Moving Object Detection with an

Adaptive Background Model

Robert B. Fisher
School of Informatics
University of Edinburgh
© 2014 , School of Informatics, University of Edinburgh

Adaptive Change Detection
Slide 3/11

CHANGE DETECTION ISSUES

If we have a single background, then what about:

- Gradual illumination changes: sun movement
- Rapid illumination changes: lights on
- Background object shadow movement
- Camera jitter
- Halting objects: cars parked

Problem: model out of date
Solution: adapt background model over time

ADAPTIVE CHANGE DETECTION

Naive method
\mid current - background $\mid>$ threshold
doesn't work well in uncontrolled situations

Fix by using:

- Color spaces \& shadows
- Kernel density modelling
- Kernel parameter estimation
© 2014, School of Informatics, University of Edinburgh

Adaptive Change Detection

CHROMATICITY COORDINATES

Image: (red,green,blue) $=(\mathrm{R}, \mathrm{G}, \mathrm{B})$
Shadows have same color, but are darker
Use chromaticity coordinates
$(r, g, b)=\left(\frac{R}{R+G+B}, \frac{G}{R+G+B}, \frac{B}{R+G+B}\right)$
Normalizes for lightness
$r+g+b=1$ so just use (r,g)

SIMILAR FOREGROUND COLORS

In chromaticity space, grey=white=black
Want to detect lightness changes
Lightness: $s=(R+G+B) / 3$
Model pixel at time t as $\left(r_{t}, g_{t}, s_{t}\right)$
Model background as (r_{B}, g_{B}, s_{B})
If $\frac{s_{t}}{s_{B}}<\alpha$ or $\frac{s_{t}}{s_{B}}>\beta$ or chromaticity different then foreground else background
(Eg. $\alpha=0.8, \beta=1.2$)
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Adaptive Change Detection
Slide 7/11

ADDING COLOR INTO MODEL

Chromaticity coordinates have 2 values: (r, g)

Use $\vec{x}=(r, g)$
$\operatorname{Pr}(\vec{x} \mid \mathrm{BACKGROUND})=\frac{1}{N} \sum_{i=1}^{N} \prod_{j \in\{r, g\}} K_{\sigma}\left(x_{j}-b_{i j}\right)$

CHROMATICITY MODELLING

Using average color has problems with scene and camera jitter: no single pixel value

Instead use non-parametric distribution:

$$
\operatorname{Pr}(x \mid \mathrm{BACKGROUND})=\frac{1}{N} \sum_{i=1}^{N} K_{\sigma}\left(x-b_{i}\right)
$$

b_{i} : previous samples from background
Gauss kernel function $K_{\sigma}(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}}$
© $\mathbf{C} 2014$, School of Informatics, University of Edinburgh

Adaptive Change Detection

DETECTING CHANGES I

Maintain background history $\mathrm{H}=\left\{\vec{v}_{i}\right\}=\left\{\left(r_{i}, g_{i}, s_{i}\right)\right\}$ for each pixel H is the last N pixel values classified as background for this pixel A different set H for each pixel

At time t for a new pixel value $\vec{x}_{t}=\left(r_{t}, g_{t}, s_{t}\right)$, for each
$\vec{b}_{i}=\left(r_{i}, g_{i}, s_{i}\right)$ in the background history H for this pixel

If $\alpha \leq \frac{s_{t}}{s_{i}} \leq \beta$ record sample in $\mathrm{M}(\alpha=0.8, \beta=1.2)$
If $|M|=0$
then FOREGROUND
else estimate probability of $\vec{x}_{t}=\left(r_{t}, g_{t}, s_{t}\right)$ being background

DETECTING CHANGES II

Want to estimate $\operatorname{Pr}\left(\mathrm{BACKGROUND} \mid \vec{x}_{t}\right)$

$$
\operatorname{Pr}\left(\vec{x}_{t} \mid \mathrm{BACKGROUND}\right)=\frac{1}{|M|} \sum_{i \in M} \prod_{j \in\{r, g\}} K_{\sigma}\left(x_{j}-b_{i j}\right)
$$

$\operatorname{Pr}\left(\mathrm{BG} \mid \vec{x}_{t}\right)=\frac{\operatorname{Pr}\left(\vec{x}_{t} \mid \mathrm{BG}\right) \times \operatorname{Pr}(\mathrm{BG})}{\operatorname{Pr}\left(\vec{x}_{t} \mid \mathrm{BG}\right) \times \operatorname{Pr}(\mathrm{BG})+\operatorname{Pr}\left(\vec{x}_{t} \mid \mathrm{FG}\right) \times(1-\operatorname{Pr}(\mathrm{BG}))}$
$\operatorname{Pr}($ BACKGROUND $)=0.99($ estimated a priori likelihood $)$ $\operatorname{Pr}\left(\vec{x}_{t} \mid\right.$ FOREGROUND $)=0.001($ estimated - all values likely $)$

If $\operatorname{Pr}\left(\mathrm{BACKGROUND} \mid \vec{x}_{t}\right)<\tau$ then FOREGROUND $(\tau=0.05)$
© 2014, School of Informatics, University of Edinburgh

Adaptive Change Detection
Slide 11/11

What We Have Learned

1. Non-parametric background model
2. Chromaticity coordinates

UPDATING THE MODEL?

At each pixel i, keep N most recent $\left(r_{t}, g_{t}, s_{t}\right)$
background pixel values
Allows slow drift in illumination
Set allows multiple backgrounds due to jitter
(Discard non-background pixels)
$N=50$ in examples
© 2014, School of Informatics, University of Edinburgh

