Review of 2D coordinate geometry

Robert B. Fisher
School of Informatics
University of Edinburgh

Review of 2D coordinate geometry

1. Object and Scene Coordinate Systems
2. Coordinate System Transformations
3. Homogeneous Coordinates I
4. Multiple Reference Frame Transformations
© 2014 , School of Informatics, University of Edinburgh

Object and Scene Coordinate Systems

Issues:

+ Want to describe object features independently of the object's position. + Want to specify object position and orientation within scene

$$
\square=?
$$

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Why? Generic Model vs Specific Position

Generic:
Object geometric Scene position in model, aligned pixels, not aligned

Object and Scene Coordinate Systems II

Solution: Use separate object and scene coordinate systems and link by reference frame transformations

Use image coordinate system $(c, r), c \in[0, C]$, $r \in[0, R]$ for $C \times R$ image (for convenience)
 $+\mathrm{R}$
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Object and Scene Coordinate Systems III
(c, r) in image (eg. in pixels) relates to (x, y) in scene (eg. in mm) using column, row scale factors $\rho_{c}, \rho_{r}:(x, y)=\left(\rho_{c} c, \rho_{r} r\right)$

178 pixels

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Object and Scene Coordinate Systems IV

Use separate coordinate systems for object and scene
Also - image and camera coordinate systems

Coordinate System Transformations I

Placement of object relative to scene requires a coordinate system transformation

In 2 D , need 1 rotation angle θ and $\vec{t}=\left(t_{c}, t_{r}\right)^{\prime}$ translation (' is for transposing a row vector to a column vector and vice versa)

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Coordinate System Transformations II

$\vec{p}=(a, b)^{\prime}$ is a point in the 2 D coord system Translation of point $\vec{p}=(a, b)^{\prime}$ by $\vec{t}=\left(t_{c}, t_{r}\right)^{\prime}$ moves it to $\vec{p}+\vec{t}=\left(a+t_{c}, b+t_{r}\right)^{\prime}$

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Coordinate System Transformations III

If θ is the rotation angle, let

$$
\mathrm{R}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

Sometime see $\sin (\theta)$ and $-\sin (\theta)$ swapped. A matter of convention about direction of rotation.

Coordinate System Transformations IV

Rotation of point $\vec{p}=(a, b)^{\prime}$ by R moves it to $\mathrm{R} \vec{p}=(a \cdot \cos (\theta)-b \cdot \sin (\theta), a \cdot \sin (\theta)+b \cdot \cos (\theta))^{\prime}$

θ positive is clockwise rotation (other definition common)

Complete Transformations

Rotation \& Translations: $\mathrm{R} \vec{p}+\vec{t}$

If the object local coordinate system starts at $(0,0)^{\prime}$, then the rotation \& translation specify its position

Homogeneous Coordinates I

Instead of 2 operations to implement the transformation, often only one operation based on homogeneous coordinates (more advanced form in later lectures)

1) Extend points $\vec{p}=(a, b)^{\prime}$ to $\vec{P}=(a, b, 1)^{\prime}$
2) Extend vectors $\vec{d}=(u, v)^{\prime}$ to $\vec{D}=(u, v, 0)^{\prime}$
3) Combine rotation and translation into one 3×3 matrix

$$
\mathrm{T}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & t_{c} \\
\sin (\theta) & \cos (\theta) & t_{r} \\
0 & 0 & 1
\end{array}\right]
$$

Full transformation of \vec{p} is now $\mathrm{T} \vec{P}$

Multiple Transformations

Given 2 joint robot arm whose joint angles are α and β
$\mathrm{T}_{w}(\alpha)$ is the wrist joint position relative to the lower arm
$\mathrm{T}_{l}(\beta)$ is the lower arm position relative to the upper arm

The arm is at position T_{0}

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Multiple Transformations II

Then, a wrist coordinate point \vec{x} at the tip of the robot is at

$$
\vec{y}=\mathrm{T}_{0} \mathrm{~T}_{l}(\beta) \mathrm{T}_{w}(\alpha) \vec{x}
$$

Can also easily invert positions:

$$
\vec{x}=\left(\mathrm{T}_{w}(\alpha)\right)^{-1}\left(\mathrm{~T}_{l}(\beta)\right)^{-1}\left(\mathrm{~T}_{0}\right)^{-1} \vec{y}
$$

is the wrist coordinates of scene point \vec{y}

What We Have Learned

1. Review of Coordinate Systems

Transformations
2. Introduction to Homogeneous Coordinates
© 2014 , School of Informatics, University of Edinburgh

