2D Pose Estimation from Lines

Robert B. Fisher
School of Informatics
University of Edinburgh

2D Pose Estimation

Goal: find flat object object pose (eliminate some invalid matches)

Given a set $\{(m_i, d_{j_i})\}, i = 1..L$ of compatible pairs

Find the rotation \mathbf{R} and translation \vec{t} that transforms the model onto the data features.

This is the 'pose' or 'position'

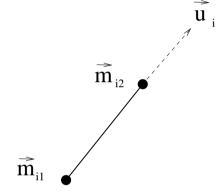
Let
$$\mathbf{R} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$
 be the rotation matrix

If \vec{p} is a model point, then $\mathbf{R}\vec{p} + \vec{t}$ is the transformed model point

Usually estimate rotation **R** first and then translation \vec{t}

Estimating Rotation

Given model line i endpoints $\{(\vec{m}_{i1}, \vec{m}_{i2})\}$ Corresponding data line endpoints $\{(\vec{d}_{i1}, \vec{d}_{i2})\}$



Model line direction unit vector:

$$\vec{u}_i = \frac{\vec{m}_{i2} - \vec{m}_{i1}}{||\vec{m}_{i2} - \vec{m}_{i1}||}$$

Data line direction unit vector:

$$\vec{v}_i = \frac{\vec{d}_{i2} - \vec{d}_{i1}}{||\vec{d}_{i2} - \vec{d}_{i1}||}$$

If no data errors, want **R** such that

$$\vec{v}_i = \pm R \vec{u}_i$$

(\pm as don't know if endpoints are in same order)

But, as we have errors \rightarrow least squares solution

Step 1: compute vectors perpendicular to \vec{v}_i If $\vec{v}_i = (v_{x1}, v_{y1})$, then perpendicular is $(-v_{yi}, v_{xi})$

Step 2: compute error between \vec{v}_i and $R\vec{u}_i$ Use dot product of $R\vec{u}_i$ and perpendicular, which equals $\sin()$ of angular error, which is small, so $\sin(\text{error}) \doteq \text{error}$

$$\epsilon_i = (-v_{yi}, v_{xi}) \mathbf{R}(u_{xi}, u_{yi})'$$

Step 3: Reformulate error

Let
$$\mathbf{R} = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

Multiplying out and grouping terms:

$$\epsilon_i = (v_{xi}u_{yi} - v_{yi}u_{xi}, v_{yi}u_{yi} + v_{xi}u_{xi})(\cos(\theta), \sin(\theta))'$$

Make a matrix equation

$$\vec{\epsilon} = D(cos(\theta), sin(\theta))'$$

Each row of L vector $\vec{\epsilon}$ is ϵ_i and each row of $L \times 2$ matrix \mathbf{D} is $(v_{xi}u_{yi} - v_{yi}u_{xi}, v_{yi}u_{yi} + v_{xi}u_{xi})$

The least square error is $\vec{\epsilon}'\vec{\epsilon} = (cos(\theta), sin(\theta))\mathbf{D}'\mathbf{D}(cos(\theta), sin(\theta))'$

Step 4: Finding rotation that minimizes least square error

Let
$$\mathbf{D'D} = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

Then, we minimize $(\cos(\theta), \sin(\theta)) \begin{bmatrix} e & f \\ g & h \end{bmatrix} (\cos(\theta), \sin(\theta))' = e\cos(\theta)^2 + (f+g)\cos(\theta)\sin(\theta) + h\sin(\theta)^2$

Differentiate wrt θ and set equal to 0 gives:

$$(f+g)\cos(\theta)^2 + 2(h-e)\cos(\theta)\sin(\theta) - (f+g)\sin(\theta)^2 = 0$$

Divide by $-cos(\theta)^2$ (if $cos(\theta) = 0$ then use special case) gives:

$$(f+g)tan(\theta)^{2} + 2(e-h)tan(\theta) - (f+g) = 0$$

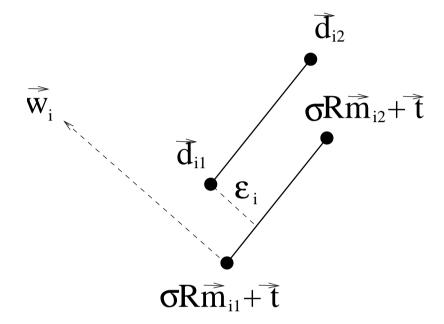
Solving gives:

$$tan(\theta) = \frac{(h-e) \pm \sqrt{(e-h)^2 + (f+g)^2}}{(f+g)}$$

Four θ solutions (2 for \pm , 2 for $tan(\theta) = tan(\pi + \theta)$).

Try to verify all 4.

Estimating Translation By Least Squares



 \vec{w}_i is perpendicular to rotated model line i

Offset error $\epsilon_i = (\vec{d}_{i1} - \sigma \mathbf{R} \vec{m}_{i1} - \vec{t})' \vec{w}_i$

Differentiate $\sum_{i} \epsilon_{i}^{2}$ wrt \vec{t} , set equal to $\vec{0}$ and solve for \vec{t} gives:

$$\vec{t} = (\sum \vec{w_i} \vec{w_i}')^{-1} \sum \vec{w_i} \vec{w_i}' (d_{i1} - \sigma \mathbf{R} \vec{m}_{i1})$$

What Have We Learned?

• 2D Least Squares rotation and translation estimation algorithms