3D Pose Estimation from Planes

Robert B. Fisher School of Informatics University of Edinburgh

Pose Estimation

Like 2D case, estimate rotation first, then translation

Assume:

- N paired planes $\{(M_i, D_i)\}_{i=1}^N$
- model and data normals $\{\vec{m}_i\}$ and $\{\vec{d}_i\}$
- a point on each model patch $\{\vec{a}_i\}$
- a point on each data patch $\{\vec{b}_i\}$ (need not correspond to \vec{a}_i)

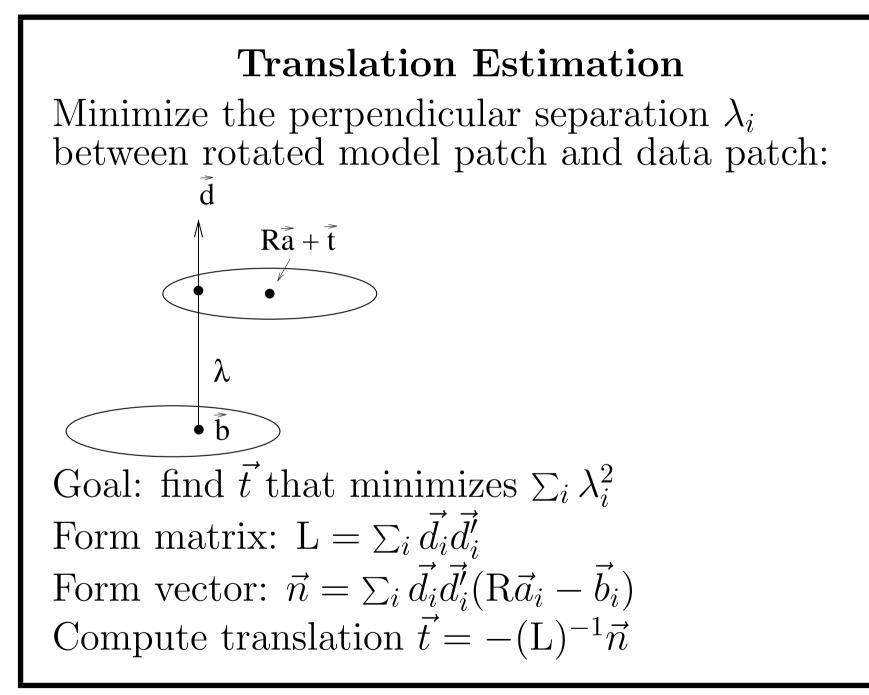
Rotation Estimation

Want R such that $R\vec{m}_i \doteq \vec{d}_i$

A least square problem, minimizing

$$\sum_i || \mathbf{R}\vec{m}_i - \vec{d}_i ||^2$$

Form matrix $M = [\vec{m}_1 \vec{m}_2 \dots \vec{m}_N]$ Form matrix $D = [\vec{d}_1 \vec{d}_2 \dots \vec{d}_N]$ Compute singular value decomposition (SVD): $svd(DM') = U^*S^*V'$ Compute rotation matrix: $R = V^*U'$ Assumes at least 3 non-coplaner vectors (caution 1 special case)



Verification

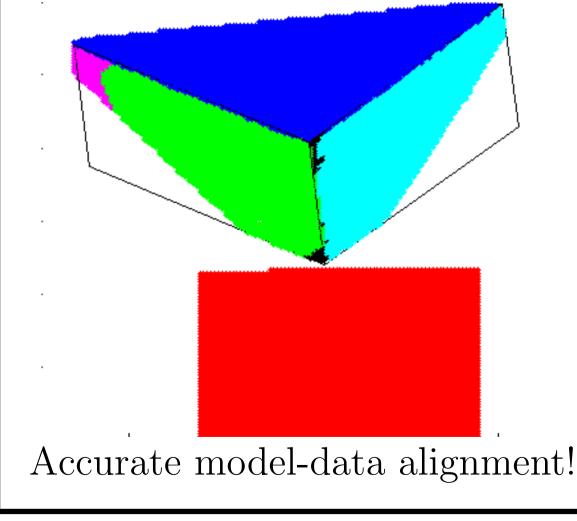
Multiple possible matching solutions:

globally invalid pairings, alternative pose hypotheses Use verification to find correct one

- 1. Rotated model normals \vec{m}_i close to data normals \vec{d}_i : $acos(\vec{d}'_i \mathbf{R} \vec{m}_i) < \tau_1$
- 2. Transformed model vertices $\vec{e_i}$ lie on the data plane $\vec{n'}\vec{x} + d = 0$: $|\vec{n'}\vec{e_i} + d| < \tau_2$

Matching Results

Object recognized but three pose solutions as verification didn't check overlap areas



What We Have Learned

- A least squares pose estimation algorithm using planes
- Constraints to verify 3D model matches