Stereo Correspondence Constraints

Robert B. Fisher School of Informatics University of Edinburgh

Constraining Matches: Uniqueness and Smoothness

Smoothness: match features giving nearly same depth as neighbors

Uniqueness: a feature in one image can match from the other image:

- $0\,$ occlusion
- 1 normal case

2+ - transparencies, wires, vines, etc from coincidental alignments

Constraining Matches: Epipolar Geometry

Feature \vec{p}_l in left image lies on a ray \vec{r} thru space. \vec{r} projects to an epipolar line \vec{e} in the right image, along which the matching image feature must lie. +Y

Images are linked by the **Fundamental matrix F** Epipolar line is defined by: $\vec{e} = F\vec{p_l}$ Matched points satisfy $\vec{p'_r}\vec{e} = 0$

Reduces 2D search to 1D search

If images are 'rectified', then the epipolar line is an image row

Based on Orientation, Contrast, Disparity Limit, Epipolar constraints

Constrained Matches Block 2

Lines 92 & 64 did not match (contrast difference related to line positions)

What We Have Learned

- A set of correspondence constraints
- The epipolar constraint