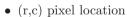
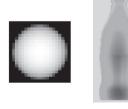
Sources of Range Data


Robert B. Fisher School of Informatics University of Edinburgh

©2018, School of Informatics, University of Edinburgh


Range Data Sources Slide 3/11

Range Data Representations

• pixel encodes depth, not colour

Point cloud: $\{(x, y, z)\}$

Range Data

Intensity image: observed_brightness(r,c)

Range image: distance_from_sensor(r,c) or $\{(x_i,y_i,z_i)\}$

©2018, School of Informatics, University of Edinburgh

Range Data Sources Slide 4/11

Active 3D Sensing - Motivations

Parts/Objects:

- Analysis/manufacture
- Reverse engineering

Buildings:

- Use in 3D VR
- Change analysis

 ${\bf Robotic\ navigation:}$

on-board laser scanner

Why Range Data

Advantages

Direct, accurate 3D scene information

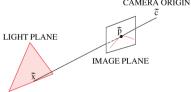
Unambiguous measurement (unlike brightness)

©Kinect is cheap and reliable

Disadvantages

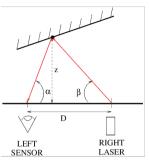
More complex/expensive sensor

Dark/shiny objects a problem


Generally indirect capture (eg. computed, scanned)

©2018, School of Informatics, University of Edinburgh

Range Data Sources Slide 7/11


Triangulation range calculation

Find pixel \vec{p} on laser stripe in image (\vec{p} is in 3D coordinates, known from camera parameters). Laser stripe plane: unit surface normal \vec{n} and offset from orgin d. Image point \vec{p} defines a ray from camera origin \vec{c} to scene point \vec{x} .

Ray equation: $\vec{x} = \vec{c} + \lambda(\vec{p} - \vec{c})$ Light plane equation: $\vec{x} \cdot \vec{n} = d$ Find intersection, solve for λ , substitute to get \vec{x} (3D coords of point)

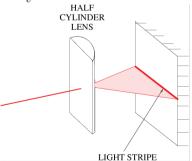
Triangulation range sensors

 $z = f(\alpha, \beta, D)$

Light beam usually a laser ("laser range scanning"):

Bright

Single frequency (eg 633 nm)


Matching optical filter can eliminate other scene light

©2018, School of Informatics, University of Edinburgh

Range Data Sources Slide 8/11

Getting a full range image

Laser gives a spot, not full image Use half-cylindrical lens

This gives a stripe on the observed target For full range image, need to cover all of target Range Data Sources Slide 9/11 Range Data Sources Slide 10/11

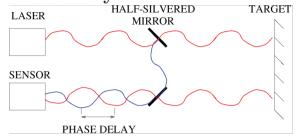
Covering the whole scene

- 1) Can sweep light plane with rotating mirror
- 2) Can move sensor (eg sensor in lab)
- 3) Move parts underneath stripe, eg on a conveyor belt

Builds up image column by column as part moves

©2018, School of Informatics, University of Edinburgh

Range Data Sources Slide 11/11


What We Have Learned

- Some basic triangulation range sensor technology
- Concepts of other forms of range sensor

Range sensor technologies

Time of flight: d = ct

Phase delay:

Both need:

- 1) sophisticated optics/timing electronics, but are common
- 2) a way to sweep the beam

©2018, School of Informatics, University of Edinburgh