Finding Left:Right Line Pairs

For all (left line, right line) pairs Reject if orientations not similar (vector dot < 0.9) Compute 3D overlap between 2 images (*) Reject short overlaps Recompute segment midpoints given overlap Compute contrast at midpoint (*) Reject pairs that do not have similar contrasts and suitable disparity range (*) Remove pairs that are not unique

(*) - algorithm details below

©2014, School of Informatics, University of Edinburgh

Left/right line pairs

Slide 4/9

C2014, School of Informatics, University of Edinburgh

Left:Right Line Pairing

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

Slide 3/9

O2014, School of Informatics, University of Edinburgh

Slide 5/9

Computing 3D Overlap III

3) Predict corresponding point on right line that satisfies epipolar constraint for each point on left line: for $\vec{p_l} \in L$ compute $\vec{q} = M * F * (\vec{p_{lx}}, \vec{p_{ly}}, 1)'$. Then predicted pixel is: $\vec{p_{r_l}} = (q_x/q_z, q_y/q_z)'$

4) Corresponding points are valid if the $\vec{p_l}$ and $\vec{p_{r_l}}$ are both near (eg. $\leq \pm 4$ pixels) to a detected image edge.

5) Keep longest subset of consecutive valid edge points Reject pairs if length is too small (eg. 55 points) Recompute found segment midpoints

©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh

©2014, School of Informatics, University of Edinburgh

What We Have Learned

- Using the Fundamental matrix to link points in 2 images
- Several new 3D geometry methods

©2014, School of Informatics, University of Edinburgh