
2D Pose Estimation Slide 1/9

2D Pose Estimation from Lines

Robert B. Fisher

School of Informatics

University of Edinburgh

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 2/9

2D Pose Estimation

Goal: find flat object object pose (eliminate some invalid matches)

Given a set {(mi, dji
)}, i = 1..L of compatible pairs

Find the rotation R and translation ~t that transforms the model

onto the data features.

This is the ‘pose’ or ‘position’

Let R =





cos(θ) −sin(θ)

sin(θ) cos(θ)



 be the rotation matrix

If ~p is a model point, then R~p + ~t is the transformed model point

Usually estimate rotation R first and then translation ~t

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 3/9

Estimating Rotation

Given model line i endpoints {(~mi1, ~mi2)}

Corresponding data line endpoints {(~di1, ~di2)}

m

m

u

i1

i2

i

Model line direction unit vector:

~ui =
~mi2 − ~mi1

|| ~mi2 − ~mi1 ||

Data line direction unit vector:

~vi =
~di2 − ~di1

|| ~di2 − ~di1 ||

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 4/9

If no data errors, want R such that

~vi = ±R~ui

(± as don’t know if endpoints are in same order)

But, as we have errors → least squares solution

Step 1: compute vectors perpendicular to ~vi

If ~vi = (vx1, vy1), then perpendicular is (−vyi, vxi)

Step 2: compute error between ~vi and R~ui

Use dot product of R~ui and perpendicular, which equals sin() of

angular error, which is small, so sin(error)
.
= error

ǫi = (−vyi, vxi)R(uxi, uyi)
′

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 5/9

Step 3: Reformulate error

Let R =





cos(θ) −sin(θ)

sin(θ) cos(θ)





Multiplying out and grouping terms:

ǫi = (vxiuyi − vyiuxi, vyiuyi + vxiuxi)(cos(θ), sin(θ))′

Make a matrix equation

~ǫ = D(cos(θ), sin(θ))′

Each row of L vector ~ǫ is ǫi and each row of L × 2 matrix D is

(vxiuyi − vyiuxi, vyiuyi + vxiuxi)

The least square error is ~ǫ′~ǫ = (cos(θ), sin(θ))D′
D(cos(θ), sin(θ))′

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 6/9

Step 4: Finding rotation that minimizes least square error

Let D
′
D =





e f

g h





Then, we minimize (cos(θ), sin(θ))





e f

g h



 (cos(θ), sin(θ))′ =

ecos(θ)2 + (f + g)cos(θ)sin(θ) + hsin(θ)2

Differentiate wrt θ and set equal to 0 gives:

(f + g)cos(θ)2 + 2(h − e)cos(θ)sin(θ) − (f + g)sin(θ)2 = 0

Divide by −cos(θ)2 (if cos(θ) = 0 then use special case) gives:

(f + g)tan(θ)2 + 2(e − h)tan(θ) − (f + g) = 0

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 7/9

Solving gives:

tan(θ) =
(h − e) ±

√

(e − h)2 + (f + g)2

(f + g)

Four θ solutions (2 for ±, 2 for tan(θ) = tan(π + θ)).

Try to verify all 4.

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 8/9

Estimating Translation By Least Squares

w

ε

Rm + ti2

di2

di1

i

i

Rm + ti1

σ

σ
~wi is perpendicular to rotated model line i

Offset error ǫi = (~di1 − σR~mi1 − ~t)′ ~wi

Differentiate
∑

i ǫ2i wrt ~t, set equal to ~0 and solve for ~t gives:

~t = (
∑

~wi ~w
′
i)

−1
∑

~wi ~w
′
i(di1 − σR~mi1)

c©2014, School of Informatics, University of Edinburgh

2D Pose Estimation Slide 9/9

What Have We Learned?

• 2D Least Squares rotation and translation

estimation algorithms

c©2014, School of Informatics, University of Edinburgh

