Slide 3/15

3D Line Calculation

Aim: recovery of 3D line positions **Assume:** line successfully matched in L & R images

- 1. Compute 3D plane that goes through image line and camera origin
- 2. Compute ? of 3D planes from 2 cameras (which gives a line)

©2014, School of Informatics, University of Edinburgh

O2014, School of Informatics, University of Edinburgh

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh

3D Lines

Slide 7/15

©2014, School of Informatics, University of Edinburgh

Computing 3D Line Positions II

Given: paired lines (l,r) with midpoints $\vec{m}_l = (m_{lx}, m_{ly})$ and \vec{m}_r and directions $\vec{a}_l = (a_{lx}, a_{ly})$ and $\vec{a}_r = (a_{rx}, a_{ry})$ Fundamental matrix **F** that maps left to right image

1) Define ?] left midpoint: $\vec{c}_l = (m_{lx}, m_{ly}, 1)'$ and line
direction $\vec{u} = (a_{lx}, a_{lx})$	(y,0)'
2) Define projective right	line: $\vec{v} = (a_{ry}, -a_{rx}, -(a_{ry}, -a_{rx}) \cdot \vec{m}_r)$
3) Define skew matrix ve	rsion of projective right line (for
algebraic line interse	ection):
M =	$\begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix}$

©2014, School of Informatics, University of Edinburgh

3D Lines

Slide 8/15

Triangulating 2 points $(\vec{a}, \vec{b}) \rightarrow \vec{x}$

Given: Left/right projection matrices: \mathbf{P}_{l} , \mathbf{P}_{r} Left/right ? parameter matrices: \mathbf{K}_{l} , \mathbf{K}_{r} Left/right matched points: $\vec{a} = (a_{x}, a_{y})'$ and $\vec{b} = (b_{x}, b_{y})'$ Compute: $\vec{r} = (\mathbf{K}_{l})^{-1}(a_{x}, a_{y}, 1)'$ and $\vec{s} = (\mathbf{K}_{r})^{-1}(b_{x}, b_{y}, 1)'$ $\vec{a}_{1} = r_{1} * \mathbf{P}_{l}(3, :) - \mathbf{P}_{l}(1, :)$ and $\vec{a}_{2} = r_{2} * \mathbf{P}_{l}(3, :) - \mathbf{P}_{l}(2, :)$ $\vec{a}_{3} = s_{1} * \mathbf{P}_{r}(3, :) - \mathbf{P}_{r}(1, :)$ and $\vec{a}_{4} = s_{2} * \mathbf{P}_{r}(3, :) - \mathbf{P}_{r}(2, :)$ $[USV] = svd(\frac{\vec{a}_{1}}{||\vec{a}_{1}||}; \frac{\vec{a}_{2}}{||\vec{a}_{2}||}; \frac{\vec{a}_{3}}{||\vec{a}_{3}||}; \frac{\vec{a}_{4}}{||\vec{a}_{4}||})$ $\vec{x} = V(1:3, 4)'/V(4, 4)$

O2014, School of Informatics, University of Edinburgh

<image><image><image><image><image><image>

©2014, School of Informatics, University of Edinburgh

3D Lines

84

60

Block 2 2D Line Labels

31

O2014, School of Informatics, University of Edinburgh

O2014, School of Informatics, University of Edinburgh

3D Lines

3D Lines

Slide 12/15

Block 1 3D Line Relative Orientations I

Left 1	Left 2	True	?
1	6	1.57	1.52
1	24	0.00	0.20
1	42	0.00	0.14
1	55	1.57	1.50
1	65	1.57	1.55
1	70	1.57	1.48
1	83	1.57	1.43
6	24	1.57	1.45
6	42	1.57	1.50
6	55	0.00	0.07

©2014, School of Informatics, University of Edinburgh

Block 1 3D Line Relative Orientations II

Left 1	Left 2	True	Computed
6	65	0.78	0.84
6	70	1.57	1.44
6	83	1.57	1.52
24	42	0.00	0.06
24	55	1.57	1.49
24	65	1.57	.153
24	70	1.57	1.52
24	83	1.57	1.56
42	55	1.57	1.54
42	65	1.57	1.54

©2014, School of Informatics, University of Edinburgh

3D Lines

5 S	lide 15/15
What We Have ?	
• Computing 3D line by intersecting backprojected 2D lines	
• Backprojection geometric calculations, including triangulatio	n
• Backprojection is reasonably accurate, but not perfect	

Block 1 3D Line Relative Orientations III

	Left 1	Left 2	True	Computed
	42	70	1.57	1.56
	42	83	1.57	1.52
	55	65	0.78	0.78
	55	70	1.57	1.51
	55	83	1.57	1.56
	65	70	0.78	0.86
	65	83	0.78	0.78
	70	83	0.00	0.09
Clearly rea	sonably	?		in 3D

©2014, School of Informatics, University of Edinburgh