

^{©2014,} School of Informatics, University of Edinburgh

Simple 3D Wireframe Modelling

Slide 4/9

^{©2014,} School of Informatics, University of Edinburgh

 $[\]textcircled{C}2014,$ School of Informatics, University of Edinburgh

Polygons: set of edges (polyhedron edges)

3D Shape Modelling	
Similar to ?	
Needs $3D$ coordinate system $+ 3D$ snape primitives	
$\begin{array}{c} \mathbf{Y} \\ +X \\ (66,0,0) \\ M1 \\ (0,0,0) \\ M2 \\ M3 \\ (0,0,47) \\ (0,0,47) \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	
Our primitives: polyhedra, defined by polygonal patches, defined by lists of edges	
Wireframe modelling	

Simple 3D Wireframe Modelling

Slide 8/9

?	Model
planenorm(1,:) = [0,0,-1];	% tri face 1 surf normal
<pre>facelines(1) = 3;</pre>	% # of boundary lines
model(1,1,:) = [0,0,0,66,0,0];	% Edge 1
model(1,2,:) = [0,0,0,0,66,0];	% edge 2
model(1,3,:) = [0,66,0,66,0,0]	; % edge 3
planenorm(2,:) = [0, -1, 0];	% rect face 2 surf normal
<pre>facelines(2) = 4;</pre>	
model(2,1,:) = [0,0,0,0,0,47];	
model(2,2,:) = [0,0,0,66,0,0];	
model(2,3,:) = [66,0,0,66,0,47]];
model(2,4,:) = [0,0,47,66,0,47]];
planenorm(3,:) = [-1, 0, 0];	% rect face 3 surf normal
<pre>facelines(3) = 4;</pre>	
model(3,1,:) = [0,0,0,0,0,47];	

©2014, School of Informatics, University of Edinburgh

O2014, School of Informatics, University of Edinburgh

Edge: 2 points in \mathbb{R}^3 (edge endpoints)

 $[\]textcircled{O}2014,$ School of Informatics, University of Edinburgh

What We Have Learned

• A simple 3D shape ? scheme

• A review of 3D coordinate systems

©2014, School of Informatics, University of Edinburgh