Contents

Preface xiii

Acknowledgments xv

Mnemonics for Proceedings and Special Collections Cited in the References xix

1 COMPUTER VISION 1

1.1 Achieving Simple Vision Goals 1
1.2 High-Level and Low-Level Capabilities 2
1.3 A Range of Representations 6
1.4 The Role of Computers 9
1.5 Computer Vision Research and Applications 12
2 IMAGE FORMATION

2.1 Images 17
2.2 Image Model 18
 2.2.1 Image Functions, 18
 2.2.2 Imaging Geometry, 19
 2.2.3 Reflectance, 22
 2.2.4 Spatial Properties, 24
 2.2.5 Color, 31
 2.2.6 Digital Images, 35
2.3 Imaging Devices for Computer Vision 42
 2.3.1 Photographic Imaging, 44
 2.3.2 Sensing Range, 52
 2.3.3 Reconstruction Imaging, 56

3 EARLY PROCESSING

3.1 Recovering Intrinsic Structure 63
3.2 Filtering the Image 65
 3.2.1 Template Matching, 65
 3.2.2 Histogram Transformations, 70
 3.2.3 Background Subtraction, 72
 3.2.4 Filtering and Reflectance Models, 73
3.3 Finding Local Edges 75
 3.3.1 Types of Edge Operators, 76
 3.3.2 Edge Thresholding Strategies, 80
 3.3.3 Three-Dimensional Edge Operators, 81
 3.3.4 How Good Are Edge Operators? 83
 3.3.5 Edge Relaxation, 85
3.4 Range Information from Geometry 88
 3.4.1 Stereo Vision and Triangulation, 88
 3.4.2 A Relaxation Algorithm for Stereo, 89
3.5 Surface Orientation from Reflectance Models 93
 3.5.1 Reflectivity Functions, 93
 3.5.2 Surface Gradient, 95
 3.5.3 Photometric Stereo, 98
 3.5.4 Shape from Shading by Relaxation, 99
3.6 Optical Flow 102
 3.6.1 The Fundamental Flow Constraint, 102
 3.6.2 Calculating Optical Flow by Relaxation, 103
3.7 Resolution Pyramids 106
 3.7.1 Gray-Level Consolidation, 106
 3.7.2 Pyramidal Structures in Correlation, 107
 3.7.3 Pyramidal Structures in Edge Detection, 109
PART II
SEGMENTED IMAGES
115

4 BOUNDARY DETECTION 119

4.1 On Associating Edge Elements 119
4.2 Searching Near an Approximate Location 121
 4.2.1 Adjusting A Priori Boundaries, 121
 4.2.2 Non-Linear Correlation in Edge Space, 121
 4.2.3 Divide-and-Conquer Boundary Detection, 122
4.3 The Hough Method for Curve Detection 123
 4.3.1 Use of the Gradient, 124
 4.3.2 Some Examples, 125
 4.3.3 Trading Off Work in Parameter Space for Work in Image Space, 126
 4.3.4 Generalizing the Hough Transform, 128
4.4 Edge Following as Graph Searching 131
 4.4.1 Good Evaluation Functions, 133
 4.4.2 Finding All the Boundaries, 133
 4.4.3 Alternatives to the A Algorithm, 136
4.5 Edge Following as Dynamic Programming 137
 4.5.1 Dynamic Programming, 137
 4.5.2 Dynamic Programming for Images, 139
 4.5.3 Lower Resolution Evaluation Functions, 141
 4.5.4 Theoretical Questions about Dynamic Programming, 143
4.6 Contour Following 143
 4.6.1 Extension to Gray-Level Images, 144
 4.6.2 Generalization to Higher-Dimensional Image Data, 146

5 REGION GROWING 149

5.1 Regions 149
5.2 A Local Technique: Blob Coloring 151
5.3 Global Techniques: Region Growing via Thresholding 152
 5.3.1 Thresholding in Multidimensional Space, 153
 5.3.2 Hierarchical Refinement, 155
5.4 Splitting and Merging 155
 5.4.1 State-Space Approach to Region Growing, 157
 5.4.2 Low-Level Boundary Data Structures, 158
 5.4.3 Graph-Oriented Region Structures, 159
5.5 Incorporation of Semantics 160

6 TEXTURE 166

6.1 What Is Texture? 166
6.2 Texture Primitives 169
6.3 Structural Models of Texel Placement 170
 6.3.1 Grammatical Models, 172
 6.3.2 Shape Grammars, 173
 6.3.3 Tree Grammars, 175
 6.3.4 Array Grammars, 178
6.4 Texture as a Pattern Recognition Problem 181
 6.4.1 Texture Energy, 184
 6.4.2 Spatial Gray-Level Dependence, 186
 6.4.3 Region Texels, 188
6.5 The Texture Gradient 189

7 MOTION 195

7.1 Motion Understanding 195
 7.1.1 Domain-Independent Understanding, 196
 7.1.2 Domain-Dependent Understanding, 196
7.2 Understanding Optical Flow 199
 7.2.1 Focus of Expansion, 199
 7.2.2 Adjacency, Depth, and Collision, 201
 7.2.3 Surface Orientation and Edge Detection, 202
 7.2.4 Egomotion, 206
7.3 Understanding Image Sequences 207
 7.3.1 Calculating Flow from Discrete Images, 207
 7.3.2 Rigid Bodies from Motion, 210
 7.3.3 Interpretation of Moving Light Displays—A Domain-Independent Approach, 214
 7.3.4 Human Motion Understanding—A Model-Directed Approach, 217
 7.3.5 Segmented Images, 220

Part III

GEOMETRICAL STRUCTURES 227

8 REPRESENTATION OF TWO-DIMENSIONAL GEOMETRIC STRUCTURES 231

8.1 Two-Dimensional Geometric Structures 231
8.2 Boundary Representations 232
 8.2.1 Polylines, 232
 8.2.2 Chain Codes, 235
 8.2.3 The \(\Psi \)-s Curve, 237
 8.2.4 Fourier Descriptors, 238
 8.2.5 Conic Sections, 239
 8.2.6 B-Splines, 239
 8.2.7 Strip Trees, 244
8.3 Region Representations 247
 8.3.1 Spatial Occupancy Array, 247
 8.3.2 y Axis, 248
 8.3.3 Quad Trees, 249
 8.3.4 Medial Axis Transform, 252
 8.3.5 Decomposing Complex Areas, 253

8.4 Simple Shape Properties 254
 8.4.1 Area, 254
 8.4.2 Eccentricity, 255
 8.4.3 Euler Number, 255
 8.4.4 Compactness, 256
 8.4.5 Slope Density Function, 256
 8.4.6 Signatures, 257
 8.4.7 Concavity Tree, 258
 8.4.8 Shape Numbers, 258

9 REPRESENTATION OF THREE-DIMENSIONAL STRUCTURES 264

9.1 Solids and Their Representation 264

9.2 Surface Representations 265
 9.2.1 Surfaces with Faces, 265
 9.2.2 Surfaces Based on Splines, 268
 9.2.3 Surfaces That Are Functions on the Sphere, 270

9.3 Generalized Cylinder Representations 274
 9.3.1 Generalized Cylinder Coordinate Systems and Properties, 275
 9.3.2 Extracting Generalized Cylinders, 278
 9.3.3 A Discrete Volumetric Version of the Skeleton, 279

9.4 Volumetric Representations 280
 9.4.1 Spatial Occupancy, 280
 9.4.2 Cell Decomposition, 281
 9.4.3 Constructive Solid Geometry, 282
 9.4.4 Algorithms for Solid Representations, 284

9.5 Understanding Line Drawings 291
 9.5.1 Matching Line Drawings to Three-Dimensional Primitives, 293
 9.5.2 Grouping Regions Into Bodies, 294
 9.5.3 Labeling Lines, 296
 9.5.4 Reasoning About Planes, 301

Part IV
RELATIONAL STRUCTURES 313

10 KNOWLEDGE REPRESENTATION AND USE 317
 10.1 Representations 317
 10.1.1 The Knowledge Base—Models and Processes, 318
11 MATCHING

11.1 Aspects of Matching 352
 11.1.1 Interpretation: Construction, Matching, and Labeling 352
 11.1.2 Matching Iconic, Geometric, and Relational Structures, 353

11.2 Graph-Theoretic Algorithms 355
 11.2.1 The Algorithms, 357
 11.2.2 Complexity, 359

11.3 Implementing Graph-Theoretic Algorithms 360
 11.3.1 Matching Metrics, 360
 11.3.2 Backtrack Search, 363
 11.3.3 Association Graph Techniques, 365

11.4 Matching in Practice 369
 11.4.1 Decision Trees, 370
 11.4.2 Decision Tree and Subgraph Isomorphism, 375
 11.4.3 Informal Feature Classification, 376
 11.4.4 A Complex Matcher, 378

12 INFEERENCE 383

12.1 First-Order Predicate Calculus 384
 12.1.1 Clause-Form Syntax (Informal), 384
 12.1.2 Nonclausal Syntax and Logic Semantics (Informal), 385
 12.1.3 Converting Nonclausal Form to Clauses, 387
 12.1.4 Theorem Proving, 388
 12.1.5 Predicate Calculus and Semantic Networks, 390
 12.1.6 Predicate Calculus and Knowledge Representation, 392

12.2 Computer Reasoning 395

12.3 Production Systems 396
 12.3.1 Production System Details, 398
 12.3.2 Pattern Matching, 399
12.3.3 An Example, 401
12.3.4 Production System Pros and Cons, 406

12.4 Scene Labeling and Constraint Relaxation 408
12.4.1 Consistent and Optimal Labelings, 408
12.4.2 Discrete Labeling Algorithms, 410
12.4.3 A Linear Relaxation Operator and a Line-Labeling Example, 415
12.4.4 A Nonlinear Operator, 419
12.4.5 Relaxation as Linear Programming, 420

12.5 Active Knowledge 430
12.5.1 Hypotheses, 431
12.5.2 HOW-TO and SO-WHAT Processes, 431
12.5.3 Control Primitives, 431
12.5.4 Aspects of Active Knowledge, 433

13 GOAL ACHIEVEMENT 438

13.1 Symbolic Planning 439
13.1.1 Representing the World, 439
13.1.2 Representing Actions, 441
13.1.3 Stacking Blocks, 442
13.1.4 The Frame Problem, 444

13.2 Planning with Costs 445
13.2.1 Planning, Scoring, and Their Interaction, 446
13.2.2 Scoring Simple Plans, 446
13.2.3 Scoring Enhanced Plans, 451
13.2.4 Practical Simplifications, 452
13.2.5 A Vision System Based on Planning, 453

APPENDICES 465

A1 SOME MATHEMATICAL TOOLS 465

A1.1 Coordinate Systems 465
A1.1.1 Cartesian, 465
A1.1.2 Polar and Polar Space, 465
A1.1.3 Spherical and Cylindrical, 466
A1.1.4 Homogeneous Coordinates, 467

A1.2 Trigonometry 468
A1.2.1 Plane Trigonometry, 468
A1.2.2 Spherical Trigonometry, 469

A1.3 Vectors 469

A1.4 Matrices 471

A1.5 Lines 474
A1.5.1 Two Points, 474
A1.5.2 Point and Direction, 474
A1.5.3 Slope and Intercept, 474