point. If the image is formed by reflected light intensity, as in a photograph, the im-
age records both light from primary light sources and (more usually) the light
reflected off physical surfaces. We show in Chapter 3 that in certain cases we can
use these kinds of images together with knowledge about physics to derive the
orientation of the surfaces. If, on the other hand, the image is a computed tomo-
gram of the human body (discussed in Section 2.3.4), the image represents tissue
density of internal organs. Here orientation calculations are irrelevant, but general
segmentation techniques of Chapters 4 and 5 (the agglomeration of neighboring
samples of similar density into units representing organs) are appropriate.

2.2 IMAGE MODEL
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Sophisticated image models of a statistical flavor are useful in image processing
[Jan 1981]. Here we are concerned with more geometrical considerations.

2.2.1 Image Functions

An image function is a mathematical representation of an image. Generally, an im-
age function is a vector-valued function of a small number of arguments. A special
case of the image function is the digital (discrete) image function, where the argu-
ments to and value of the function are all integers. Different image functions may
be used to represent the same image, depending on which of its characteristics are
important. For instance, a camera produces an image on black-and-white film
which is usually thought of as a real-valued function (whose value could be the
density of the photographic negative) of two real-valued arguments, one for each
of two spatial dimensions. However, at a very small scale (the order of the film
grain) the negative basically has only two densities, ‘‘opaque’” and ‘‘transparent.”’

Most images are presented by functions of two spatial variables
f(x) = f(x, y), where f(x, y) is the brightness of the gray level of the image at a
spatial coordinate (x, y). A multispectral image f is a vector-valued function with
components (f} ... f,). One special multispectral image is a color image in which,
for example, the components measure the brightness values of each of three
wavelengths, that is,

f(x) e fre.d(X) ,fblue(x)’fgreen (X)

Time-varying images f(x,¢) have an added temporal argument. For special
three-dimensional images, x = (x, y, z). Usually, both the domain and range of f
are bounded. -

An important part of the formation process is the conversion of the image
representation from a continuous function to a discrete function; we need some
way of describing the images as samples at discrete points. The mathematical tool
we shall use is the delta function.

Formally, the delta function may be defined by
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0Owhenx # 0

co when x =0 2.1

3(x) =

f d(x)dx =1
If some care is exercised, the delta function may be interpreted as the limit of a set

of functions:
8(x) = lim &,(x)

n—tco

where

n if|x}<L

2n
8. =g otherwise (2.2)
A useful property of the delta function is the sifting property:
ff(x)S(x—a)dx=f(a) (2.3)

A continuous image may be multipled by a two-dimensional ‘‘comb,” or array of
delta functions, to extract a finite number of discrete samples (one for each delta
function). This mathematical model of the sampling process will be useful later.

2.2.2 Imaging Geometry

Monocular Imaging

Point projection is the fundamental model for the transformation wrought by
our eye, by cameras, or by numerous other imaging devices. To a first-order ap-
proximation, these devices act like a pinhole camera in that the image results from
projecting scene points through a single point onto an image plane (see Fig. 2.1). In
Fig. 2.1, the image plane is behind the point of projection, and the image is re-
versed. However, it is more intuitive to recompose the geometry so that the point
of projection corresponds to a viewpoint behind the image plane, and the image oc-
curs right side up (Fig. 2.2). The mathematics is the same, but now the viewpoint
is +fon the z axis, with z = 0 plane being the image plane upon which the image is
projected. (f is sometimes called the focal length in this context use of fi
this section should not be co As the
imaged object approaches the viewpoint, its projection gets bigger (try moving
your hand toward your eye). To specify how its imaged size changes, one needs
only the geometry of similar triangles. In Fig. 2.2b y’, the projected height of the
object, is related to its real height y, its position z, and the focal length by

’

L - L 2.4)
P sl
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Fig. 2.1 A geometric camera model.
The case for x’ is treated similarly:

X - X (2.5)
Pz J
The projected image has z = 0 everywhere. However, projecting away the z com-
ponent is best considered a separate transformation; the projective transform is
usually thought to distort the zcomponent just as it does the xand y. Perspective dis-
tortion thus maps (x, y, z) to

e 2.6)
Flemgliof = ziifiz

The perspective transformation yields orthographic projection as a special case
when the viewpoint is the point at infinity in the z direction. Then all objects are pro-
jected onto the viewing plane with no distortion of their x and y coordinates.

The perspective distortion yields a three-dimensional object that has been
“‘pushed out of shape’’; it is more shrunken the farther it is from the viewpoint.
The z component is not available directly from a two-dimensional image, being
identically equal to zero. In our model, however, the distorted z component has
information about the distance of imaged points from the viewpoint. When this
distorted object is projected orthographically onto the image plane, the result is a

(x,y,2) =

_perspective picture. Thus, to achieve the effect of railroad tracks appearing to come

together in the distance, the-perspective distortion transforms-the tracks so that
they do come together (at a point at infinity)! The simple orthographic projection
that projects away the z component unsurprisingly preserves this distortion.
Several properties of the perspective transform are of interest and are investigated
further in Appendix 1.

Binocular Imaging

Basic binocular imaging geometry is shown in Fig. 2.3a. For simplicity, we
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e, 1,20 )

(b}

Fig. 2.2 (a) Camera model equivalent to that of Fig. 2.1; (b) definition of terms.

use a system with two viewpoints. In this model the eyes do not converge, they are
aimed in parallel at the point at infinity in the —z direction. The depth information
about a point is then encoded only by its different positions (disparity) in the two
image planes.

With the stereo arrangement of Fig. 2.3,

. x=a)f
x——~————~f__z
o x+df
s 7

where (x’, y') and (x", y”) are the retinal coordinates for the world point imaged

Sec. 2.2 Image Model
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{/ x=0
x'"=0
f i
Image Fig. 2.3 A nonconvergent binocular
plane imaging system.

through each eye. The baseline of the binocular system is 2d. Thus
(f —2)x' = (x — d)f 2.7
F-2)x"=&x+df (2.8)
Subtracting (2.7) from (2.8) gives
(f — 2)(x" — x") = 2df

or

z=f—x— (2.9)

o x"
Thus if points can be matched to determine the disparity (x” — x’) and the base-
line and focal length are known, the zcoordinate is simple to calculate.

If the system can converge its directions of view to a finite distance, conver-
gence angle may also be used to compute depth. The hardest part of extracting
depth information from stereo is the matching of points for disparity calculations.
““Light striping’’ is a way to maintain geometric simplicity and also simplify match-
ing (Section 2.3.3).

2.2.3 Reflectance

Terminology

A basic aspect of the imaging process is the physics of the reflectance of ob-
jects, which determines how their ‘‘brightness’’ in an image depends on their in-
herent characteristics and the geometry of the imaging situation. A clear presenta-
tion of the mathematics of reflectance is given in [Horn and Sjoberg 1978; Horn
1977]. Light energy flux ® is measured in watts; ‘‘brightness’” is measured with
respect to area and solid angle. The radiant intensity I of a source is the exitant flux
per unit solid angle:

I= . watts/steradian (2.10)
dw
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Here dw is an incremental solid angle. The solid angle of a small area d4 measured
perpendicular to a radius ris given by

do = == (2.11)

in units of steradians. (The total solid angle of a sphere is 47.)
The irradiance is flux incident on a surface element d4:

i 4e 2
E ey watts/meter (2.12)
and the flux exitant from the surface is defined in terms of the radiance L, which is
the flux emitted per unit foreshortened surface area per unit solid angle:
L= ol Y watts/ (meter? steradian) (2.13)
dA cosBdw ’
where # is the angle between the surface normal and the direction of emission.
Image irradiance fis the “‘brightness’ of the image at a point, and is propor-
tional to scene radiance. A “‘gray-level’’ is a quantized measurement of image irra-
diance. Image irradiance depends on the reflective properties of the imaged sur-
faces as well as on the illumination characteristics. How a surface reflects light
depends on its micro-structure and physical properties. Surfaces may be matte
(dull, flat), specular (mirrorlike), or have more complicated reflectivity charac-
teristics (Section 3.5.1). The reflectance r of a surface is given quite generally by its
Bidirectional Reflectance Distribution Function (BRDF) [Nicodemus et al. 1977].
The BRDF is the ratio of reflected radiance in the direction towards the viewer to
the irradiance in the direction towards a small area of the source.

Effects of Geometry on an Imaging System

Let us now analyze a simple image-forming system shown in Fig. 2.4 with the
objective of showing how the gray levels are related to the radiance of imaged ob-
jects. Following [Horn and Sjoberg 1978], assume that the imaging device is prop-
erly focused; rays originating in the infinitesimal area d4, on the object’s surface
are projected into some area dA, in the image plane and no rays from other por-
tions of the object’s surface reach this area of the image. The system is assumed to
be an ideal one, obeying the laws of simple geometrical optics.

. The energy flux/unit area that impinges on the sensor is defined to be E,. To
show how E|, is related to the scene radiance L, first consider the flux arriving at
the lens from a small surface area d4, . From (2.13) this is given as

d® = dd, [ Leoshdw (2.14)
This flux is assumed to arrive at an area d4, in the imaging plane. Hence the irradi-
ance is given by [using Eq. (2.12)]

2

= 2.15
A (2.15)

Now relate d4, to dA, by equating the respective solid angles as seen from the
lens; that is [making use of Eq. (2.12)1,
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-;14__ tp — | Fig. 2.4 Geometry of an image
forming system.

cosé coso
= dA (2.16)

o ol

Substituting Egs. (2.16) and (2.14) into (2.15) gives

dA

E = cosa

f 2
};] J Ldw .17

The integral is over the solid angle seen by the lens. In most instances we can as-
sume that L is constant over this angle and hence can be removed from the in-

_ tegral. Finally, approximate dw by the area of the lens foreshortened by cos &, that

is, (7/4) D? cos « divided by the distance f,/cos « squared:

3
_ T 2005«
dw = TD f—oz (2.18)
so that finally
2
E= B4 ¥ o) costam L (2.19)
o

The interesting results here are that (1) the image irradiance is proportional to the
scene radiance L, and (2) the factor of proportionality includes the fourth power of
the off-axis angle «. Ideally, an imaging device should be calibrated so that the
variation in sensitivity as a function of « is removed.

2.2.4 Spatial Properties

The Fourier Transform

An image is a spatially varying function. One way to analyze spatial variations
is the decomposition of an image function into a set of orthogonal functions, one
such set being the Fourier (sinusoidal) functions. The Fourier transform may be
used to transform the intensity image into the domain of spatial frequency. For no-
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tational convenience and intuition, we shall generally use as an example the con-
tinuous one-dimensional Fourier transform. The results can readily be extended to
the discrete case and also to higher dimensions [Rosenfeld and Kak 1976]. In two
dimensions we shall denote transform domain coordinates by (u, v). The one-
dimensional Fourier transform, denoted . , is defined by

F Gl = Fu)

where
“+oo
Fu) = [ fGexp (—j2mux)dx (2.20)

where j = +/(—1). Intuitively, Fourier analysis expresses a function as a sum of
sine waves of different frequency and phase. The Fourier transform has an inverse
~1[F(u)] = f(x). This inverse is given by

flx) = fF(u)exp (j2mux) du (2.21)

The transform has many useful properties, some of which are summarized in Table
2.1. Common one-dimensional Fourier transform pairs are shown in Table 2.2.

The transform F(u) is simply another representation of the image function.
Its meaning can be understood by interpreting Eq. (2.21) for a specific value of x,
say Xg .

fx) = fF(u)exp (j2muxg) du (2.22)

This equation states that a particular point in the image can be represented by
a weighted sum of complex exponentials (sinusoidal patterns) at different spatial
frequencies w. F(u) is thus a weighting function for the different frequencies. Low-
spatial frequencies account for the “‘slowly’’ varying gray levels in an image, such
as the variation of intensity over a continuous surface. High-frequency com-
ponents are associated with “‘quickly varying’’ information, such as edges. Figure
2.5 shows the Fourier transform of an image of rectangles, together with the effects
of removing low- and high-frequency components.

The Fourier transform is defined above to be a continuous transform.
Although it may be performed instantly by optics, a discrete version of it, the “‘fast
Fourier transform,”’ is almost universally used in image processing and computer
vision. This is because of the relative versatility of manipulating the transform in
the digital domain as compared to the optical domain. Image-processing texts, e.g.,
[Pratt 1978; Gonzalez and Wintz 1977] discuss the FFT in some detail;, we content
ourselves with an algorithm for it (Appendix 1).

The Convolution Theorem

Convolution is a very important image-processing operation, and is a basic
operation of linear systems theory. The convolution of two functions fand gis a
function A of a displacement y defined as

h) = frg= [ 7)g(y — x)ax (2.23)
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Table 2.1

PROPERTIES OF THE FOURIER TRANSFORM

Spatial Domain Frequency Domain
fix) F(u) =5[f(x)]
g(x) Gu) =5 [g(x)]

(1)  Linearity
o1 f (x) + cag (x)
¢1,cz scalars

(2)  Scaling
flax)

(3)  Shifting
flx — xq)

(4)  Symmetry
F(x)

(5) Conjugation
Fr(x)

(6) Convolution

ciF(u) + c2G(u)

1 fu
lal | a
e TFop(y)

f=u)

F*(=u)

hx) = frg = [ £ G = x) a' | Fw)G )

(7)  Differentiation

d"{(x)

dx"

Qmju)" F(u)

Parseval’s theorem:

J1ropax = [1F@ pae

[re* ) ax = [F)6*© as

Fx)

F(&)

Real(R)

Real part even (RE)
Imaginary part odd (10)

Imaginary ()
RE,IO
RE,IE

RE

RO

IE

10
Complex even (CE)

CO

RO,IE

R

I
RE
10
1IE
RO
CE
Cco
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Table 2.2

FOURIER TRANSFORM PAIRS

fix) Fg)
Rectangle function Sinc function
1 1
£l rl)
2 Z
Rect (x) i
Sinc (&) = i;‘g’fﬁ
Triangle function
1
i D
7 ; Sinc* (&)
Exponential
2a
PGl /Q‘_ (2.".5)2
|
Gaussian
eA-c:x’ LS L 1152
a o«

Unit impulse  8(x)

Unit step

1
S (oL
St
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Table2.2 (cont.)

Comb function A z siE-2)
= 8 (x — nxg) S *
n=—oo 1 T
2, X Xo 2xg 2 I S 2
Xg  Xp Xo Xo
€os 2Ty X

SUB (E—wp) + 8 (E+ wp) ]

\\J I | I

sin 2mew, x 7/ 178 (E=wg) +3 (5 + wg) ]

N
TN

Intuitively, one function is ‘‘swept past’’ (in one dimension) or ‘‘rubbed over’’ (in
two dimensions) the other. The value of the convolution at any displacement is the
integral of the product of the (relatively displaced) function values. One common
phenomenon that is well expressed by a convolution is the formation of an image
by an optical system. The system (say a camera) has a ‘‘point-spread function,”
which is the image of a single point. (In linear systems theory, this is the “‘impulse
response,”’ or response to a delta-function input.) The ideal point-spread function
is, of course, a point. A typical point-spread function is a two-dimensional Gaus-
sian spatial distribution of intensities, but may include such phenomena as
diffraction rings. In any event, if the camera is modeled as a linear system (ignor-

Fig. 2.5 (on facing page) (a) An image, f(x, »). (b) A rotated version of (a), filtered to enhance high spatial
frequencies. (c) Similar to (b), but filtered to enhance low spatial frequencies. (d), (e}, and (f) show the loga-
rithm of the power spectrum of {(a), (b), and (c). The power spectrum is the log square modulus of the Fourier
transform F (u, v). Considered in polar coordinates (p, #), points of small p correspond to low spatial frequencies
(“‘slowly-varying™* intensities), large p to high spatial frequencies contributed by “‘fast™ variations such as step
edges. The power at (p, #) is determined by the amount of intensity variation at the frequency p occurring at the
angle 4.
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ing the added complexity that the point-spread function usually varies over the
field of view), the image is the convolution of the point-spread function and the in-
put signal. The point-spread function is rubbed over the perfect input image, thus

blurring it.

Convolution is also a good model for the application of many other linear
operators, such as line-detecting templates. It can be used in another guise (called
correlation) to perform matching operations (Chapter 3) which detect instances of
subimages or features in an image.

In the spatial domain, the obvious implementation of the convolution opera-
tion involves a shift-multiply—integrate operation which is hard to do efficiently.
However, multiplication and convolution are “‘transform pairs,’” so that the calcu-
lation of the convolution in one domain (say the spatial) is simplified by first
Fourier transforming to the other (the frequency) domain, performing a multipli-
cation, and then transforming back.

The convolution of fand g in the spatial domain is equivalent to the point-
wise product of Fand G in the frequency domain,

$(f+g) = FG (2.24)

We shall show this in a manner similar to [Duda and Hart 1973]. First we prove
the shift theorem. If the Fourier transform of f (x) is F (1), defined as

F(u) = ff(x) exp [ — j2m (ux)ldx (2.25)

then
Flfx —a)l = ff(x-a) exp [ — j2m (ux)ldx (2.26)

X

changing variables so that x' = x — gand dx = dx’
= ff(X') exp { — j2wlu(x’ + a)lldx’ (2.27)
&

Now expl — j2wu(x' + a)]l = exp ( — j2mua) exp ( — j2mux’), where the first
term is a constant. This means that

Sfx — a)l =exp(— j2mua) F(u) (shift theorem)
Now we are ready to show that 5[ (x)+g (x)] = F(u) G (u).
5 (f+g) = f f f)gly — x)) exp (— j2muy) dx dy (2.28)

= ff(x) fg(y — x) exp (— j2muy) dy}dx (2.29)

Recognizing that the terms in braces represent § [g (y — x)] and applying the shift
theorem, we obtain

§(f+g) = [ fx)exp (= j2mux)G () dx (2.30)

= F(u)G(u) (2.31)
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2.2.5 Color

Not all images are monochromatic; in fact, applications using multispectral images
are becoming increasingly common (Section 2.3.2). Further, human beings intui-
tively feel that color is an important part of their visual experience, and is useful or
even necessary for powerful visual processing in the real world. Color vision pro-
vides a host of research issues, both for psychology and computer vision. We
briefly discuss two aspects of color vision: color spaces and color perception.
Several models of the human visual system not only include color but have proven
useful in applications [Granrath 1981].

Color Spaces

Color spaces are a way of organizing the colors perceived by human beings. It
happens that weighted combinations of stimuli at three principal wavelengths are
sufficient to define almost all the colors we perceive. These wavelengths form a na-
tural basis or coordinate system from which the color measurement process can be
described. Color perception is not related in a simple way to color measurement,
however.

Color is a perceptual phenomenon related to human response to different
wavelengths in the visible electromagnetic spectrum [400 (blue) to 700 nanometers
(red); a nanometer (nm) is 10~° meter]. The sensation of color arises from the
sensitivities of three types of neurochemical sensors in the retina to the visible
spectrum. The relative response of these sensors is shown in Fig. 2.6. Note that
each sensor responds to a range of wavelengths. The illumination source has its
own spectral composition f(A) which is modified by the reflecting surface. Let
r(\) be this reflectance function. Then the measurement R produced by the “‘red”’
sensor is given by

R=[r0)rMn0) ax (2.32)

So the sensor output is actually the integral of three different wavelength-

dependent components: the source f, the surface reflectance r, and the sensor Ay
Surprisingly, only weighted combinations of three delta-function approxima-

tions to the different f£(A) 4 (1), thatis, §(Ag), (X)), and 8 (A z), are necessary to

Relative sensitivity

Sec. 2.2

400 500 600 700

Fig. 2.6 Spectral response of human
Wavelength, nm color sensors.
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produce the sensation of nearly all the colors. This result is displayed on a chromati-
city diagram. Such a diagram is obtained by first normalizing the three sensor meas-

urements:

___ R
R+G+B
PRRCT € 2.33
WL G B 235)
o s B
R+G+B

and then plotting perceived color as a function of any two (usually red and green).
Chromaticity explicitly ignores intensity or brightness; it is a section through the
three-dimensional color space (Fig. 2.7). The choice of (Ag, A5, A g) = (410, 530,
650) nm maximizes the realizable colors, but some colors still cannot be realized
since they would require negative values for some of r, g, and b.

Another more intuitive way of visualizing the possible colors from the RGB
space is to view these measurements as Euclidean coordinates. Here any color can
be visualized as a point in the unit cube. Other coordinate systems are useful for
different applications; computer graphics has proved a strong stimulus for investi-
gation of different color space bases.

Color Perception

Color perception is complex, but the essential step is a transformation of
three input intensity measurements into another basis. The coordinates of the new

—_

(a) (b)

Fig. 2.7 (a) An artist’s conception of the chromaticity diagram—see color insert; (b) a
more useful depiction. Spectral colors range along the curved boundary; the straight boun-
dary is the line of purples.
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basis are more directly related to human color judgments.

Although the RGB basis is good for the acquisition or display of color infor-
mation, it is not a particularly good basis to explain the perception of colors. Hu-
man vision systems can make good judgments about the relative surface reflec-
tance r (\) despite different illuminating wavelengths; this reflectance seems to be
what we mean by surface color.

Another important feature of the color basis is revealed by an ability to per-
ceive in ‘“‘black and white,” effectively deriving intensity information from the
color measurements. From an evolutionary point of view, we might expect that
color perception in animals would be compatible with preexisting noncolor percep-
tual mechanisms.

These two needs—the need to make good color judgments and the need to
retain and use intensity information—imply that we use a transformed, non-RGB
basis for color space. Of the different bases in use for color vision, all are variations
on this theme: Intensity forms one dimension and color is a two-dimensional sub-
space. The differences arise in how the color subspace is described. We categorize
such bases into two groups.

1. Intensity/Saturation/Hue (IHS). In this basis, we compute intensity as

intensity: = R + G + B (2.34)

The saturation measures the lack of whiteness in the color. Colors such as ‘‘fire
engine”’ red and ‘‘grass’’ green are saturated; pastels (e.g., pinks and pale blues)
are desaturated. Saturation can be computed from RGB coordinates by the formula
[Tenenbaum and Weyl 1975]

_ 3 min (R, G, B)
intensity

Hue is roughly proportional to the average wavelength of the color. It can be
defined using RGB by the following program fragment:

1 AR — G) + (R — B}
VR - G2+ (R — B)(G— B)"

If B > Gthenhue: = 2pi — hue

The IHS basis transforms the RGB basis in the following way. Thinking of the
color cube, the diagonal from the origin to (1, 1, 1) becomes the intensity axis.
Saturation is the distance of a point from that axis and hue is the angle with regard
to the point about that axis from some reference (Fig. 2.8).

This basis is essentially that used by artists [Munsell 1939], who term sat-
uration chroma. Also, this basis has been used in graphics [Smith 1978; Joblove
and Greenberg 1978].

One problem with the IHS basis, particularly as defined by (2.34) through
(2.36), is that it contains essential singularities where it is impossible to define the
color in a consistent manner [Kender 1976]. For example, hue has an essential
singularity for all values of (R, G, B), where R = G = B. This means that special
care must be taken in algorithms that use hue.

2. Opponent processes. The opponent process basis uses Cartesian rather than

(2.35)

saturation: = 1

(2.36)

hue: = cos~
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(b)

Fig. 2.8 AnIHS Color Space. (a) Cross section at one intensity; (b) cross section at one hue— see color inserts.

34

cylindrical coordinates for the color subspace, and was first proposed by Hering
[Teevan and Birney 1961]. The simplest form of basis is a linear transformation
from R, G, B coordinates. The new coordinates are termed “R — G,
“Bl— Y”,and “W — Bk’

R~ G 1 =2 1z
Beyl=l-1 =1 1llc
W — Bk 1 et 1@

The advocates of this representation, such as [Hurvich and Jameson 1957], theor-
ize that this basis has neurological correlates and is in fact the way human beings
represent (‘‘name’’) colors. For example, in this basis it makes sense to talk about
a “‘reddish blue’ but not a ‘‘reddish green.’’ Practical opponent process models
usually have more complex weights in the transform matrix to account for psycho-
physical data. Some startling experiments [Land 1977] show our ability to make
correct color judgments even when the illumination consists of only two principal
wavelengths. The opponent process, at the level at which we have developed it,
does not demonstrate how such judgments are made, but does show how stimulus
at only two wavelengths will project into the color subspace. Readers interested in
the details of the theory should consult the references.

Commercial television transmission needs an intensity, or ““W — Bk’’ com-
ponent for black-and-white television sets while still spanning the color space. The
National Television Systems Committee (NTSC) uses a “‘YIQ”’ basis extracted
from RGB via
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0.60 -—-0.28 -0.32

1 R
Q|=1021 —-0.52 0.31 G
Y] B

030 059 0.11
This basis is a weighted form of

(I, 0, Y)= (“R—cyan, ” “magenta—green, ” “W—Bk ")

2.2.6 Digital Images

The digital images with which computer vision deals are represented by m-vector
discrete-valued image functions f(x), usually of one, two, three, or four dimen-
sions.

Usually m = 1, and both the domain and range of f(x) are discrete. The
domain of f is finite, usually a rectangle, and the range of f is positive and
bounded: 0 < f(x) < M for some integer M. For all practical purposes, the image
is a continuous function which is represented by measurements or samples at regu-
larly spaced intervals. At the time the image is sampled, the intensity is usually
guantized into a number of different gray levels. For a discrete image, f (x) is an in-
teger gray level, and x = (x, y) is a pair of integer coordinates representing a sam-
ple point in a two-dimensional image plane. Sampling involves two important
choices: (1) the sampling interval, which determines in a basic way whether all the
information in the image is represented, and (2) the fesselation or spatial pattern of
sample points, which affects important notions of connectivity and distance. In our
presentation, we first show qualitatively the effects of sampling and gray-level
quantization. Second, we discuss the simplest kinds of tesselations of the plane. Fi-
nally, and most important, we describe the sampling theorem, which specifies how
close the image samples must be to represent the image unambiguously.

The choice of integers to represent the gray levels and coordinates is dictated
by limitations in sensing. Also, of course, there are hardware limitations in
representing images arising from their sheer size. Table 2.3 shows the storage re-
quired for an image in 8-bit bytes as a function of m, the number of bits per sam-
ple, and N, the linear dimension of a square image.

For reasons of economy (and others discussed in Chapter 3) we often use im-
ages of considerably less spatial resolution than that required to preserve fidelity to
the human viewer. Figure 2.9 provides a qualitative idea of image degradation with
decreasing spatial resolution.

As shown in Table 2.3, another way to save space besides using less spatial
resolution is to use fewer bits per gray level sample. Figure 2.10 shows an image
represented with different numbers of bits per sample. One striking effect is the
“‘contouring’’ introduced with small numbers of gray levels. This is, in general, a
problem for computer vision algorithms, which cannot easily discount the false
contours. The choice of spatial and gray-level resolution for any particular com-
puter vision task is an important one which depends on many factors. It is typical in
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(a)

(b)

Fig. 2.9 Using different numbers of samples. (a) N = 16; (b) N = 32; (c) N =
64; (d) N = 128; (e) N = 256; (f) N = 512.
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Table 2.3

NUMBER OF 8-BIT BYTES OF STORAGE FOR
VARIOUS VALUES OF N AND M

N 32 64 128 256 512
m

1 128 512 2,048 8,192 32,768
2 256 1,024 4,096 16,384 65,536
3 512 2,048 8,192 32,768 131,072
4 512 2,048 8,192 32,768 131,072
= 1,024 4,096 16,384 65,536 262,144
6 1,024 4,096 16,384 65,536 262,144
7 1,024 4,096 16,384 65,536 262,144
8 1,024 4,096 16,384 65,536 262,144

computer vision to have to balance the desire for increased resolution (both gray
scale and spatial) against its cost. Better data can often make algorithms easier to
write, but a small amount of data can make processing more efficient. Of course,
the image domain, choice of algorithms, and image characteristics all heavily
influence the choice of resolutions.

Tesselations and Distance Metrics

Although the spatial samples for f(x) can be represented as points, it is more
satisfying to the intuition and a closer approximation to the acquisition process to
think of these samples as finite-sized cells of constant gray-level partitioning the
image. These cells are termed pixels, an acronym for picture elements. The pattern
into which the plane is divided is called its tesselation. The most common regular
tesselations of the plane are shown in Fig. 2.11.

Although rectangular tesselations are almost universally used in computer
vision, they have a structural problem known as the ‘‘connectivity paradox.”
Given a pixel in a rectangular tesselation, how should we define the pixels to which
it is connected? Two common ways are four-connectivity and eight-connectivity,
shown in Fig. 2.12.

However, each of these schemes has complications. Consider Fig. 2.12c, con-
sisting of a black object with a hole on a white background. If we use four-
connectedness, the figure consists of four disconnected pieces, yet the hole is
separated from the ‘‘outside’” background. Alternatively, if we use eight-
connectedness, the figure is one connected piece, yet the hole is now connected to
the outside. This paradox poses complications for many geometric algorithms. Tri-
angular and hexagonal tesselations do not suffer from connectivity difficulties (if
we use three-connectedness for triangles); however, distance can be more difficult
to compute on these arrays than for rectangular arrays.

The distance between two pixels in an image is an important measure that is
fundamental to many algorithms. In general, a distance dis a metric. That is,
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Fig. 2.10 Using different numbers of bits per sample. (a) m = 1; (b) m = 2; (c)
m=4; (d) m=38.

() dix, y)=0iffx=y

(2) dix, y) =d(y, x)

3) dix, y) +dy, z) =2 d(x, z)

For square arrays with unit spacing between pixels, we can use any of the following
common distance metrics (Fig. 2.13) for two pixels x = (x,y) and y = (x3,5,).
Euclidean:

d(x, ¥) =/ Gr1=x)2 + (y; — yy)? (2.37)
City block:
dyp (X, ¥) = |x1=x2] + |y1—y3]

(2.38)
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Fig. 2.11 Different tesselations of the
image plane. (a) Rectangular; (b)
(c) triangular; (c) hexagonal.

Chessboard:

00X

doy (x,¥) = max{lxl—xz[,lyl—yzll (2.39)

Other definitions are possible, and all such measures extend to multiple dimen-
sions. The tesselation of higher-dimensional space into pixels usually is confined to
(n-dimensional) cubical pixels.

The Sampling Theorem

Consider the one-dimensional ‘‘image’’ shown in Fig. 2.14. To digitize this
image one must sample the image function. These samples will usually be separat-
ed at regular intervals as shown. How far apart should these samples be to allow
reconstruction (to a given accuracy) of the underlying continuous image from its
samples? This question is answered by the Shannon sampling theorem. An excel-
lent rigorous presentation of the sampling theorem may be found in [Rosenfeld
and Kak 1976]. Here we shall present a shorter graphical interpretation using the
results of Table 2.2. For simplicity we consider the image to be periodic in order to
avoid small edge effects introduced by the finite image domain. A more rigorous
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(a) (b) {c)

Fig. 2.12 Connectivity paradox for rectangular tesselations. (a) A central pixel
and its 4-connected neighbors; (b) a pixel and its 8-connected neighbors; (c) a
figure with ambiguous connectivity.

232 3 3333333
32223 323 3222223
2211122 32123 3211123
3210123 3210123 3210123
2211122 32123 3211123
32223 323 3222223
232 3 3333333
(a) {b) (c)

Fig. 2.13 Equidistant contours for dif-
ferent metrics.

om0 R o 1 S )

Fig. 2.14 One-dimensional image and its samples.

treatment, which considers these effects, is given in [Andrews and Hunt
19771.

Suppose that the image is sampled with a *‘comb’” function of spacing x, (see
Table 2.2). Then the sampled image can be modeled by

fi(x) = f(x) X8 (x — nxg) (2.40)

where the image function modulates the comb function. Equivalently, this can be
written as

£ x) =3 fnxg) 8(x — nxo) (2.41)
n
The right-hand side of Eq. (2.40) is the product of two functions, so that property
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(6) in Table 2.1 is appropriate. The Fourier transform of f; (x) is equal to the con-
volution of the transforms of each of the two functions. Using this result yields

= ol _n
F(u) = F(u) = 2,,’8(“ xo) (2.42)
But from Eq. (2.3),
Fu)=s(u—2)=Fu--L) (2.43)
X0 X0
so that
i Il s
F(u) = XO);F(u XO) (2.44)

Therefore, sampling the image function f(x) at intervals of x; is equivalent

in the frequency domain to replicating the transform of f at intervals of L This
X0

limits the recovery of f(x) from its sampled representation, f,(x). There are two
basic situations to consider. If the transform of f(x) is bandlimited such that F(u)
= 0 for| u|> 1/(2xy), then there is no overlap between successive replications of
F(u) in the frequency domain. This is shown for the case of Fig. 2.15a, where we
have arbitrarily used a triangular-shaped image transform to illustrate the effects of
sampling. Incidentally, note that for this transform F(u) = F(—u) and that it has
no imaginary part; from Table 2.2, the one-dimensional image must also be real
and even. Now if F(u) is not bandlimited, i.e., there are u > r{lx— for which F(u)
0

# 0, then components of different replications of F (u) will interact to produce the
composite function F,(u), as shown in Fig. 2.15b. In the first case f(x) can be
recovered from F,(u) by multiplying F,(«) by a suitable G (u):

1
GGy A L Dy
0 otherwise (2.45)
Then
F&) =5"F,(u)Gw)] (2.46)

However, in the second case, F, (#) G (1) is very different from the original F ().
This is shown in Fig. 2.15¢. Sampling a F () that is not bandlimited allows infor-
mation at high spatial frequencies to interfere with that at low frequencies, a
phenomenon known as aliasing.

Thus the sampling theorem has this very important result: As long as the im-
age contains no spatial frequencies greater than one-half the sampling frequency,
the underlying continuous image is unambiguously represented by its samples.
However, lest one be tempted to insist on images that have been so sampled, note
that it may be useful to sample at lower frequencies than would be required for to-
tal reconstruction. Such sampling is usually preceded by some form of blurring of
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Fig. 2.15 (a) F(u) bandlimited so that F{u) = 0 for |u| > 1/2xy. (b) F(u) not band-
limited as in (a). (c) reconstructed transform.

the image, or can be incorporated with such blurring (by integrating the image in-
tensity over a finite area for each sample). Image blurring can bury irrelevant de-
tails, reduce certain forms of noise, and also reduce the effects of aliasing.

2.3 IMAGING DEVICES FOR COMPUTER VISION

There is a vast array of methods for obtaining a digital image in a computer. In this
section we have in mind only “‘traditional’’ images produced by various forms of
radiation impinging on a sensor after having been affected by physical objects.
Many sensors are best modeled as an arnalog device whose response must be
digitized for computer representation. The types of imaging devices possible are
limited only by the technical ingenuity of their developers; attempting a definitive
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