Introduction to Kalman Filter

Robert B. Fisher School of Informatics University of Edinburgh

©2014, School of Informatics, University of Edinburgh

Kalman Filter Introduction

Slide 3/8

KALMAN FILTER INTRODUCTION

"A set of mathematical equations that provides an efficient computational (recursive) solution to the least-squares method." [Welch & Bishop]

Most commonly used position estimator used in tracking problems

Model based Tracking: Kalman filter

Why? Model can be used to

- 1. Predict likely position, thus reducing search
- 2. Integrate noisy observations, thus giving improved estimates

What's in model (here called **state**): position, velocity, shape, ...

c2014, School of Informatics, University of Edinburgh

Kalman Filter Introduction

Slide 4/8

KALMAN FILTER THEORY

Assumes:

- 1. A changing (with t) state vector: \vec{x}_t and its associated covariance \mathbf{P}_t and state transition matrix
- 2. A **process model** that updates the state over time:

$$\vec{x}_t = \mathbf{A}\vec{x}_{t-1} + \mathbf{B}\vec{u}_{t-1} + \vec{w}_{t-1}$$

where:

- A updates the state
- $\mathbf{B}\vec{u}_{t-1}$ some external action on the state at t-1
- \vec{w}_{t-1} process noise: multi-variate normal distribution, mean $\vec{0}$ and covariance \mathbf{Q}

3. An **observation model** that relates measured data \vec{z}_t to the current state:

$$\vec{z}_t = \mathbf{H}\vec{x}_t + \vec{v}_t$$

where:

- H extracts observations
- \vec{v}_t observation noise: multi-variate normal distribution, mean $\vec{0}$ and covariance \mathbf{R}

©2014, School of Informatics, University of Edinburgh

Kalman Filter Introduction

Slide 7/8

Slide 5/8

4. Estimate new state given prediction and correction from observations:

$$\vec{x}_t = \vec{y}_t + \mathbf{K}_t(\vec{z}_t - \mathbf{H}\vec{y}_t)$$

5. Estimate error of new state:

$$\mathbf{P}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}) \mathbf{E}_t$$

KALMAN FILTER ALGORITHM

- 1. Predict likely state given what we already know: $\vec{y}_t = \mathbf{A}\vec{x}_{t-1} + \mathbf{B}\vec{u}_{t-1}$
- 2. Estimate covariance (error) of predicted state: $\mathbf{E}_t = \mathbf{A}\mathbf{P}_{t-1}\mathbf{A}' + \mathbf{Q}$
- 3. Estimate correction gain between actual and predicted observations:

$$\mathbf{K}_t = \mathbf{E}_t \mathbf{H}' (\mathbf{H} \mathbf{E}_t \mathbf{H}' + \mathbf{R})^{-1}$$

©2014, School of Informatics, University of Edinburgh

Kalman Filter Introduction

Slide 8/8

What We Have Learned

- 1. What and why of Kalman Filter
- 2. Standard update equations