Review of 2D coordinate geometry

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

2D Coordinate Systems Slide 3/16

Object and Scene Coordinate Systems

Issues:

- + Want to describe object features independently of the object's position.
- + Want to specify object position and orientation within scene

Slide 2/16

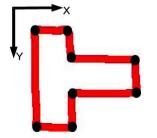
Review of 2D coordinate geometry

- 1. Object and Scene Coordinate Systems
- 2. Coordinate System Transformations
- 3. Homogeneous Coordinates I
- 4. Multiple Reference Frame Transformations

©2014, School of Informatics, University of Edinburgh

2D Coordinate Systems Slide 4/16

Why? Generic Model vs Specific Position



Generic:

Specific:

Object geometric

Scene position in

model, aligned

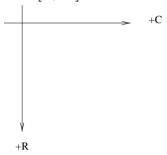
pixels, not aligned

Slide 7/16

Object and Scene Coordinate Systems II

Solution: Use separate object and scene coordinate systems and link by reference frame transformations

Use image coordinate system $(c, r), c \in [0, C]$, $r \in [0, R]$ for $C \times R$ image (for convenience)

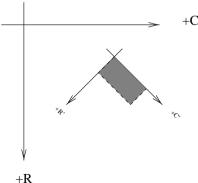


©2014, School of Informatics, University of Edinburgh

2D Coordinate Systems

Object and Scene Coordinate Systems IV

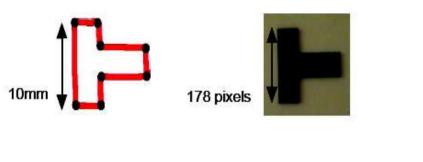
Use separate coordinate systems for object and scene



Also - image and camera coordinate systems

Object and Scene Coordinate Systems III

(c,r) in image (eg. in pixels) relates to (x,y) in scene (eg. in mm) using column, row scale factors ρ_c, ρ_r : $(x, y) = (\rho_c c, \rho_r r)$



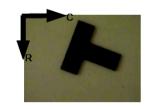
©2014, School of Informatics, University of Edinburgh

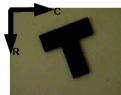
2D Coordinate Systems Slide 8/16

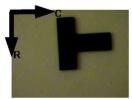
Coordinate System Transformations I

Placement of object relative to scene requires a coordinate system transformation

In 2D, need 1 rotation angle θ and $\vec{t} = (t_c, t_r)'$ translation ('is for transposing a row vector to a column vector and vice versa)

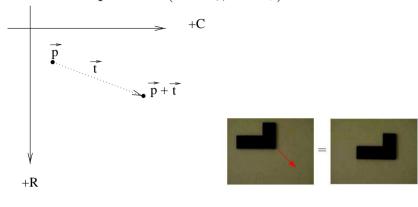






Coordinate System Transformations II

 $\vec{p} = (a, b)'$ is a point in the 2D coord system Translation of point $\vec{p} = (a, b)'$ by $\vec{t} = (t_c, t_r)'$ moves it to $\vec{p} + \vec{t} = (a + t_c, b + t_r)'$

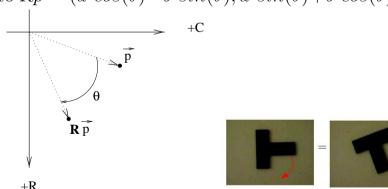


©2014, School of Informatics, University of Edinburgh

2D Coordinate Systems Slide 11/16

Coordinate System Transformations IV

Rotation of point $\vec{p} = (a, b)'$ by R moves it to $R\vec{p} = (a \cdot cos(\theta) - b \cdot sin(\theta), a \cdot sin(\theta) + b \cdot cos(\theta))'$



 θ positive is clockwise rotation (other definition common)

Coordinate System Transformations III

If θ is the rotation angle, let

$$R = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

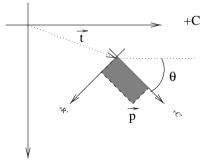
Sometime see $sin(\theta)$ and $-sin(\theta)$ swapped. A matter of convention about direction of rotation.

©2014, School of Informatics, University of Edinburgh

2D Coordinate Systems Slide 12/16

Complete Transformations

Rotation & Translations: $R\vec{p} + \vec{t}$



If the object local coordinate system starts at (0,0), then the rotation & translation specify its position

Homogeneous Coordinates I

Instead of 2 operations to implement the transformation, often only one operation based on homogeneous coordinates (more advanced form in later lectures)

- 1) Extend points $\vec{p} = (a, b)'$ to $\vec{P} = (a, b, 1)'$
- 2) Extend vectors $\vec{d} = (u, v)'$ to $\vec{D} = (u, v, 0)'$
- 3) Combine rotation and translation into one 3×3 matrix

$$T = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & t_c \\ \sin(\theta) & \cos(\theta) & t_r \\ 0 & 0 & 1 \end{bmatrix}$$

Full transformation of \vec{p} is now $T\vec{P}$

©2014, School of Informatics, University of Edinburgh

2D Coordinate Systems

Slide 15/16

Multiple Transformations II

Then, a wrist coordinate point \vec{x} at the tip of the robot is at

$$\vec{y} = T_0 T_l(\beta) T_w(\alpha) \vec{x}$$

Can also easily invert positions:

$$\vec{x} = (T_w(\alpha))^{-1} (T_l(\beta))^{-1} (T_0)^{-1} \vec{y}$$

is the wrist coordinates of scene point \vec{y}

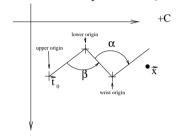
Multiple Transformations

Given 2 joint robot arm whose joint angles are α and β

 $T_w(\alpha)$ is the wrist joint position relative to the lower arm

 $T_l(\beta)$ is the lower arm position relative to the upper arm

The arm is at position T_0



©2014, School of Informatics, University of Edinburgh

2D Coordinate Systems Slide 16/16

What We Have Learned

- 1. Review of Coordinate Systems Transformations
- 2. Introduction to Homogeneous Coordinates