Moving Object Detection with an Adaptive Background Model

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

Adaptive Change Detection

Slide 3/11

CHANGE DETECTION ISSUES

If we have a single background, then what about:

- Gradual illumination changes: sun movement
- Rapid illumination changes: lights on
- Background object shadow movement
- Camera jitter
- Halting objects: cars parked

Problem: model out of date

Solution: adapt background model over time

ADAPTIVE CHANGE DETECTION

Naive method

|current - background| > thresholddoesn't work well in uncontrolled situations

Fix by using:

- Color spaces & shadows
- Kernel density modelling
- Kernel parameter estimation

©2014, School of Informatics, University of Edinburgh

Adaptive Change Detection

Slide 4/11

CHROMATICITY COORDINATES

Image: (red,green,blue)=(R,G,B)

Shadows have same color, but are darker

Use chromaticity coordinates

$$(r,g,b) = \left(\frac{R}{R+G+B}, \frac{G}{R+G+B}, \frac{B}{R+G+B}\right)$$

Normalizes for lightness

$$r + g + b = 1$$
 so just use (r,g)

SIMILAR FOREGROUND COLORS

In chromaticity space, grev=white=black

Want to detect lightness changes

Lightness: s = (R + G + B)/3

Model pixel at time t as (r_t, g_t, s_t) Model background as (r_B, g_B, s_B)

If $\frac{s_t}{s_B} < \alpha$ or $\frac{s_t}{s_B} > \beta$ or chromaticity different then foreground else background

(Eg. $\alpha = 0.8, \beta = 1.2$)

©2014, School of Informatics, University of Edinburgh

Adaptive Change Detection

Slide 7/11

ADDING COLOR INTO MODEL

Chromaticity coordinates have 2 values: (r, q)

Use
$$\vec{x} = (r, q)$$

$$Pr(\vec{x}|\text{BACKGROUND}) = \frac{1}{N} \sum_{i=1}^{N} \prod_{j \in \{r,g\}} K_{\sigma}(x_j - b_{ij})$$

CHROMATICITY MODELLING

Using average color has problems with scene and camera jitter: no single pixel value

Instead use non-parametric distribution:

$$Pr(x| \text{ BACKGROUND}) = \frac{1}{N} \sum_{i=1}^{N} K_{\sigma}(x - b_i)$$

 b_i : previous samples from background Gauss kernel function $K_{\sigma}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{x^2}{2\sigma^2}}$

©2014, School of Informatics, University of Edinburgh

Adaptive Change Detection

Slide 8/11

DETECTING CHANGES I

Maintain background history $H = {\vec{v_i}} = {(r_i, g_i, s_i)}$ for each pixel H is the last N pixel values classified as background for this pixel A different set H for each pixel

At time t for a new pixel value $\vec{x}_t = (r_t, g_t, s_t)$, for each $\vec{b}_i = (r_i, g_i, s_i)$ in the background history H for this pixel

If $\alpha \leq \frac{s_t}{s_i} \leq \beta$ record sample in M ($\alpha = 0.8, \beta = 1.2$)

If
$$|M| = 0$$

then FOREGROUND

else estimate probability of $\vec{x}_t = (r_t, g_t, s_t)$ being background

DETECTING CHANGES II

Want to estimate $Pr(BACKGROUND|\vec{x_t})$

$$Pr(\vec{x}_t | \text{BACKGROUND}) = \frac{1}{\mid M \mid} \sum_{i \in M} \prod_{j \in \{r, g\}} K_{\sigma}(x_j - b_{ij})$$

$$Pr(BG|\vec{x}_t) = \frac{Pr(\vec{x}_t|BG) \times Pr(BG)}{Pr(\vec{x}_t|BG) \times Pr(BG) + Pr(\vec{x}_t|FG) \times (1 - Pr(BG))}$$

Pr(BACKGROUND) = 0.99 (estimated a priori likelihood) $Pr(\vec{x}_t|FOREGROUND) = 0.001$ (estimated - all values likely)

If $Pr(\text{BACKGROUND}|\vec{x}_t) < \tau$ then FOREGROUND $(\tau = 0.05)$

©2014, School of Informatics, University of Edinburgh

Adaptive Change Detection

Slide 11/11

What We Have Learned

- 1. Non-parametric background model
- 2. Chromaticity coordinates

Adaptive Change Detection Sho

UPDATING THE MODEL?

At each pixel i, keep N most recent (r_t, g_t, s_t) background pixel values

Allows slow drift in illumination Set allows multiple backgrounds due to jitter

(Discard non-background pixels)

N = 50 in examples

©2014, School of Informatics, University of Edinburgh