Slide 1/9

Slide 3/9

2D Pose Estimation

Goal: find flat object object pose (eliminate some invalid matches)

Given a set $\{(m_i, d_{j_i})\}, i = 1..L$ of compatible pairs

Find the rotation **R** and translation \vec{t} that transforms the model onto the data features.

This is the 'pose' or 'position'

Let $\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ be the rotation matrix

If \vec{p} is a model point, then $\mathbf{R}\vec{p} + \vec{t}$ is the transformed model point

Usually estimate rotation **R** first and then translation \vec{t}

©2014, School of Informatics, University of Edinburgh

2D Pose Estimation

If no data errors, want ${\bf R}$ such that

 $\vec{v}_i = \pm \mathbf{R} \vec{u}_i$

 $(\pm \text{ as don't know if endpoints are in same order})$

But, as we have errors \rightarrow least squares solution

Step 1: compute vectors perpendicular to \vec{v}_i If $\vec{v}_i = (v_{x1}, v_{y1})$, then perpendicular is $(-v_{yi}, v_{xi})$

Step 2: compute error between \vec{v}_i and $R\vec{u}_i$ Use dot product of $R\vec{u}_i$ and perpendicular, which equals $\sin()$ of angular error, which is small, so $\sin(\text{error}) \doteq \text{error}$

 $\epsilon_i = (-v_{yi}, v_{xi}) \mathbf{R}(u_{xi}, u_{yi})'$

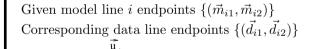
©2014, School of Informatics, University of Edinburgh

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

2D Pose Estimation

Estimating Rotation



 \vec{m}_{i2}

Model line direction unit vector:

$$\vec{u}_i = \frac{\vec{m}_{i2} - \vec{m}_{i1}}{|| \vec{m}_{i2} - \vec{m}_{i1} ||}$$

Data line direction unit vector:

$$ec{v_i} = rac{ec{d_{i2}} - ec{d_{i1}}}{|| \ ec{d_{i2}} - ec{d_{i1}} ||}$$

©2014, School of Informatics, University of Edinburgh

Slide 5/9

2D Pose Estimation

Step 3: Reformulate error Let $\mathbf{R} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ Multiplying out and grouping terms: $\epsilon_i = (v_{xi}u_{yi} - v_{yi}u_{xi}, v_{yi}u_{yi} + v_{xi}u_{xi})(\cos(\theta), \sin(\theta))'$ Make a matrix equation $\vec{\epsilon} = \mathbf{D}(\cos(\theta), \sin(\theta))'$ Each row of L vector $\vec{\epsilon}$ is ϵ_i and each row of $L \times 2$ matrix \mathbf{D} is $(v_{xi}u_{yi} - v_{yi}u_{xi}, v_{yi}u_{yi} + v_{xi}u_{xi})$ The least square error is $\vec{\epsilon}'\vec{\epsilon} = (\cos(\theta), \sin(\theta))\mathbf{D}'\mathbf{D}(\cos(\theta), \sin(\theta))'$

C2014, School of Informatics, University of Edinburgh

2D Pose Estimation

Slide 7/9

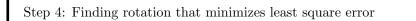
Solving gives:

$$tan(\theta) = \frac{(h-e) \pm \sqrt{(e-h)^2 + (f+g)^2}}{(f+g)}$$

Four θ solutions (2 for \pm , 2 for $tan(\theta) = tan(\pi + \theta)$).

Try to verify all 4.

O2014, School of Informatics, University of Edinburgh



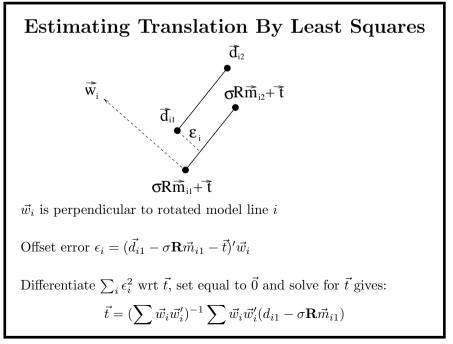
Let
$$\mathbf{D}'\mathbf{D} = \begin{bmatrix} e & f \\ g & h \end{bmatrix}$$

Then, we minimize $(\cos(\theta), \sin(\theta)) \begin{bmatrix} e & f \\ g & h \end{bmatrix} (\cos(\theta), \sin(\theta))' = e\cos(\theta)^2 + (f+g)\cos(\theta)\sin(\theta) + h\sin(\theta)^2$
Differentiate wrt θ and set equal to 0 gives:
 $(f+g)\cos(\theta)^2 + 2(h-e)\cos(\theta)\sin(\theta) - (f+g)\sin(\theta)^2 = 0$
Divide by $-\cos(\theta)^2$ (if $\cos(\theta) = 0$ then use special case) gives:
 $(f+g)\tan(\theta)^2 + 2(e-h)\tan(\theta) - (f+g) = 0$

C2014, School of Informatics, University of Edinburgh

2D Pose Estimation

Slide 8/9



O2014, School of Informatics, University of Edinburgh

What Have We Learned?

• 2D Least Squares rotation and translation estimation algorithms

©2014, School of Informatics, University of Edinburgh