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3D Line Calculation

Aim: recovery of 3D line positions

Assume: line successfully matched in L & R

images

1. Compute 3D plane that goes through image

line and camera origin

2. Compute ? of 3D planes from 2

cameras (which gives a line)
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3D plane passing thru 2D image line

+X

+Y

+Z

+C

+R

(0,0)

3D LINE

2D IMAGE LINE

(e ,e ,e )zyx

3D PLANE

2D image line l = [a, b, c]′ is a ∗ col + b ∗ row + c = 0

Then ? is l′P

Compute for left and right images
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3D Plane Intersection → ?
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Computing 3D Line Positions I
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Computing ? points on left and right
line
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Computing 3D Line Positions II

Given: paired lines (l,r) with midpoints ~ml = (mlx, mly) and ~mr

and directions ~al = (alx, aly) and ~ar = (arx, ary)

Fundamental matrix F that maps left to right image

1) Define ? left midpoint: ~cl = (mlx, mly, 1)′ and line

direction ~u = (alx, aly, 0)′

2) Define projective right line: ~v = (ary,−arx,−(ary,−arx) · ~mr)

3) Define skew matrix version of projective right line (for

algebraic line intersection):
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Computing 3D Line Positions III

4) Predict left midpoint position in right image on paired line

(so that exact triangulation works):

~p = M ∗ F~cl, ~pmr = (px/pz, py/pz)
′

5) Predict second left point on line in right image:

~q = M ∗ F(~cl + 10 ∗ ~u), ~psr = (qx/qz, qy/qz)
′

6) ? pairs (~cl, ~pmr) and (~cl + 10 ∗ ~u, ~psr) to get

3D points ~g and ~h

7) Compute matched line 3D midpoint ~p3 = ~g

and 3D line direction ~d3 = (~h − ~g)/ || ~h − ~g ||
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Triangulating 2 points (~a,~b) → ~x

Given: Left/right projection matrices: Pl, Pr

Left/right ? parameter matrices: Kl, Kr

Left/right matched points: ~a = (ax, ay)′ and ~b = (bx, by)′

Compute:

~r = (Kl)
−1(ax, ay, 1)′ and ~s = (Kr)

−1(bx, by, 1)′

~a1 = r1 ∗ Pl(3, :) − Pl(1, :) and ~a2 = r2 ∗ Pl(3, :) − Pl(2, :)

~a3 = s1 ∗ Pr(3, :) − Pr(1, :) and ~a4 = s2 ∗ Pr(3, :) − Pr(2, :)

[USV ] = svd( ~a1

||~a1||
; ~a2

||~a2||
; ~a3

||~a3||
; ~a4

||~a4||
)

~x = V (1 : 3, 4)′/V (4, 4)
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Found Valid Line Pairs

All lines present and all but one ? still misplaced
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Block 1 2D Line ?
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Block 2 2D Line Labels
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Block 1 3D Line Relative Orientations I

Left 1 Left 2 True ?

1 6 1.57 1.52

1 24 0.00 0.20

1 42 0.00 0.14

1 55 1.57 1.50

1 65 1.57 1.55

1 70 1.57 1.48

1 83 1.57 1.43

6 24 1.57 1.45

6 42 1.57 1.50

6 55 0.00 0.07
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Block 1 3D Line Relative Orientations II

Left 1 Left 2 True Computed

6 65 0.78 0.84

6 70 1.57 1.44

6 83 1.57 1.52

24 42 0.00 0.06

24 55 1.57 1.49

24 65 1.57 .153

24 70 1.57 1.52

24 83 1.57 1.56

42 55 1.57 1.54

42 65 1.57 1.54
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Block 1 3D Line Relative Orientations III

Left 1 Left 2 True Computed

42 70 1.57 1.56

42 83 1.57 1.52

55 65 0.78 0.78

55 70 1.57 1.51

55 83 1.57 1.56

65 70 0.78 0.86

65 83 0.78 0.78

70 83 0.00 0.09

Clearly reasonably ? in 3D
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What We Have ?

• Computing 3D line by intersecting backprojected 2D lines

• Backprojection geometric calculations, including triangulation

• Backprojection is reasonably accurate, but not perfect
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