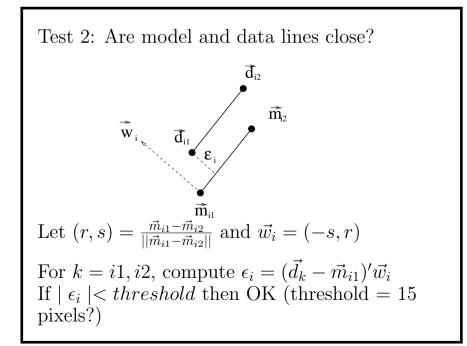
Verification Goal

Ensure that we have a good match between model and data

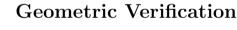

Ensure that we have a good pose estimation

Use geometric shape properties to eliminate bad matches & poses

©2014, School of Informatics, University of Edinburgh

2D Shape Matching Verification

Slide 4/8

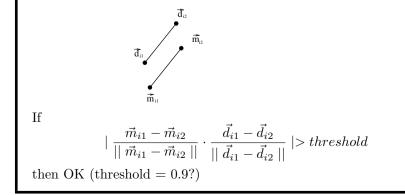


O2014, School of Informatics, University of Edinburgh

C2014, School of Informatics, University of Edinburgh

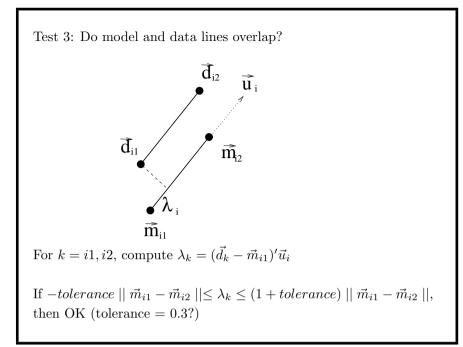
2D Shape Matching Verification

Slide 3/8


Transform model lines into place: for each \vec{m}_i compute $\sigma R \vec{m}_i + \vec{t}$

Verifying 2D Shape Matching

Robert B. Fisher School of Informatics

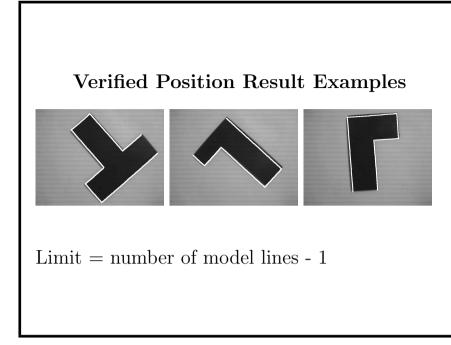

University of Edinburgh

For each model-data line pair, do 3 tests: Test 1: Are model and data lines parallel? (For simplicity, use \vec{m}_i in notation instead of $\sigma R\vec{m}_i + \vec{t}$)

©2014, School of Informatics, University of Edinburgh

Slide 5/8

O2014, School of Informatics, University of Edinburgh


2D Shape Matching Verification

Slide 7/8

Confusion Matrix				
	Est	Est	Est	No
	Tee	Thin L	Thick L	Est
True Tee	4	0	0	0
True Thin L	0	3	0	1
True Thick L	0	0	4	0

Image 8 had Thin L model flipped over. Matching process can be extended to allow this.

O2014, School of Informatics, University of Edinburgh

O2014, School of Informatics, University of Edinburgh

2D Shape Matching Verification

Slide 8/8

What Have We Learned?

Introduction to

- Geometric Model-based Object Recognition
- 2D Geometric Verification Algorithm
- Similar techniques for shapes other than straight lines: circular arcs, corners, holes, ...
- Extendable to 3D

O2014, School of Informatics, University of Edinburgh