3D Model Matching and Verification

Robert B. Fisher

School of Informatics
University of Edinburgh
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

3D Model Match
Slide 3/14

3D Wireframe Part Model

Match 3D data edges to 3D wireframe model edges

+Z	
M8	Model $=$
(0,0.0.66) $\mathrm{M1}^{(0)}$	$(0,0,0)-(0.66,0,0)$
	$(0,0,0)-(0,0.66,0)$
$(0.66,0,0) \longrightarrow$ -	$(0,0,0)-(0,0,0.66)$
$\text { M7 } \underset{(0,0,0)}{d} \text { M6 }$	$(0.66,0,0)-(0.66,0,0.66)$
	$(0,0.66,0)-(0,0.66,0.66)$
	(0,0,0.66)-(0.66,0,0.66)
	$(0,0,0.66)-(0,0.66,0.66)$
	$(0.66,0,0)-(0,0.66,0)$
	(0.66,0,0.66)-(0,0.66,0.66)

3D Pose Estimation

Given: matched line directions $\left\{\left(\vec{m}_{i}, \vec{d}_{i}\right)\right\}$ and points on corresponding lines (but not necessarily same point positions) $\left\{\left(\vec{a}_{i}, \vec{b}_{i}\right)\right\}$

Rotation (matrix R): estimate rotation from matched vectors except:

1) Use line directions instead of surface normals
2) Don't know which \pm direction for edge correspondence:
try both for each matched segment
3) If $\operatorname{det}(R)=-1$ then need to flip symmetry
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

3D Model Match

How: $\mathbf{L}=\sum_{i}\left(I-\vec{d}_{i} \overrightarrow{d_{i}^{\prime}}\right)^{\prime}\left(I-\vec{d}_{\vec{\prime}} \vec{d}_{i}^{\prime}\right)$ $\vec{n}=\sum_{i}\left(I-\vec{d}_{i} \vec{d}_{i}^{\prime}\right)^{\prime}\left(I-\vec{d}_{i} \overrightarrow{d_{i}^{\prime}}\right)\left(\mathrm{R} \vec{a}_{i}-\vec{b}_{i}\right)$ $\vec{t}=\mathrm{L}^{-1} \vec{n}$

3D Translation Estimation

Given N paired model and data segments, with point \vec{a}_{i} on model segment i and \vec{b}_{i} on data segment i
Direction \vec{d}_{i} of data segment i
Previously estimated rotation R

$\vec{\lambda}_{i}=\mathrm{R} \vec{a}_{i}+\vec{t}-\vec{b}-\vec{d}_{i}\left(\vec{d}_{i}^{\prime}\left(\mathrm{R} \vec{a}_{i}+\vec{t}-\vec{b}\right)\right)$ is translation error to minimize Goal: find \vec{t} that minimizes $\sum_{i} \vec{\lambda}_{i}^{\prime} \vec{\lambda}_{i}$
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

3D Model Match
Slide 8/14

3D Match Verification

Like 2D match verification except measure 3D quantities:

1. Rotated 3D model line similar orientation to estimated 3D scene line
2. Rotated \& translated model line endpoints near infinite 3D scene line
3. Rotated \& translated model midpoint near estimated 3D scene line midpoint

Matching Performance

Matching only 15 block line pairs with $\mathrm{L}=5$:
108924 interpretation tree successes
243680 verification attempts
111 solutions found (note rotation mirror)

Matching only 15 block line pairs with $\mathrm{L}=8$: 60096 interpretation tree successes
120191 verification attempts
2 solutions found (note rotation mirror)
Matching all 25 line pairs with $\mathrm{L}=5$:
1751792 interpretation tree successes
3732933 verification attempts
7 solutions found (good lines removed as duplicates)
© 2014, School of Informatics, University of Edinburgh

3D Model Match
Slide 11/14

3D line estimations not as good as for other block

5 Segment Matching Overlay

Calibration a bit off
© 2014, School of Informatics, University of Edinburgh

3D Model Match Slide 12/14

8 Segment Matching Overlay

[^0]
Discussion

- Hard to find reliable edges/lines, but Canny finds most reasonable edges and RANSAC can put them together for lines
- Given enough stereo correspondence constraints, can get reasonably correct correspondences
- Large features help stereo matching but require more preprocessing
- Stereo geometry easy but needs accurate calibration not always easy
- Binocular feature matching stereo gives good 3D at corresponding features, but nothing in between
- Interpretation tree complexity large if weak tree pruning constraints

What We Have Learned

- A full line-based stereo scene analysis and shape matching algorithm
- Simple modeling and matching algorithms
- 3D least-square position estimation algorithms

[^0]: Calibration a bit off

