SIFT: Scale Invariant Feature Transform
Robert B. Fisher
School of Informatics University of Edinburgh
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

SIFT theory
Slide 3/17

SIFT Features

SIFT: Scale Invariant Feature Transform

Image points + local description
(128 vector)
Sparse, reasonably distinguishable points
 some 3D
© 2014, School of Informatics, University of Edinburgh

SIFT theory
Slide 4/17

Matching Applications

\square features for:

- Object recognition
- Model-data alignment
- Image registration
- Stereo matching

[^0]
Four Step Algorithm

1. Detect extremal points in scale space
2. Accurate ? \qquad subpixel localization
3. Feature orientation estimation
4. Keypoint descriptor calculation
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

SIFT theory
Slide $7 / 17$

[^1]
Scale Space Smoothing

Gaussian ? \square via convolution

$$
\begin{aligned}
L(x, y, \sigma) & =G(x, y, \sigma) \circ I(x, y) \\
G(x, y, \sigma) & =\frac{1}{2 \pi \sigma^{2}} e^{-\left(x^{2}+y^{2}\right) / 2 \sigma^{2}}
\end{aligned}
$$

Difference of Gaussians:

$$
D(x, y, n)=L\left(x, y, 2^{\frac{n}{S}}\right)-L\left(x, y, 2^{\frac{n-1}{S}}\right)
$$

where $n=1 \ldots N$
$S=3$ best
© 2014 , School of Informatics, University of Edinburgh

SIFT theory

Point Extrema

Pick ? \qquad points larger/smaller than their 26 neighbours:

© 2014, School of Informatics, University of Edinburgh

Subpixel Extrema

\square
Hessian:

$$
\mathrm{H}_{3}=\left[\begin{array}{ccc}
\partial^{2} D / \partial x^{2} & \partial^{2} D / \partial x \partial y & \partial^{2} D / \partial x \partial \sigma \\
\partial^{2} D / \partial x \partial y & \partial^{2} D / \partial y^{2} & \partial^{2} D / \partial y \partial \sigma \\
\partial^{2} D / \partial x \partial \sigma & \partial^{2} D / \partial y \partial \sigma & \partial^{2} D / \partial \sigma^{2}
\end{array}\right]
$$

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

SIFT theory
Slide 11/17

Low ? \square Extrema Pruning

Predict DoG value at subpixel extrema:

$$
p=\left|D(x, y, \sigma)+\frac{1}{2}\left[\frac{\partial D}{\partial x}, \frac{\partial D}{\partial y}, \frac{\partial D}{\partial \sigma}\right] \hat{x}\right|
$$

Reject if $p<0.03$

Optimal position is $(x, y, \sigma)+\hat{x}$, where

$$
\hat{x}=-\mathrm{H}_{3}^{-1}\left[\begin{array}{l}
\partial D / \partial x \\
\partial D / \partial y \\
\partial D / \partial \sigma
\end{array}\right]
$$

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

SIFT theory

Point Extrema Pruning
Let

$$
\mathrm{H}_{2}=\left[\begin{array}{cc}
\partial^{2} D / \partial x^{2} & \partial^{2} D / \partial x \partial y \\
\partial^{2} D / \partial x \partial y & \partial^{2} D / \partial y^{2}
\end{array}\right]
$$

Reject if $\operatorname{det}\left(H_{2}\right)<0$ or

$$
\frac{\operatorname{trace}\left(\mathrm{H}_{2}\right)^{2}}{\operatorname{det}\left(\mathrm{H}_{2}\right)}>\tau(e . g .12)
$$

Rejects points that can slide along an edge

Getting Rotation Invariance

\square orientation $\hat{\theta}$ estimation

Use keypoint scale σ
Let $\vec{v}=\nabla L(r, s, \sigma)$ for $(r, s) \in \operatorname{neigh}(x, y)$
Compute strength $m=|\vec{v}|$ and

$$
\theta=\operatorname{direction}(\vec{v})
$$

Compute histogram of θ values weighted by m
Pick top peak direction $\hat{\theta}$ in histogram for feature orientation
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Local ? Computation

Use 16×16 neighbourhood about feature point subdivided into 164×4 pixel blocks
Create an 8 orientation histogram for each block $\rightarrow 128$ vector
Compute gradient orientation at each point
Rotate all orientations by $\hat{\theta}$ (for invariance)
Add to histogram weighted (details in paper)
Normalize 128 vector to unit length for illumination invariance

Descriptor similarity using Euclidean distance
© 2014, School of Informatics, University of Edinburgh

SIFT theory

SIFT Summary

- Sparse, distinctive ? features
- Translation independent by using local histogram
- Rotation independent by orientation adjustment
- Scale independent by extremal scale estimation
- Illumination independent by descriptor normalisation
- Widely used
- Real-time implementation possible

SIFT References

www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
en.wikipedia.org/wiki/Scale-invariant_feature_transform
© 2014, School of Informatics, University of Edinburgh

[^0]: © 2014, School of Informatics, University of Edinburgh

[^1]: © 2014, School of Informatics, University of Edinburgh

