Stereo Geometry

Robert B. Fisher
School of Informatics
University of Edinburgh

© 2014 , School of Informatics, University of Edinburgh

Image Projection Geometry

Pinhole camera model

Projection matrix P_{i} projects 3 D point (in homogeneous coordinates) $\vec{v}=(x, y, z, 1)^{\prime}$ onto image point $\vec{u}_{i}=\left(c_{i}, r_{i}, 1\right)^{\prime}$ $i=L, R$.
$\lambda_{i} \vec{u}_{i}=\mathrm{P}_{i} \vec{v}$ so if $(\alpha, \beta, \gamma)=\mathrm{P}_{i} \vec{v}$, then $\left(c_{i}, r_{i}\right)=(\alpha / \gamma, \beta / \gamma)$

© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Projection Matrix

Projection matrix P_{i} decomposes as

$$
\mathrm{P}_{i}=\mathrm{K}_{i} \mathrm{R}_{i}\left[I \mid-\vec{q}_{i}\right]
$$

R_{i} : rotation matrix of camera (3 degrees of freedom) in world coordinates

$$
\begin{gathered}
\vec{q}_{i}=\left(q_{x i}, q_{y i}, q_{z i}\right)^{\prime}: \text { camera centre position } \\
\text { in world coordinates (3 DoF })
\end{gathered}
$$

K_{i} : camera intrinsic calibration matrix

Camera Intrinsic Matrix

$$
\mathrm{K}_{i}=\left[\begin{array}{ccc}
f_{i} m_{c i} & s_{i} & c_{0 i} \\
0 & f_{i} m_{r i} & r_{0 i} \\
0 & 0 & 1
\end{array}\right]
$$

f_{i} : camera focal length in mm $m_{r i}, m_{c i}$: row, col pixels $/ \mathrm{mm}$ conversion on image plane
$r_{0 i}, c_{0 i}$: where optical axis hits image plane s_{i} : skew factor

12 parameters (but 11 Degrees of Freedom) per camera

Epipolar Geometry

Points \vec{p}_{l} in left image and \vec{p}_{r} in right image are linked by common 3D point \vec{p} in scene.

Images are linked by the Fundamental matrix \mathbf{F} Matched points satisfy $\vec{p}_{r}^{\prime} \mathrm{F} \vec{p}_{l}=0$
(Points are in homogeneous coordinates, \mathbf{F} is 3×3)

Line Intersection

If image line is $a \times c o l+b \times$ row $=d$, then homogeneous representation of line is
$\vec{v}_{1}=(a, b, d)^{\prime}$

Given second line \vec{v}_{2}, intersection (in
homogeneous coordinates) with first line is:

© 2014 , School of Informatics, University of Edinburgh

Estimating the Fundamental matrix

Assume $N \geq 8$ matched points $\vec{u}_{i}: \vec{v}_{i}, i=1 \ldots N$ in 2 images Each should satisfy $\vec{u}_{i}^{\prime} \mathrm{F} \vec{v}_{i}=0$
Noisy, so use a least squares algorithm. Expanding $\vec{u}_{i}^{\prime} \mathrm{F} \vec{v}_{i}$ gives an equation in N variables:

$$
\left[u_{i x} v_{i x}, u_{i x} v_{i y}, u_{i x}, u_{i y} v_{i x}, u_{i y} v_{i y}, u_{i y}, v_{i x}, v_{i y}, 1\right] \vec{f}=A_{i} \vec{f}=0
$$

when we unfold

$$
\mathrm{F}=\left[\begin{array}{lll}
f_{11} & f_{12} & f_{13} \\
f_{21} & f_{22} & f_{23} \\
f_{31} & f_{32} & f_{33}
\end{array}\right]
$$

into $\vec{f}=\left(f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33}\right)^{\prime}$.

Then we stack the A_{i} up as:

$$
\mathrm{A} \vec{f}=\left[\begin{array}{c}
A_{1} \\
\cdots \\
A_{N}
\end{array}\right] \vec{f}=0
$$

Solve for $\vec{f}: \operatorname{svd}(A)=U D V^{\prime}, \vec{f}=V(:, 9)$ (plus some numerical adjustment to $\operatorname{get} \operatorname{det}(\mathbf{F})=0$)

Not numerically best algorithm, but simple to understand See Hartley and Zisserman Chapter 10

Epipoles

Line connecting the 2 camera centres intersects the image planes

Estimate epipoles \vec{e}_{l}, \vec{e}_{r}, by exploiting $\vec{e}_{r}{ }^{\prime} F=F \vec{e}_{l}=\overrightarrow{0}$

Solve 3 equations in 2 variables for unknown epipoles

$$
\left.\begin{array}{l}
\quad\left(e_{r x}, e_{r y}, 1\right) F=F\left(e_{l x}, e_{l y}, 1\right)^{\prime}=\overrightarrow{0} \\
\mathrm{eL}=\operatorname{null}(\mathrm{F}) ; \mathrm{eL}=\mathrm{eL} / \mathrm{eL}(3) \mathrm{eR}=\mathrm{null}(\mathrm{~F}
\end{array}\right) ; \mathrm{eR}=\mathrm{eR} / \mathrm{eR}(3) .
$$

Estimating Projection Matrices

Given left/right intrinsic parameter matrices $\mathrm{K}_{L}, \mathrm{~K}_{R}$ and Fundamental matrix F

Compute Essential Matrix: $\mathrm{E}=\mathrm{K}_{R}^{\prime} \mathrm{FK}_{L}$

Define matrix

$$
\mathrm{W}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Decompose E: $\operatorname{svd}(\mathrm{E})=\left[\begin{array}{lll}\mathrm{U} & \mathrm{S} & \mathrm{V}\end{array}\right]$

$$
\mathrm{P}_{R}=\left[\mathrm{UWV}^{\prime} \mid \mathrm{U}(:, 3)\right]
$$

Note: this is 1 of 4 similar solutions for P_{R}; the correct one can be
chosen by testing. Also, a numerical tweak is needed before SVD.

$$
\mathrm{P}_{L}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

$\mathrm{P}_{L}, \mathrm{P}_{R}$ are determined up to an arbitrary projective transformation H , ie. $\mathrm{P}_{L} \mathrm{H}, \mathrm{P}_{R} \mathrm{H}$ generate the same projections.

What We Have Learned

- Pinhole camera model
- Projection and Intrinsic parameter matrices
- Epipolar geometry and Fundamental matrix
- Estimating the Epipoles, Fundamental and Projection matrices

