Left:Right Line Pairing

Robert B. Fisher
School of Informatics
University of Edinburgh
© 2014, School of Informatics, University of Edinburgh

Left/right line pairs

Computing 3D Overlap I

Given: Paired lines (l, r) with midpoints $\left(\vec{m}_{l}, \vec{m}_{r}\right)$ and directions $\left(\vec{a}_{l}, \vec{a}_{r}\right)$
Given: Fundamental matrix \mathbf{F} that maps left to right image

Find corresponding edge points on 2 images that lie on the 2 lines:

RIGHT LINE

Finding Left:Right Line Pairs

For all (left line, right line) pairs
Reject if orientations not similar (vector dot <0.9)
Compute 3D overlap between 2 images (*)
Reject short overlaps
Recompute segment midpoints given overlap
Compute contrast at midpoint (*)
Reject pairs that do not have similar contrasts and suitable disparity range (*)
Remove pairs that are not unique
$\left(^{*}\right)$ - algorithm details below
© ${ }^{\text {(2014, School of Informatics, University of Edinburgh }}$

Left/right line pairs

Computing 3D Overlap II

1) Compute all points on left line that cross image: $L=\left\{\vec{p}_{\lambda}:\right.$ for $\lambda=-\infty: \infty$ inimage $\left.\left(\vec{p}_{\lambda}=\vec{m}_{l}+\lambda \vec{a}_{l}\right)\right\}$
2) Compute projective space representation of right image line:
If $\vec{a}_{r}=\left(a_{r x}, a_{r y}\right)$, compute
$\vec{v}=\left(a_{r y},-a_{r x},-\left(a_{r y},-a_{r x}\right) \cdot \vec{m}_{r}\right)$

$$
\mathrm{M}=\left[\begin{array}{ccc}
0 & -v_{z} & v_{y} \\
v_{z} & 0 & -v_{x} \\
-v_{y} & v_{x} & 0
\end{array}\right]
$$

©2014, School of Informatics, University of Edinburgh

Computing 3D Overlap III

3) Predict corresponding point on right line that satisfies epipolar constraint for each point on left line:
for $\vec{p}_{l} \in L$ compute $\vec{q}=\mathrm{M} * \mathrm{~F} *\left(\vec{p}_{l x}, \vec{p}_{l y}, 1\right)^{\prime}$.
Then predicted pixel is: $\vec{p}_{r_{l}}=\left(q_{x} / q_{z}, q_{y} / q_{z}\right)^{\prime}$
4) Corresponding points are valid if the \vec{p}_{l} and $\vec{p}_{r_{l}}$ are both near (eg. $\leq \pm 4$ pixels) to a detected image edge.
5) Keep longest subset of consecutive valid edge points Reject pairs if length is too small (eg. 55 points)
Recompute found segment midpoints
© 2014 , School of Informatics, University of Edinburgh

contrast $=$ average(red pixels) - average(blue pixels)

© 2014, School of Informatics, University of Edinburgh

Left/right line pairs
Slide 8/9

Allowable Disparity Range

Left midpoint predicts allowable disparity shift of right midpoint
© 2014 , School of Informatics, University of Edinburgh

What We Have Learned

- Using the Fundamental matrix to link points in 2 images
- Several new 3D geometry methods

