3D Lines from Left:Right 2D Line Pairs
Robert B. Fisher
School of Informatics
University of Edinburgh
© 2014 , School of Informatics, University of Edinburgh

3D Lines
Slide 3/15
3D plane passing thru 2D image line

2D image line $l=[a, b, c]^{\prime}$ is $a * c o l+b * r o w+c=0$
Then \qquad is $l^{\prime} \mathrm{P}$

Compute for left and right images

Computing 3D Line Positions I

 SECOND PT

Computing ? \square points on left and right line
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

3D Lines

Slide 7/15

Computing 3D Line Positions III

4) Predict left midpoint position in right image on paired line (so that exact triangulation works):
$\vec{p}=\mathrm{M} * \mathbf{F} \vec{c}_{l}, p \vec{m}_{r}=\left(p_{x} / p_{z}, p_{y} / p_{z}\right)^{\prime}$
5) Predict second left point on line in right image:

$$
\vec{q}=\mathrm{M} * \mathbf{F}\left(\vec{c}_{l}+10 * \vec{u}\right), \overrightarrow{p s_{r}}=\left(q_{x} / q_{z}, q_{y} / q_{z}\right)^{\prime}
$$

6) \qquad pairs $\left(\vec{c}_{l}, p \vec{m}_{r}\right)$ and $\left(\vec{c}_{l}+10 * \vec{u}, \overrightarrow{p s_{r}}\right)$ to get 3D points \vec{g} and \vec{h}
7) Compute matched line 3D midpoint $\vec{p}_{3}=\vec{g}$ and 3D line direction $\vec{d}_{3}=(\vec{h}-\vec{g}) /\|\vec{h}-\vec{g}\|$

Computing 3D Line Positions II

Given: paired lines (l, r) with midpoints $\vec{m}_{l}=\left(m_{l x}, m_{l y}\right)$ and \vec{m}_{r} and directions $\vec{a}_{l}=\left(a_{l x}, a_{l y}\right)$ and $\vec{a}_{r}=\left(a_{r x}, a_{r y}\right)$
Fundamental matrix \mathbf{F} that maps left to right image

1) Define ? left midpoint: $\vec{c}_{l}=\left(m_{l x}, m_{l y}, 1\right)^{\prime}$ and line direction $\vec{u}=\left(a_{l x}, a_{l y}, 0\right)^{\prime}$
2) Define projective right line: $\vec{v}=\left(a_{r y},-a_{r x},-\left(a_{r y},-a_{r x}\right) \cdot \vec{m}_{r}\right)$
3) Define skew matrix version of projective right line (for algebraic line intersection):

$$
\mathrm{M}=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right]
$$

©2014, School of Informatics, University of Edinburgh

3D Lines

Triangulating 2 points $(\vec{a}, \vec{b}) \rightarrow \vec{x}$
Given: Left/right projection matrices: $\mathbf{P}_{l}, \mathbf{P}_{r}$
Left/right \qquad parameter matrices: $\mathbf{K}_{l}, \mathbf{K}_{r}$
Left/right matched points: $\vec{a}=\left(a_{x}, a_{y}\right)^{\prime}$ and $\vec{b}=\left(b_{x}, b_{y}\right)^{\prime}$
Compute:
$\vec{r}=\left(\mathbf{K}_{l}\right)^{-1}\left(a_{x}, a_{y}, 1\right)^{\prime}$ and $\vec{s}=\left(\mathbf{K}_{r}\right)^{-1}\left(b_{x}, b_{y}, 1\right)^{\prime}$
$\vec{a}_{1}=r_{1} * \mathbf{P}_{l}(3,:)-\mathbf{P}_{l}(1,:)$ and $\vec{a}_{2}=r_{2} * \mathbf{P}_{l}(3,:)-\mathbf{P}_{l}(2,:)$
$\vec{a}_{3}=s_{1} * \mathbf{P}_{r}(3,:)-\mathbf{P}_{r}(1,:)$ and $\vec{a}_{4}=s_{2} * \mathbf{P}_{r}(3,:)-\mathbf{P}_{r}(2,:)$
$[U S V]=\operatorname{svd}\left(\frac{\vec{a}_{1}}{\left\|\vec{a}_{1}\right\|} ; \frac{\vec{a}_{2}}{\left\|\vec{a}_{2}\right\|} ; \frac{\vec{a}_{3}}{\left\|\vec{a}_{3}\right\|} ; \frac{\vec{a}_{4}}{\left\|\vec{a}_{4}\right\|}\right)$
$\vec{x}=V(1: 3,4)^{\prime} / V(4,4)$

Found Valid Line Pairs

All lines present and all but one \square still misplaced
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

3D Lines
Slide 11/15

Block 2 2D Line Labels

Block 1 2D Line?

© 2014, School of Informatics, University of Edinburgh

3D Lines
Slide 12/15
Block 1 3D Line Relative Orientations I

Left 1	Left 2	True	$?$
1	6	1.57	1.52
1	24	0.00	0.20
1	42	0.00	0.14
1	55	1.57	1.50
1	65	1.57	1.55
1	70	1.57	1.48
1	83	1.57	1.43
6	24	1.57	1.45
6	42	1.57	1.50
6	55	0.00	0.07

[^0]Block 1 3D Line Relative Orientations II

Left 1	Left 2	True	Computed
6	65	0.78	0.84
6	70	1.57	1.44
6	83	1.57	1.52
24	42	0.00	0.06
24	55	1.57	1.49
24	65	1.57	.153
24	70	1.57	1.52
24	83	1.57	1.56
42	55	1.57	1.54
42	65	1.57	1.54

© 2014, School of Informatics, University of Edinburgh

3D Lines
Slide 15/15

What We Have ?

- Computing 3D line by intersecting backprojected 2D lines
- Backprojection geometric calculations, including triangulation
- Backprojection is reasonably accurate, but not perfect

Block 1 3D Line Relative Orientations III

Left 1	Left 2	True	Computed
42	70	1.57	1.56
42	83	1.57	1.52
55	65	0.78	0.78
55	70	1.57	1.51
55	83	1.57	1.56
65	70	0.78	0.86
65	83	0.78	0.78
70	83	0.00	0.09

© 2014, School of Informatics, University of Edinburgh

[^0]: © 2014, School of Informatics, University of Edinburgh

