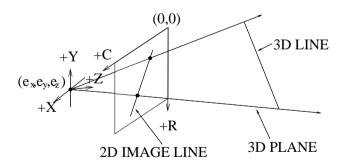
3D Lines from Left:Right 2D Line Pairs

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

3D Lines Slide 3/15

3D plane passing thru 2D image line



2D image line l = [a, b, c]' is a * col + b * row + c = 0

Then plane is l'P

Compute for left and right images

3D Line Calculation

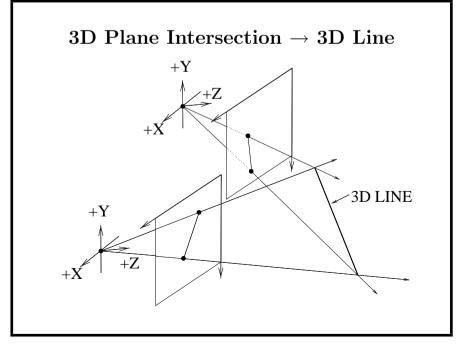
Aim: recovery of 3D line positions

Assume: line successfully matched in L & R images

- 1. Compute 3D plane that goes through image line and camera origin
- 2. Compute intersection of 3D planes from 2 cameras (which gives a line)

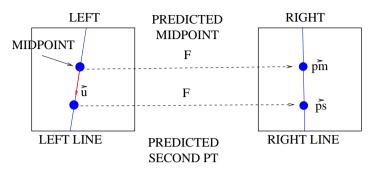
©2014, School of Informatics, University of Edinburgh

3D Lines Slide 4/15



3D Lines

Computing 3D Line Positions I



Computing paired points on left and right line

©2014, School of Informatics, University of Edinburgh

3D Lines Slide 7/15

Computing 3D Line Positions III

- 4) Predict left midpoint position in right image on paired line (so that exact triangulation works): $\vec{p} = \mathbf{M} * \mathbf{F} \vec{c}_l$, $p \vec{m}_r = (p_x/p_z, p_y/p_z)'$
- 5) Predict second left point on line in right image: $\vec{q} = \mathbf{M} * \mathbf{F}(\vec{c}_l + 10 * \vec{u}), \ \vec{ps}_r = (q_x/q_z, q_u/q_z)'$
- 6) Triangulate pairs $(\vec{c}_l, p\vec{m}_r)$ and $(\vec{c}_l + 10 * \vec{u}, p\vec{s}_r)$ to get 3D points \vec{q} and \vec{h}
- 7) Compute matched line 3D midpoint $\vec{p}_3 = \vec{g}$ and 3D line direction $\vec{d}_3 = (\vec{h} \vec{q}) / ||\vec{h} \vec{q}||$

Computing 3D Line Positions II

Given: paired lines (l,r) with midpoints $\vec{m}_l = (m_{lx}, m_{ly})$ and \vec{m}_r and directions $\vec{a}_l = (a_{lx}, a_{ly})$ and $\vec{a}_r = (a_{rx}, a_{ry})$ Fundamental matrix **F** that maps left to right image

- 1) Define homogeneous left midpoint: $\vec{c}_l = (m_{lx}, m_{ly}, 1)'$ and line direction $\vec{u} = (a_{lx}, a_{ly}, 0)'$
- 2) Define projective right line: $\vec{v} = (a_{ry}, -a_{rx}, -(a_{ry}, -a_{rx}) \cdot \vec{m}_r)$
- 3) Define skew matrix version of projective right line (for algebraic line intersection):

$$\mathbf{M} = \begin{bmatrix} 0 & -v_z & v_y \\ v_z & 0 & -v_x \\ -v_y & v_x & 0 \end{bmatrix}$$

©2014, School of Informatics, University of Edinburgh

3D Lines Slide 8/15

Triangulating 2 points $(\vec{a}, \vec{b}) \rightarrow \vec{x}$

Given: Left/right projection matrices: $\mathbf{P}_l,\,\mathbf{P}_r$

Left/right intrinsic parameter matrices: \mathbf{K}_l , \mathbf{K}_r

Left/right matched points: $\vec{a} = (a_x, a_y)'$ and $\vec{b} = (b_x, b_y)'$

Compute:

$$\vec{r} = (\mathbf{K}_l)^{-1}(a_x, a_y, 1)'$$
 and $\vec{s} = (\mathbf{K}_r)^{-1}(b_x, b_y, 1)'$

$$\vec{a}_1 = r_1 * \mathbf{P}_l(3,:) - \mathbf{P}_l(1,:)$$
 and $\vec{a}_2 = r_2 * \mathbf{P}_l(3,:) - \mathbf{P}_l(2,:)$
 $\vec{a}_3 = s_1 * \mathbf{P}_r(3,:) - \mathbf{P}_r(1,:)$ and $\vec{a}_4 = s_2 * \mathbf{P}_r(3,:) - \mathbf{P}_r(2,:)$

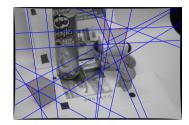
$$[USV] = svd(\frac{\vec{a}_1}{||\vec{a}_1||}; \frac{\vec{a}_2}{||\vec{a}_2||}; \frac{\vec{a}_3}{||\vec{a}_3||}; \frac{\vec{a}_4}{||\vec{a}_4||})$$

$$\vec{x} = V(1:3,4)'/V(4,4)$$

3D Lines

Found Valid Line Pairs

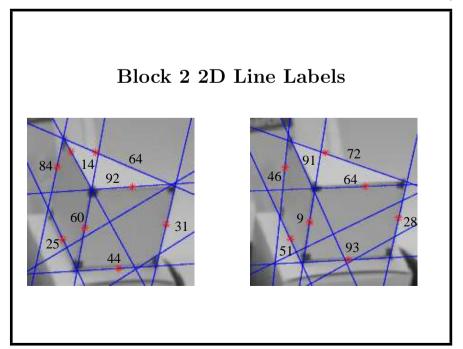


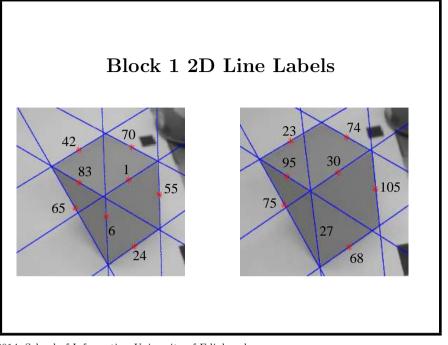


All lines present and all but one midpoint still misplaced

©2014, School of Informatics, University of Edinburgh

3D Lines Slide 11/15





©2014, School of Informatics, University of Edinburgh

3D Lines Slide 12/15

Block 1 3D Line Relative Orientations I

Left 1	Left 2	True	Computed
1	6	1.57	1.52
1	24	0.00	0.20
1	42	0.00	0.14
1	55	1.57	1.50
1	65	1.57	1.55
1	70	1.57	1.48
1	83	1.57	1.43
6	24	1.57	1.45
6	42	1.57	1.50
6	55	0.00	0.07

Block 1 3D Line Relative Orientations II

Left 1	Left 2	True	Computed
6	65	0.78	0.84
6	70	1.57	1.44
6	83	1.57	1.52
24	42	0.00	0.06
24	55	1.57	1.49
24	65	1.57	.153
24	70	1.57	1.52
24	83	1.57	1.56
42	55	1.57	1.54
42	65	1.57	1.54

©2014, School of Informatics, University of Edinburgh

3D Lines Slide 15/15

What We Have Learned

- Computing 3D line by intersecting backprojected 2D lines
- Backprojection geometric calculations, including triangulation
- Backprojection is reasonably accurate, but not perfect

Block 1 3D Line Relative Orientations III

Left 1	Left 2	True	Computed
42	70	1.57	1.56
42	83	1.57	1.52
55	65	0.78	0.78
55	70	1.57	1.51
55	83	1.57	1.56
65	70	0.78	0.86
65	83	0.78	0.78
70	83	0.00	0.09

Clearly reasonably accurate in 3D

©2014, School of Informatics, University of Edinburgh