i 1}\right\|}
$$

Data line direction unit vector:

$$
\vec{v}_{i}=\frac{\vec{d}_{i 2}-\vec{d}_{i 1}}{\left\|\vec{d}_{i 2}-\vec{d}_{i 1}\right\|}
$$

2D Pose Estimation

Goal: find flat object object pose (eliminate some invalid matches)
Given a set $\left\{\left(m_{i}, d_{j_{i}}\right)\right\}, i=1$.. L of compatible pairs
Find the rotation \mathbf{R} and translation \vec{t} that \square the model onto the data features.

This is the 'pose' or 'position'
Let $\mathbf{R}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$ be the rotation matrix
If \vec{p} is a model point, then $\mathbf{R} \vec{p}+\vec{t}$ is the transformed model point
Usually estimate rotation \mathbf{R} first and then translation \vec{t}
© 2014, School of Informatics, University of Edinburgh

2D Pose Estimation

If no data errors, want \mathbf{R} such that

$$
\vec{v}_{i}= \pm \mathrm{R} \vec{u}_{i}
$$

(\pm as don't know if endpoints are in same order)
But, as we have errors \rightarrow ? \qquad solution

Step 1: compute vectors perpendicular to \vec{v}_{i}
If $\vec{v}_{i}=\left(v_{x 1}, v_{y 1}\right)$, then perpendicular is $\left(-v_{y i}, v_{x i}\right)$

Step 2: compute error between \vec{v}_{i} and $\mathrm{R} \vec{u}_{i}$
Use dot product of $\mathrm{R} \vec{u}_{i}$ and perpendicular, which equals $\sin ()$ of angular error, which is small, so \sin (error) \doteq error

$$
\epsilon_{i}=\left(-v_{y i}, v_{x i}\right) \mathbf{R}\left(u_{x i}, u_{y i}\right)^{\prime}
$$

Step 3: Reformulate ?
Let $\mathbf{R}=\left[\begin{array}{cc}\cos (\theta) & -\sin (\theta) \\ \sin (\theta) & \cos (\theta)\end{array}\right]$
Multiplying out and grouping terms:

$$
\epsilon_{i}=\left(v_{x i} u_{y i}-v_{y i} u_{x i}, v_{y i} u_{y i}+v_{x i} u_{x i}\right)(\cos (\theta), \sin (\theta))^{\prime}
$$

Make a matrix equation

$$
\vec{\epsilon}=\mathrm{D}(\cos (\theta), \sin (\theta))^{\prime}
$$

Each row of L vector $\vec{\epsilon}$ is ϵ_{i} and each row of $L \times 2$ matrix \mathbf{D} is $\left(v_{x i} u_{y i}-v_{y i} u_{x i}, v_{y i} u_{y i}+v_{x i} u_{x i}\right)$

The least square error is $\vec{\epsilon}^{\prime} \vec{\epsilon}=(\cos (\theta), \sin (\theta)) \mathbf{D}^{\prime} \mathbf{D}(\cos (\theta), \sin (\theta))^{\prime}$
© 2014, School of Informatics, University of Edinburgh

2D Pose Estimation
Slide 7/10

Solving gives:

$$
\tan (\theta)=\frac{(h-e) \pm \sqrt{(e-h)^{2}+(f+g)^{2}}}{(f+g)}
$$

Four θ solutions (2 for $\pm, 2$ for $\tan (\theta)=\tan (\pi+\theta)$).
Try to verify \qquad

Step 4: Finding rotation that ? \qquad least square error

Let $\mathbf{D}^{\prime} \mathbf{D}=\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]$
Then, we minimize $(\cos (\theta), \sin (\theta))\left[\begin{array}{ll}e & f \\ g & h\end{array}\right](\cos (\theta), \sin (\theta))^{\prime}=$ $e \cos (\theta)^{2}+(f+g) \cos (\theta) \sin (\theta)+h \sin (\theta)^{2}$

Differentiate wrt θ and set equal to 0 gives:

$$
(f+g) \cos (\theta)^{2}+2(h-e) \cos (\theta) \sin (\theta)-(f+g) \sin (\theta)^{2}=0
$$

Divide by $-\cos (\theta)^{2}$ (if $\cos (\theta)=0$ then use special case) gives:

$$
(f+g) \tan (\theta)^{2}+2(e-h) \tan (\theta)-(f+g)=0
$$

© 2014, School of Informatics, University of Edinburgh

2D Pose Estimation
Slide 8/10

Estimating ?

 By Least Squares

\vec{w}_{i} is perpendicular to rotated model line i
Offset error $\epsilon_{i}=\left(\vec{d}_{i 1}-\sigma \mathbf{R} \vec{m}_{i 1}-\vec{t}\right)^{\prime} \vec{w}_{i}$

What Have We Learned?
Differentiate $\sum_{i} \epsilon_{i}^{2}$ wrt \vec{t}, set equal to $\overrightarrow{0}$ and solve for \vec{t} gives:

$$
\vec{t}=\left(\sum \vec{w}_{i} \vec{w}_{i}^{\prime}\right)^{-1} \sum \vec{w}_{i} \vec{w}_{i}^{\prime}\left(d_{i 1}-\sigma \mathbf{R} \vec{m}_{i 1}\right)
$$

© 2014, School of Informatics, University of Edinburgh

