Slide 1/13

Stereo Geometry

Stereo Geometry

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

Stereo Geometry Slide 3/13

Projection Matrix

Projection matrix P_i decomposes as

$$P_i = K_i R_i [I| - \vec{q}_i]$$

 R_i : rotation matrix of camera (3 degrees of freedom) in world coordinates

 $\vec{q}_i = (q_{xi}, q_{yi}, q_{zi})'$: camera centre position in world coordinates (3 DoF)

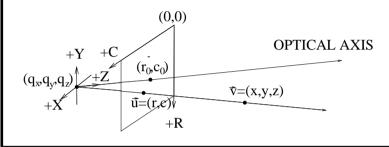
 K_i : camera intrinsic calibration matrix

Image Projection Geometry

Pinhole camera model

Projection matrix P_i projects 3D point (in homogeneous coordinates) $\vec{v} = (x, y, z, 1)'$ onto image point $\vec{u}_i = (c_i, r_i, 1)'$ i = L, R.

 $\lambda_i \vec{u}_i = P_i \vec{v}$ so if $(\alpha, \beta, \gamma) = P_i \vec{v}$, then $(c_i, r_i) = (\alpha/\gamma, \beta/\gamma)$



©2014, School of Informatics, University of Edinburgh

Stereo Geometry Slide 4/13

Camera Intrinsic Matrix

$$\mathbf{K}_{i} = \begin{bmatrix} f_{i}m_{ci} & s_{i} & c_{0i} \\ 0 & f_{i}m_{ri} & r_{0i} \\ 0 & 0 & 1 \end{bmatrix}$$

 f_i : camera focal length in mm

 m_{ri}, m_{ci} : row, col pixels/mm conversion on image plane

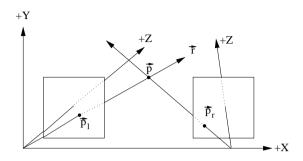
 r_{0i}, c_{0i} : where optical axis hits image plane

 s_i : skew factor

12 parameters (but 11 Degrees of Freedom) per camera

Epipolar Geometry

Points $\vec{p_l}$ in left image and $\vec{p_r}$ in right image are linked by common 3D point \vec{p} in scene.



Images are linked by the **Fundamental matrix F** Matched points satisfy $\vec{p}_r' \mathbf{F} \vec{p}_l = 0$ (Points are in homogeneous coordinates, **F** is 3×3)

©2014, School of Informatics, University of Edinburgh

Stereo Geometry Slide 7/13

$$\begin{bmatrix} 0 & -d & b \\ d & 0 & -a \\ -b & a & 0 \end{bmatrix} \vec{v}_2 = [\vec{v}_1]_{\times} \vec{v}_2 = \vec{v}_1 \times \vec{v}_2$$

Line Intersection

If image line is $a \times col + b \times row = d$, then homogeneous representation of line is $\vec{v}_1 = (a, b, d)'$

Given second line \vec{v}_2 , intersection (in homogeneous coordinates) with first line is:

©2014, School of Informatics, University of Edinburgh

Stereo Geometry Slide 8/13

Estimating the Fundamental matrix

Assume $N \geq 8$ matched points $\vec{u}_i : \vec{v}_i, i = 1 \dots N$ in 2 images Each should satisfy $\vec{u}_i' \mathbf{F} \vec{v}_i = 0$

Noisy, so use a least squares algorithm. Expanding $\vec{u}_i' \mathbf{F} \vec{v}_i$ gives an equation in N variables:

$$[u_{ix}v_{ix}, u_{ix}v_{iy}, u_{ix}, u_{iy}v_{ix}, u_{iy}v_{iy}, u_{iy}, v_{ix}, v_{iy}, 1]\vec{f} = A_i\vec{f} = 0$$

when we unfold

$$\mathbf{F} = \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix}$$

into $\vec{f} = (f_{11}, f_{12}, f_{13}, f_{21}, f_{22}, f_{23}, f_{31}, f_{32}, f_{33})'$.

Stereo Geometry

Then we stack the A_i up as:

$$\mathbf{A}\vec{f} = \left[egin{array}{c} A_1 \\ \dots \\ A_N \end{array}
ight] \vec{f} = 0$$

Solve for \vec{f} : svd(A) = UDV', $\vec{f} = V(:,9)$ (plus some numerical adjustment to get $det(\mathbf{F})=0$)

Not numerically best algorithm, but simple to understand See Hartley and Zisserman Chapter 10

©2014, School of Informatics, University of Edinburgh

Stereo Geometry Slide 11/13

Estimating Projection Matrices

Given left/right intrinsic parameter matrices K_L , K_R and Fundamental matrix F

Compute Essential Matrix: $E = K'_{R}FK_{L}$

Define matrix

$$\mathbf{W} = \left[\begin{array}{rrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

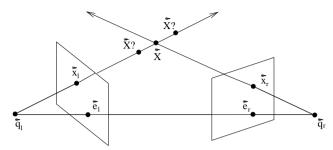
Decompose $E : svd(E) = [U \ S \ V]$

 $P_R = [UWV' \mid U(:,3)]$

Note: this is 1 of 4 similar solutions for P_R ; the correct one can be

Epipoles

Line connecting the 2 camera centres intersects the image planes



Estimate epipoles \vec{e}_l , \vec{e}_r , by exploiting \vec{e}_r $F = F \vec{e}_l = \vec{0}$

Solve 3 equations in 2 variables for unknown epipoles $(e_{rx}, e_{ry}, 1)F = F(e_{lx}, e_{ly}, 1)' = \vec{0}$ eL=null(F); eL = eL/eL(3) eR=null(F'); eR = eR/eR(3)

©2014, School of Informatics, University of Edinburgh

Stereo Geometry Slide 12/13

chosen by testing. Also, a numerical tweak is needed before SVD.

$$\mathbf{P}_L = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}
ight]$$

 P_L, P_R are determined up to an arbitrary projective transformation H, ie. P_LH , P_RH generate the same projections.

Stereo Geometry Slide 13/13

What We Have Learned

- Pinhole camera model
- Projection and Intrinsic parameter matrices
- Epipolar geometry and Fundamental matrix
- Estimating the Epipoles, Fundamental and Projection matrices

©2014, School of Informatics, University of Edinburgh