
3D Lines Slide 1/15

3D Lines from Left:Right 2D Line Pairs

Robert B. Fisher

School of Informatics

University of Edinburgh

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 2/15

3D Line Calculation

Aim: recovery of 3D line positions

Assume: line successfully matched in L & R

images

1. Compute 3D plane that goes through image

line and camera origin

2. Compute ? of 3D planes from 2

cameras (which gives a line)

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 3/15

3D plane passing thru 2D image line

+X

+Y

+Z

+C

+R

(0,0)

3D LINE

2D IMAGE LINE

(e ,e ,e)zyx

3D PLANE

2D image line l = [a, b, c]′ is a ∗ col + b ∗ row + c = 0

Then ? is l′P

Compute for left and right images

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 4/15

3D Plane Intersection → ?

3D LINE

+X

+Y

+Z

+X

+Y

+Z

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 5/15

Computing 3D Line Positions I

PREDICTED
MIDPOINT

PREDICTED
SECOND PT

RIGHT LINE

LEFT RIGHT

LEFT LINE

F

Fu

pm

ps

MIDPOINT

Computing ? points on left and right
line

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 6/15

Computing 3D Line Positions II

Given: paired lines (l,r) with midpoints ~ml = (mlx, mly) and ~mr

and directions ~al = (alx, aly) and ~ar = (arx, ary)

Fundamental matrix F that maps left to right image

1) Define ? left midpoint: ~cl = (mlx, mly, 1)′ and line

direction ~u = (alx, aly, 0)′

2) Define projective right line: ~v = (ary,−arx,−(ary,−arx) · ~mr)

3) Define skew matrix version of projective right line (for

algebraic line intersection):

M =









0 −vz vy

vz 0 −vx

−vy vx 0









c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 7/15

Computing 3D Line Positions III

4) Predict left midpoint position in right image on paired line

(so that exact triangulation works):

~p = M ∗ F~cl, ~pmr = (px/pz, py/pz)
′

5) Predict second left point on line in right image:

~q = M ∗ F(~cl + 10 ∗ ~u), ~psr = (qx/qz, qy/qz)
′

6) ? pairs (~cl, ~pmr) and (~cl + 10 ∗ ~u, ~psr) to get

3D points ~g and ~h

7) Compute matched line 3D midpoint ~p3 = ~g

and 3D line direction ~d3 = (~h − ~g)/ || ~h − ~g ||

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 8/15

Triangulating 2 points (~a,~b) → ~x

Given: Left/right projection matrices: Pl, Pr

Left/right ? parameter matrices: Kl, Kr

Left/right matched points: ~a = (ax, ay)′ and ~b = (bx, by)′

Compute:

~r = (Kl)
−1(ax, ay, 1)′ and ~s = (Kr)

−1(bx, by, 1)′

~a1 = r1 ∗ Pl(3, :) − Pl(1, :) and ~a2 = r2 ∗ Pl(3, :) − Pl(2, :)

~a3 = s1 ∗ Pr(3, :) − Pr(1, :) and ~a4 = s2 ∗ Pr(3, :) − Pr(2, :)

[USV] = svd(~a1

||~a1||
; ~a2

||~a2||
; ~a3

||~a3||
; ~a4

||~a4||
)

~x = V (1 : 3, 4)′/V (4, 4)

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 9/15

Found Valid Line Pairs

All lines present and all but one ? still misplaced

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 10/15

Block 1 2D Line ?

70

95

23

65

55

24

1

42

83

6 27

68

105

74

30

75

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 11/15

Block 2 2D Line Labels

84 91
92

14

25
44

31

93

28

64

72

46

51

9

64

60

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 12/15

Block 1 3D Line Relative Orientations I

Left 1 Left 2 True ?

1 6 1.57 1.52

1 24 0.00 0.20

1 42 0.00 0.14

1 55 1.57 1.50

1 65 1.57 1.55

1 70 1.57 1.48

1 83 1.57 1.43

6 24 1.57 1.45

6 42 1.57 1.50

6 55 0.00 0.07

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 13/15

Block 1 3D Line Relative Orientations II

Left 1 Left 2 True Computed

6 65 0.78 0.84

6 70 1.57 1.44

6 83 1.57 1.52

24 42 0.00 0.06

24 55 1.57 1.49

24 65 1.57 .153

24 70 1.57 1.52

24 83 1.57 1.56

42 55 1.57 1.54

42 65 1.57 1.54

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 14/15

Block 1 3D Line Relative Orientations III

Left 1 Left 2 True Computed

42 70 1.57 1.56

42 83 1.57 1.52

55 65 0.78 0.78

55 70 1.57 1.51

55 83 1.57 1.56

65 70 0.78 0.86

65 83 0.78 0.78

70 83 0.00 0.09

Clearly reasonably ? in 3D

c©2014, School of Informatics, University of Edinburgh

3D Lines Slide 15/15

What We Have ?

• Computing 3D line by intersecting backprojected 2D lines

• Backprojection geometric calculations, including triangulation

• Backprojection is reasonably accurate, but not perfect

c©2014, School of Informatics, University of Edinburgh

