
SIFT theory Slide 1/17

SIFT: Scale Invariant Feature Transform

Robert B. Fisher

School of Informatics

University of Edinburgh

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 2/17

SIFT Features

SIFT: Scale Invariant Feature Transform

Image points + local description
(128 vector)

Sparse, reasonably distinguishable points

? to translation, rotation, scale,
some 3D

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 3/17

Example feature locations

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 4/17

Matching Applications

? features for:

• Object recognition

• Model-data alignment

• Image registration

• Stereo matching

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 5/17

Four Step Algorithm

1. Detect extremal points in scale space

2. Accurate ? subpixel localization

3. Feature orientation estimation

4. Keypoint descriptor calculation

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 6/17

Scale Space Smoothing

Gaussian ? via convolution

L(x, y, σ) = G(x, y, σ) ◦ I(x, y)

G(x, y, σ) =
1

2πσ2
e−(x2+y2)/2σ2

Difference of Gaussians:

D(x, y, n) = L(x, y, 2
n

S) − L(x, y, 2
n−1

S)

where n = 1 . . . N
S = 3 best

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 7/17

?

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 8/17

Point Extrema

Pick ? points larger/smaller than

their 26 neighbours:

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 9/17

Subpixel Extrema ?

Hessian:

H3 =

















∂2D/∂x2 ∂2D/∂x∂y ∂2D/∂x∂σ

∂2D/∂x∂y ∂2D/∂y2 ∂2D/∂y∂σ

∂2D/∂x∂σ ∂2D/∂y∂σ ∂2D/∂σ2

















c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 10/17

Optimal position is (x, y, σ) + x̂, where

x̂ = −H−1
3

















∂D/∂x

∂D/∂y

∂D/∂σ

















c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 11/17

Low ? Extrema Pruning

Predict DoG value at subpixel extrema:

p =| D(x, y, σ) +
1

2

[

∂D

∂x
,
∂D

∂y
,
∂D

∂σ

]

x̂ |

Reject if p < 0.03

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 12/17

? Point Extrema Pruning

Let

H2 =









∂2D/∂x2 ∂2D/∂x∂y

∂2D/∂x∂y ∂2D/∂y2









Reject if det(H2) < 0 or

trace(H2)
2

det(H2)
> τ (e.g.12)

Rejects points that can slide along an edge

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 13/17

Getting Rotation Invariance

? orientation θ̂ estimation

Use keypoint scale σ

Let ~v = ∇L(r, s, σ) for (r, s) ∈ neigh(x, y)
Compute strength m =| ~v | and

θ = direction(~v)
Compute histogram of θ values weighted by m

Pick top peak direction θ̂ in histogram for
feature orientation

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 14/17

Local ? Computation

Use 16 × 16 neighbourhood about feature point
subdivided into 16 4 × 4 pixel blocks
Create an 8 orientation histogram for each block

→ 128 vector
Compute gradient orientation at each point

Rotate all orientations by θ̂ (for invariance)
Add to histogram weighted (details in paper)

Normalize 128 vector to unit length for
illumination invariance

Descriptor similarity using Euclidean distance

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 15/17

Descriptor Example

4 histograms from 8 × 8 neighbourhood about
? :

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 16/17

SIFT Summary

• Sparse, distinctive ? features

• Translation independent by using local histogram

• Rotation independent by orientation adjustment

• Scale independent by extremal scale estimation

• Illumination independent by descriptor normalisation

• Widely used

• Real-time implementation possible

c©2014, School of Informatics, University of Edinburgh

SIFT theory Slide 17/17

SIFT References

www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

en.wikipedia.org/wiki/Scale-invariant_feature_transform

c©2014, School of Informatics, University of Edinburgh

