Picture Interpretation:
A Symbolic Approach

Sandy Dance Terry Caelli Zhi-Qiang Liu

1995

Preface

Traditional methods for image scene interpretation and understanding are
based mainly on such single-threaded procedural paradigms as hypothesize-
and-test or syntactic parsing. As a result, these systems are unable to carry
out tasks that require concurrent hypothesis testing.

In this book we explore a method for symbolically interpreting images
based upon a parallel implementation of a network-of-frames suggested, for
example, by Minsky (1975), to describe intelligent processing. The system
has been implemented in an object-oriented environment in the logic pro-
gramming language Parlog++ and includes the propagation of uncertainty
through each frame (object) using Baldwin’s (1986) formulation. The system
is tested with several scenarios of increasing complexity, culminating with the
legal interpretation of traffic intersection images.

The authors would like to thank Andrew Davison for much help with the
implementation language of this project, and for providing exceptional advice
on ideas, papers and this book. We must also acknowledge the Computer
Vision and Machine Intelligence Laboratory at Melbourne University as a
whole for providing a stimulating and lighthearted atmosphere for intellectual
jousting. The Computer Science Department must be recognized for providing
a supportive role in the work involved. We would like to acknowledge the
Australian Computer Graphics Centre of the Royal Melbourne Institute of
Technology, and in particular Gordon Lescinsky and Mike Gigante, for their

help in obtaining traffic video and digitizing it. Finally, the first author would

vi

like to thank his wife Jill and children Felix and Rupert for their tolerance of
this folly.

This work has been supported by a number of funding sources and em-
ployers. The Defense Science and Technology Organization supported the
early stages of this work. Funding has been received from the Centre for In-
telligent Decision Systems, and from the Computer Science Departments at
the University of Melbourne and Curtin University. Finally we would like to
acknowledge the support of the James Herbert Miriam Bursary through the

Faculty of Engineering at the University of Melbourne.

S.D.
T.M.C.
Z.Q.L.

Melbourne, April, 1995.

Contents

1 Introduction

2 A Recent History of Image Interpretation
2.1 Graph Based Systems oL
2.1.1 Augmented Transition Networks
2.1.2 Semantic Networks
2.1.3 Constraint propagation networks
2.1.4 Discussiono
2.2 A German School oL
2.3 Object Oriented Approaches
2.4 Other Recent Systems

3 Foundations
3.1 Human Conceptualization
3.2 Frames and Related Ideas
3.3 Logic Programming
3.4 Object Orientation

4 Architecture of SOO-PIN
4.1 Procedural Description of SOO-PIN
4.2 Spatial Data o
4.3 Compound Objects
4.4 Concept-Frame Structure

vii

© 0~ OO O Ut xR

—_
=)

14
14
16
20
21

viii

5 Simple Scenarios

5.1
5.2
9.3
5.4
)

Cutlery Scenario

CONTENTS

Trial Runs of Cutlery Scenario

Wheels Scenario

Trial Runs of Wheels Scenario

Summary . .

6 Interpretation of Traffic Scenes

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Primitive Concept-Frames

Turn Concept-Frames

Give-Way Concept-Frames
Trial Runs using XFIG

Low-Level Processing

Trial Runs on Real Images

Traffic Trial Summary

7 Uncertainty

7.1
7.2

7.3
7.4

Introduction .

Dempster-Shafer Theory

7.2.1 Combining Evidence within a Frame of Discernment

7.2.2 Combining Independent Propositions

7.2.2.1
7.2.2.2
7.2.2.3
7.2.2.4

Conjunction Rule
Disjunction Rule
Plausibility
Combining Belief from Two of N Events . . .

Problems with Dempster-Shafer
SOO-PIN and Uncertainty
7.4.1 Beliefand Vision
7.4.2 Implementation of Uncertainty in SOO-PIN

7.4.2.1
7.4.2.2
7.4.2.3
7.4.2.4

Data Structures
Existence Checking
Belief Updating

Procedural Subroutines

35
35
38
42
44
47

48
ol
ol
23
93
60
63
64

66
66
68
70
71
72
74
76
7

CONTENTS

7.5

7.4.2.5 Belief Runtime Experiments

Summary . o.o. ... oo e

8 Velocity

8.1
8.2

8.3
8.4
8.5

Introductiono
Finding Trajectories
8.2.1 Matching between Frames
8.2.2 Finding Trajectories by Comparing Match Lists
8.2.3 Determining Velocity
Uses of Velocity
Velocity Examples

Summaryo e

9 Runtime Results

9.1
9.2
9.3

Introduction
Trial Runs

Summary of Results

10 Conclusion

Appendix A

Parlog++ Procedures o000
A.1 Switchboard Source Code
A2 Give-Way Source Code

References

Index

ix

85
87

103
103
103
106

119

122
122
126

132

140

List of Figures

3.1

4.1
4.2

5.1
2.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1

8.1
8.2
8.3
8.4
8.5

The communication channel in Parlog 22
The SOO-PIN system concept 27
The implemented system architecture 28
The cutlery scenario network-of-frames 36
The Wheels Scenario network 43
Typical traffic scene processed by the SOO-PIN system 49
The traffic scenario network-of-frames 50
Diagram showing how turn.c determines car activity 52
Diagram showing a schematic intersection 54
Diagram showing a schematic intersection with lights 56
Diagram showing a schematic T-intersection 57
Diagram showing a section of road 59
Processing steps of real image 62
Real image and labeled image 64
Row of cars straddling a boundary demonstrating drop in belief 86

Example of 3 successive frames with the movement of one car 90

Algorithm for finding matches between cars in successive frames 91

Velocity vectors between a pair of cars in successive frames . . 92
Diagram showing a potential bad match 93
Diagram showing 3 cars turning right, over 3 frames 94

LIST OF FIGURES xi

8.6

8.7
8.8
8.9
8.10

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9.10
9.11

The expanded network with the concept-frames dealing with

velocityo 95
The geometry involved in calculating collisions 96
Example of velocity from 4 cars in 3 frames 99

Example of velocity from 4 cars in 3 frames in curving trajectory 100

Example of detection of a collision between two cars 101
Cars in T-intersection, XFIG diagram 108
Cars in T-intersection, XFIG diagram 109
Collins & Exhibition Sts., frame 89 110
Collins & Exhibition Sts., frame 116 111
Lygon & Queensberry Sts., frame 82 112
Lygon & Queensberry Sts., frame 130 113
Lygon & Queensberry Sts., frame 150 114
Lygon & Queensberry Sts., frame 190 115
Swanston & Faraday Sts., frame 120 116
Swanston & Faraday Sts., frame 242 117

Swanston & Faraday Sts., frame 316 118

List of Tables

2.1
2.2

4.1

7.1
7.2
7.3

Survey of status of vision systems, pre 1990 12
Survey of status of vision systems, post 1990 13
Table showing the actions performed and the messages sent by

aconcept-frame L L L 34
Evidence combinations for the burglar example 71
Masses assigned to the members of © x & with non-zero mass 75
Example of the algorithm belTwoOfN in action 79

xii

Chapter 1

Introduction

This book concerns high-level vision — the interpretation of images in the light
of domain knowledge. In this realm, it is not sufficient to simply label regions
or objects in the image. Rather, it is necessary to “tell the story” behind
the image, ie, to interpret the “intentionality” of the image objects. This
book explores a specific architecture for this problem: an interacting network
of agents or frames, each asynchronously working on their own aspect of the
interpretation. The architecture has been named SOO-PIN: symbolic object-
oriented picture interpretation network. It is based upon recent developments

in:
e Cognitive science,
e Object-oriented software engineering,
e Connectionism in Artificial Intelligence.

The approach taken in this study has been to investigate the architecture
in a series of domains of increasing complexity. Initially a very simple domain
was chosen in order to design the basic modules and communication protocols.
Once that was successful, the system was adapted and expanded to determine
scaling of the concepts involved. Success was measured in both correctness

of interpretation for a given scene, and ease of adaptability of the system to

2 Chapter 1. Introduction

changing domain knowledge. These studies culminated in the analysis of a
complex traffic scene analysis system.

In the course of the study a number of specific ideas were developed:

e The use of an object-oriented concurrent logic programming lan-

guage for scene analysis [19].
e The use of the above architecture for traffic scene analysis [18].

e The modification of Baldwin’s support logic programming for use

in scene analysis [20].

e Distinguishing symbolic and spatial data, and recognizing the need
to ground some symbolic predicates in the data. This reflects, in
some ways, the distinction between internal and external repre-
sentations as discussed by Slezak [63].

e For the interpretation of traffic, a velocity detection mechanism
was developed which is founded on token matching but using a
combination of symbolic and spatial predicate matching to derive
the best trajectory for the vehicles [20].

Chapter 2 is a description of a number of earlier high-level vision sys-
tems which are essentially single-threaded approaches using either some form
of syntactic parsing (ie, using transition networks) or hypothesize and test
procedures. Multi-threaded systems are then discussed ending with some
similar approaches to that described here, together with their drawbacks —
which have motivated the approach adopted in this book.

Chapter 3 deals with the foundations of the approach taken here, drawing
on the work of Herskovits, Lakoff, Minsky, Schank and Hewitt. The chapter
ends with a review of logic programming and object-orientation, describing
the work of Shapiro and Takeuchi which unites these two paradigms, and
culminating in the choice of an implementation language, Parlog++.

Chapter 4 describes in detail the investigation and implementation of the

system, its data structures, how the modules (here called “concept-frames”

to distinguish them from frames, classes and objects as used in the literature)
were implemented in Parlog++, and how they were networked together into
a message passing system.

Chapter 5 describes the first two simple domains used for testing the
system, the “cutlery” and the “wheels” scenario. Chapter 6 then goes onto
describe the initial “traffic” scenario, which uses video images of intersections
as input. The hierarchy of “concept-frames” used to deal with this domain is
described, together with the necessary low-level processing.

Chapter 7 explores the incorporation of “belief” or “uncertainty” into
the network — from a vision perspective. Specifically, Baldwin’s approach
has been adopted (with reservations and extensions). The chapter finishes
with a few trial runs of the system utilizing the derived uncertainty measure,
together with analysis and summary.

Chapter 8 describes how the traffic scenario was enhanced with the cal-
culation of car velocities. It first reviews some of the literature on velocity
determination and the correspondence problem. It goes on to describe the
technique used in SOO-PIN using the “best match between 3 frames” tech-
nique, and its implementation.

Chapter 9 is the culmination of the study, containing a series of analyzed
traffic scenes, each one discussed at length, highlighting the systems successes
and failures.

Chapter 10, the conclusion, points out the generality of the system, and
its limitations, together with desirable extensions — the directions research
should continue in the future.

Chapter 2

A Recent History of Image

Interpretation

Computational vision has traditionally focused on problems of low-level sens-
ing, pattern and object recognition, and relatively little attention has been
paid to making sense of an image once primitive structures have been iden-
tified. This entails fitting the image into a broader context, or equivalently,
bringing to bear domain knowledge in order to produce an interpretation.
Such domain knowledge is typically symbolic and so the problem involves
interpreting numerical data with more logical or syntactic information. The
problem, then, reduces to that of finding the best architecture for integrating
this domain knowledge with the labeled image data. Previous approaches
have been based on the single-threaded graph processing programs, using
hypothesize-and-test or syntactic parsing. Some of these “picture language”
systems reported in the literature are described below. More recently there
has been a move to implement systems based on the object-oriented paradigm,
and these are described later in this chapter.

2.1 Graph Based Systems

These systems use some form of graph parsing or traversing algorithm to

process the image. This can take place in top-down or bottom-up directions.

2.1. Graph Based Systems 5

They can also be characterized as single-threaded or multi-threaded. Single-
threaded systems, as used here, are those in which at any one moment there
is at most a single hypothesis under consideration, whereas multi-threaded
systems entertain more than one hypothesis simultaneously. This single- vs.
multi-threaded distinction is not the same as the sequential vs. concurrent

architecture distinction introduced later.

2.1.1 Augmented Transition Networks

The first technique considered is the augmented transition network (ATN)
[14, p199]. This technique was developed for parsing natural language, but
has been adapted for vision. It is based on the notion of states (the graph
nodes) and the paths for moving between states (the arcs between nodes).
The traversal through the graph is determined by the sequence of tokens (lan-
guage elements or image segments) on the input. It is a top-down technique
because it starts with the graph describing a full sentence or pattern, and
invokes subgraphs to parse nonterminal symbols as required. The algorithm
is augmented with stored data from past states which is used to influence
decisions.

Tropf and Walters [64] describe a vision system which is one of the earliest
to employ an ATN. It is used to control an analysis-by-synthesis approach
(hypothesis-and-test), with the augmentations storing the model-to-pattern
associations, ie, the 3D space constraints upon the object. The ATN describes
the structure of 3D objects, which the system locates in the input image.

Bajcsy et al[5] describe a system that takes 3D polyhedral shapes derived
from aerial photographs of urban scenes and uses an ATN to perform high
level scene analysis, guided by user queries. This system approaches the
vision problem as analogous to language, and treats the world knowledge as
a grammar, and the segmented faces and the relations between them as a

dictionary.

6 Chapter 2. A Recent History of Image Interpretation

2.1.2 Semantic Networks

The semantic network (or associative network) [14] is a way of representing a
collection of concepts (nodes) and the relationships between them (the arcs).
In fact, the predicate calculus is an equivalent representation, but procedu-
rally, the semantic network differs from predicate calculus in that it indexes
the relationships by their endnodes. This optimizes traversal of the network
from concepts through relationships to other concepts.

Nieman et al[51] describe a system that uses a semantic net to model
relations between concepts in image sequences of the human heart, and use
production rules to draw inferences (diagnostic descriptions). The system
creates a “search tree” of competing instances (multiple hypotheses) at each
node of the network, and uses an A* search for overall control.

Another medical system is that of Dellepiane et al[23] who use a semantic
network to model the relations between parts of 2D and 3D models of brain to-
mographic imagery. They use the hypothesize-and-test paradigm constrained
by network relations, and common data is stored in a blackboard. The output
is labeled regions.

Govindaraju et al[33] use a top down approach based on a semantic net-
work to handle one aspect of their multi-modal system for understanding
newspaper images. This aspect relates 2D newspaper photographs to their
captions, and, for instance, finds named people in the image. They also use
an augmented transition network (ATN) to parse caption text, generating
part of the semantic network used in processing the image. The rest of the

network derives from domain knowledge.

2.1.3 Constraint propagation networks

These are networks in which nodes represent propositions, and arcs represent
dependencies, or justification links, between them. Constraint propagation
networks are logically equivalent to the propositional calculus (as opposed to
predicate calculus) as there is no way to represent quantified expressions [68].

Mulder et al[49] describe a series of refinements of the MAPSEE sys-

2.1. Graph Based Systems 7

tem that, given a 2D geographic sketch map constrained by syntactic rules
and represented by plotter commands, uses local constraint propagation over
a graph to handle labeling hypotheses. Reiter and Mackworth[55] use the
MAPSEE system as a basis for analyzing vision problems in terms of logi-
cal frameworks. From this perspective, vision problems reduce to theorem
proving on a first-order logic database consisting of prior knowledge, image
domain knowledge, constraints derived from contingent knowledge about the
scene, and, finally, queries about the scene. One limitation of this perspective
is that many spatial predicates can not be computed symbolically, and so the
interpretation problem can not be exclusively cast as a logic program. This
is further discussed in Section 4.2.

Boddington et al[10] also use constraint propagation, in this case an ass-
umption-based truth maintenance system (ATMS), to maintain partial results
of competing interpretations. They develop a system, CARRS, and show that
the system is able to locate cars in some natural scenes. Provan, however, has
shown that such ATMSs generally have exponential complexity [54]. Never-
theless the system is feasible in this case because of judicious early pruning

of hypotheses.

2.1.4 Discussion

Representing problems in terms of graphs, while logically equivalent to pred-
icate calculus, is a good way of representing problems for humans, in so far
as the logical links between parts of the problem become clear. Moreover,
the graphical representation suggests ways of solving problems which can, in
some cases, be more efficient than logic-based approaches (these are discussed
later in Section 3.3).

All these systems (with the exception of that of Mulder et al [49] and
Nieman et al [51]) are however, single-threaded (here meaning that there is at
most one hypothesis under consideration at any one time) which reduces the
range of problems they can handle (or alternatively, increases the complexity).
Moreover, the systems are complex, non-modular constructions which impede

easy understanding and implementation.

8 Chapter 2. A Recent History of Image Interpretation

2.2 A German School

In Germany a number of related projects have been exploring high-level vision
based on sequences of images, and outputting German language interpreta-
tions.

One example is the traffic interpretation system of Schirra et al [61]. The
scene is segmented by motion vectors resulting in identified objects in the
sequence, which are described in terms of enclosing rectangles corners and
displacement vectors. The output from the low level system is described in
terms of static and dynamic objects (geometric scene description or GSD).
This data is fed to the language system CITYTOUR ([56]), in which the
user is assumed to be in the scene, and interacts with the language system
which answers questions about the scene from the users viewpoint. This
system handles static spatial relationships, for example, in front of, behind,
to the right and the procedures then produce degrees of applicability (belief)
for the relationships which are used for linguistic hedges (words like maybe,
possibly). It should be noted that the static data is hand generated, and only
the dynamic data is computer generated. Further, the link between the vision
and language subsystems is one way (no feedback) and are, in fact, connected
via TCP/IP between different cities !

Another approach similar to Schirra et al’s is SOCCER (Andre et al [4])
which generates soccer descriptions of image sequences from soccer games.
Static parts of the scenes are manually generated, dynamic parts are fed in
from a hypothetical vision system, in the form of a geometric scene description
(same terminology as Schirra et al’s). They employ a data driven bottom-up
strategy, using case models to recognize events using a transition net, which,
in turn, triggers language output.

Neumann [50], takes 3D geometric scene description sequences, which con-
tain data on the time, location and orientation of objects found in traffic
scenes (but actually hand generated), and use a failure-driven / backtracking
algorithm on a semantic network to generate case frames (or thematic roles,
an objects thematic role specifies the objects relation to an act [68]). These

frames are used as the interface to a more formal logic programming language

2.3. Object Oriented Approaches 9

for the high level interpretations.

These German systems are grouped together because they use the same
representation for the low-level data (GSD), and generate a similar level of
output (German language). They all use a top-down strategy for generating
the language output, in the first case through interacting with user queries,
and in Neumann’s case through his semantic net and case frame techniques.

However, like the graph-based systems discussed above, these systems also
suffer from complexity, containing a number of sophisticated subsystems us-
ing a variety of different techniques working together via heuristic constraints.
One way of overcoming such cases of complexity (and difficulties with soft-
ware) is to develop systems with intrinsic concurrency. The object-oriented

approaches sets up the framework for such systems.

2.3 Object Oriented Approaches

In the 1990s, a new generation of vision systems was developed, those based
on the object-oriented paradigm. This approach overcomes some problems of
the earlier systems in that the systems are organized in a modular fashion,
with a coherent design philosophy which hides the individual subsystem data-
structures within objects.

Feri et al [30] describe a blackboard system, based on a single-threaded
geometric reasoner controlling a hierarchical system of knowledge sources (ob-
jects) in bottom-up fashion. It identifies 3D objects from data fusion of
monochrome and infra-red images, based on prior knowledge of geometric
constraints. Their system is able to generate low level object descriptions
such as CAD models, but makes no higher level interpretations.

SIGMA developed by Matsuyama and Hwang [45] is a system that finds
objects in aerial monochrome views of housing estates. It uses an object-
oriented approach, where each object instance is used to establish a concept,
and the control is by a sequential failure-driven reasoner working on the equiv-
alents of Horn clauses (in fact the same control mechanism as that used in

Prolog). The low-level processing is under the control of the higher-level rea-

10 Chapter 2. A Recent History of Image Interpretation

soning. However, the system does not go beyond identifying objects in the
scene to include, for instance, high-level concepts like “what kind of housing
estate?”, or “what are the best utility routings?”.

Bell and Pau [7] developed an object-oriented logic programming sys-
tem for picture interpretation. Their system is based on the Prolog failure-
driven/backtracking hypothesize-and-test control mechanism. The object ori-
ented component of the system is implemented with a preprocessor that trans-
lates the code into standard Prolog. This three level (feature, application
dependent, and object identification) system is used to find objects (cars) in
natural scenes.

Although object-oriented, these systems are still single-threaded, and, in
fact, sequential (as opposed to concurrent). This imposes restrictions on the
range of problems they can easily deal with. In Section 3.1 we explore an

alternative to this approach.

2.4 Other Recent Systems

Two interesting recent systems that do not fall into the object oriented
paradigm are the following:

Bobick and Bolles [9] introduced a bottom-up system based on a repre-
sentation space which is a lattice of descriptions, from local image regions to
more general descriptions. This includes multiple views as well as refinement
and augmentation of the description. This representation scheme is used in a
real time system for robot vehicle vision. Sequential images allow improving
resolution as the robot moves through the landscape. They eliminate pro-
cessing artifacts through detecting temporal stability of objects through the
image sequence.

Huang et al[41] use a Bayesian belief network and inference engine
(HUGIN [3]) in sequences of highway traffic scenes to produce high-level
concepts like “car changing lane” and “car stalled”. In general, belief net-
works propagate values around the network as vectors, with each link having

associated matrices reflecting the conditional probabilities [52]. For this rea-

2.4. Other Recent Systems 11

son, Huang et al’s system is regarded as bottom-up, having a lot in common
with the connectionist paradigm. Omne problem with Bayesian inference is
that each node must have a set of exhaustive and mutually exclusive states,
which is often difficult to obtain in vision. This problem is further explored
in Section 7.4.1.

Tables 2.1 and 2.2 summarize the survey of vision systems given above.
The first table is divided into sections (as in the text) corresponding to sys-
tems based on ATN, semantic net, constraint propagation and the German
group of systems. The second table, corresponding to systems published in

the 1990s, is divided into object-oriented systems and the rest.

12 Chapter 2. A Recent History of Image Interpretation

| Paper | Input | Method | Output Remark
Tropf images of ATN objects single thr.
1983 [64] objects LL
Bajcsy aerial ATN scene model single thr.
1985 [5] stereo pairs via user queries | LL
Nieman images of production rules | diagnostic multi thr.
1985 human over semantic descriptions HL
[51] heart net controlled by

sequence A* search
Dellepiane sets of slices | prod. rules brain single thr.
1987 from brain over semantic components LL
[23] tomography | net with hyp. &
test
Govindaraju | newspaper semantic net relates faces multi thr.
1990 images relates language | to caption HL
[33] to vision using text
hyp. & test.

Mulder sketch map local constraint labeled multi thr.
1987 encoded by | propagation over | map LL
[49] plotter cmds | graphs
Boddington | images constraint found cars multi thr.
1990 of cars propagation LL
[10] and ATMS
Schirra video user query driven | traffic single thr.
1987 traffic geometric descriptions HL
[61] sequences reasoner
Andre video bottom-up event | description of multi thr.
1988 sequences recognition with | soccer match HL BU
[4] of soccer transition net
Neumann video hyp. & test over | descriptions single thr.
1989 traffic semantic net of traffic HL.
[50] sequences events

Table 2.1: Survey of status of vision systems, pre 1990. Single thr. means single-threaded,
referring to systems that process no more than one hypothesis at any instant, as opposed
to multi thr.. LL means low level output, HL means high level output. All systems are
top-down except those labeled BU (bottom up). Note: for brevity, only the first author on
each paper is named.

2.4. Other Recent Systems

| Paper | Input | Method | Output | Remark
Draper natural concurrent region multi thr.
1989 images processes and labels LL OO
[27] blackboard (Sec. 3.2)
Feri visual & bottom-up region single thr.
1990 IR images geometric labels LL BU
[30] reasoning 00
Matsuyama | aerial views | hyp. & test objects single thr.
1990 of housing over Horn LL
[45] estates clauses 00
Bell car 0O Prolog objects single thr.
1992 [7] images extension LL OO
Bobick real-time lattice of desc’n | objects single thr.
1992 robot in finite state LL
[9] image machine, bottom BU

sequence up processing

Huang highway Bayesian belief traffic multi thr.
1994 traffic inference engine | situation | HL
[41] sequences desc’ns BU

13

Table 2.2: Survey of status of vision systems, post 1990. Single thr. means single-threaded,
referring to systems that process no more than one hypothesis at any instant, as opposed
to multi thr.. LL means low level output, HL. means high level output. All systems are
top-down except those labeled BU (bottom up). OO means object-oriented architecture.
Note: for brevity, only the first author on each paper is named.

Chapter 3

Foundations

In this chapter, we consider the foundations of some of the ideas used in the
design of our system SOO-PIN. We show how the three important strands
of: frames, logic programming and object orientation come together in the
language Parlog++, and how this is the optimal vehicle for our network-of-

frames.

3.1 Human Conceptualization

The systems described in the previous chapter, including the object oriented
ones, all have a rather monolithic design based on the sequential processing
paradigm. While this is legitimate, it does not capture the ways in which hu-
mans describe images, therefore alternative design philosophies are required.
From a psycholinguistics viewpoint, Lakoff[43] has pointed out that human
categorization cannot be defined in terms of “necessary and sufficient con-
ditions” (which we take to mean a conjunction of propositions), but rather
is explained in terms of “idealized cognitive models” (ICM). ICMs are ac-
tive structures (processes) that define categories in terms of prototype effects,
ie, objects are members of categories to the extent that they relate to the

prototype via the following:

e “frame-like” structures,

14

3.1. Human Conceptualization 15

e ‘“image-schematic” structures, which map between spatial con-
cepts having similar schemas, (for example, the container schema
refers not only to a cake in an oven and tea in a cup, but also to

categories and members),
e metaphor, or structural similarity,
e metonymy, or similarity of salient features or parts.

Lakoft’s ideas bear a striking resemblance to those of Herskovits [36], who
investigated the spatial prepositions at, in and on in English, and how they
were used. She went on to look at “projective prepositions” which relate one
object to another in space. She claims that knowing the objects and their
coordinates is not sufficient to select the appropriate preposition. Spatial
prepositions have “ideal meanings” which are qualified in the real world by
“sense shift” and “tolerance shift”. Sense shifts are discontinuous shifts to
another, conceptually close relation. For instance, the word on, whose ideal
meaning is that of support from below and contiguity, when used in the ex-
pression “the apple on the branch”, has been sense-shifted to mean support
from above and contiguity. Tolerance shifts involve gradual measurable de-
viations. For instance in the expression “the book is on the table” when there
is a table-cloth between the book and the table [36].

The ways in which objects relate to their ideal meaning, according to
Herskovits, is via the following:

e salience - referring to the part or aspect of an object that is
relevant in the context. For instance, “the queue at the counter”
refers to the salient part of the queue, namely the head of the
queue, being next to the counter rather than any other part of the

queue.

e relevance - aspect of relation to be emphasized in the context.
For instance, the expression “the light bulb is in the socket” uses

the word “in” to emphasize the bulbs function, ie, whether it will

16 Chapter 3. Foundations

work, rather than just its position, where the word “under” would
have been just as good.

e tolerance - how much deviation from the implied ideal varies with

context.

e typicality - similar to default reasoning. For instance, the ex-
pression “the fountain is behind the town hall” implies that the
fountain is near to or next to the town hall, but the ideal meaning
of “behind” does not involve proximity, proximity is the default

assumption.

Lakoff and Herskovits’ ideas suggest the need for mediating active and intel-
ligent agents operating between concepts in the system and the world. Below
we explore one scheme, namely frames, mentioned by Lakoff, for implementing
such agents.

3.2 Frames and Related Ideas

The notion of frame-like structures emerged in the mid 1970s and was crystal-
lized by Minsky[47] in his 1975 essay “A Framework for Representing Knowl-
edge”. In this essay he outlined an approach to the fields of both vision and
natural language processing based on the notion of a “frame”, which is a data
structure for representing a stereotyped situation. Attached to each frame are
“terminals” (or slots) in which specific information about the frame is stored.
Terminals can contain “demons” for calculating and validating information,
or default values, or links to other frames. If sufficient terminals find mis-
matched data, the frame may invoke another with better matching terminal
constraints. Thus, in a vision example, when entering an unfamiliar room, the
room frame terminals contain default values like left wall, right wall, ceiling
but with no details. The terminal demon for, say, the left wall actively seeks
out information to instantiate its values and, if necessary, activates the wall
subframe. If the wall demons cannot find good values, then the “room” frame

may be replaced by, say, a “backyard” frame. This system has elements of

3.2. Frames and Related Ideas 17

top-down and bottom-up control: bottom-up when a new frame is activated
or from the tension of a mismatched frame, top-down when a frame activates
its terminal demons.

Similar ideas put forward around the same time are Carl Hewitt’s “actors”
and Roger Schank’s “scripts”. An actor[37][38][70] is a potentially active
piece of knowledge (procedure) which is activated when it is sent a message.
Actors interact by sending messages to other actors, which can take place

concurrently. An actor system is defined by the following:
e what actors (objects) exist,
e what messages they receive,
e what they do upon receiving a message,
e what acquaintances (other known actors) each actor has.

Scripts[57][60] are stereotyped sequences of events in a particular context.
Scripts consist of a set of slots which have indications of the kind of data within
them and possible default values. Scripts differ from frames insofar as they
refer to specific events and the slots have specific information in them common
to such events, for instance, “entry conditions”, “results”, “props”, “roles” and
“scenes”. This formalism is based on Schank’s earlier work on “conceptual
dependency” — the idea that most events portrayed in natural language can
be expressed as graphs made up of a small number of primitive acts with
“dependencies” between them.

Frames, and the related ideas, were taken up by the natural language pro-
cessing community, but, until recently, vision applications have been limited.
However, a recent example in vision is SCHEMA, developed by Draper et
al[27]. In this system there are concurrent processes communicating through
a blackboard and the control is frame-based with structure matching and for-
ward chaining. This system is used to segment natural 2D images, but is not
concerned with high-level interpretation. It should be pointed out that in such
systems one needs to keep the interconnectivity between frames reasonably
low, or the time spent handling non-productive messages becomes untenable

18 Chapter 3. Foundations

as the cardinality of the system goes up. Blackboard systems are subject
to this, unless one introduces some kind of partitioning of the blackboard.
However, in this case, the blackboard system is then logically equivalent to a
network-of-frames with appropriate connectivity.

The systems of Bell and Pau[7] and SIGMA[45], do not qualify as
networks-of-frames because failure-driven backtracking is incompatible with
such an approach. That is, frames, as we define them, are message passing
processes that exist in real time and cannot directly retract (ie, backtrack) a
message once sent. For instance, if two modules A and B are in communi-
cation, and module A experiences a failure and backtracks to some previous
decision point, and if, in the meantime, it has sent a message to module B,
then in general the system state cannot be reverted to the state which existed
at the time of the decision point unless the effects of the message on B were
also backtracked. However, if this mechanism existed, then the independence
of the modules would be compromised.

In this thesis we develop an alternate implementation of Minsky’s frames
idea, involving a network of concurrent processes, each dealing with one con-
cept or aspect of the interpretation. One novelty of this system is that the
network is extended beyond the object recognition stage to higher-level con-
cepts based on interactions between objects and rules (knowledge, road laws,
etc) — for instance “car A gives way to car B due to road rule X”. This is
comparable to the level of output from Neumann’s[50] system which gen-
erates concepts like “car A is overtaking truck B”. However, in Neumann,
reported interactions between cars is limited to their spatial relationships and
do not refer to road rules or the drivers’ intentions.

Another novelty in this system is the use of an object-oriented concurrent
logic programming language for its implementation. This environment offers

several advantages:

e the high-level declarative nature of logic programming allowed a
fast prototyping of the system. It also provides symbolic process-

ing, and pattern matching.

e object-orientation reflects, to some extent, the active and modular

3.2. Frames and Related Ideas

nature of human concepts, as Lakoff[43] pointed out, and eases the

construction and modification of the system.

e concurrency allows a full and natural implementation of the fra-
mes concept. It also positions this system to take advantage of

parallel machine architectures.

19

20 Chapter 3. Foundations

3.3 Logic Programming

Logic programming (LP) effectively began with Robinson’s [59] discovery of
the resolution principle. This has since evolved through systems such as
Planner[39] to its best known manifestation, Prolog. This is a language based
on Horn clause logic (which is a subset of first order predicate calculus) and
the resolution principle with a failure-driven backtracking control mechanism.
However, Prolog does not exhaust the possible logic programming paradigms.
LP languages have different interpretations. For instance, Prolog can be inter-
preted declaratively, in which the program is regarded as a logical statement,
and its meaning is the set of ground formulae that its clauses imply; or pro-
cedurally, in which the program is regarded as a precise specification of how
the inference will be controlled through time. The procedural interpretation
of Prolog is single-threaded.

There is another class of LP, concurrent LP, where the language is a col-
lection of Horn clauses together with the parallel evaluation of a goal with
respect to these clauses. This class has a third interpretation based on the idea
that goals can be regarded as a system of concurrent processes. Concurrent
Prolog and Parlog[17] are such languages.

Parlog differs from (sequential) Prolog in how clauses are chosen for exe-
cution, Prolog executes each clause in a goal sequentially, backtracking and
trying the next clause upon failure. This is the basis of its depth-first search.
Parlog has a construct called the “commit” operator which delimits a “guard”
condition in a clause — since all the clauses of a goal can be tried concurrently,
the first clause for which the guard succeeds is committed to (ie, that clause
is selected for evaluation, the rest are ignored), with no backtracking. This
is called “don’t care” or “committed-choice” non-determinism as opposed to
Prolog’s “don’t know” non-determinism. This mechanism in which alternate
clauses are tried concurrently is an example of “or-parallelism”. Another con-
currency mechanism available in Parlog is “and-parallelism”, in which, when
a goal is dependent upon the conjunction of several subgoals, the subgoals
are evaluated concurrently.

To further elaborate the process interpretation of LP, below we relate

3.4. Object Orientation 21

process concepts to the corresponding logic programming concepts:

e a long-lived process corresponds to a goal which calls itself recur-

sively.

e A process state corresponds to an unshared variable that a recur-
sive goal passes to itself as an argument upon the recursive call
(and thus propagates values from call to call through time).

e Two processes in communication via a channel can be modeled
by a conjunction of such recursive goals sharing a variable (which
is itself a recursive data structure - ie, a list). For instance, one
process, called the producer, instantiates the head of the list to a
value, then calls itself recursively with the rest of the list (called
the tail) as an argument. The other process, called the consumer,
waits for the head of the list to become instantiated. When it is
instantiated, the consumer processes the head and then, like the
producer, calls itself recursively with the tail as an argument. See
Figure 3.1.

e Reply to a query (back channel communication) corresponds to
the producer sending an uninstantiated variable to the consumer
through the channel. Upon receiving the variable, the consumer

instantiates it to a value which is thus available to the producer.

In this way many of the properties of concurrent programming can be mapped
into Parlog|[58].

3.4 Object Orientation

The object-oriented programming (OOP) paradigm is a model for program-
ming based on the notion of computational objects which communicate via
message passing. This paradigm is similar to Minsky’s[47| frames and He-
witt’s[38] actors described above (in fact Hewitt was influenced by an early
version of SMALLTALK). OOP is characterized by the following features:

22 Chapter 3. Foundations

—
list

list
head

list
head

list
! =]

Figure 3.1: The communication channel in Parlog implemented using a shared list. On
the left the producer and consumer goals are shown, with their shared variable — the list
with its head — as the vertical line with the black disks. On the right is shown the result
of the evaluation of the two goals, with the producer instantiating the head to a value to
be communicated and then calling itself with the remainder of the list, and the consumer
processing the instantiated head and also calling itself with the remainder of the list. This
diagram has been adapted from [58].

e creating an object

e sending and receiving messages

e modifying an object’s state

e forming class-superclass hierarchies

Shapiro and Takeuchi[62] have shown how these features can naturally be

implemented in Concurrent Prolog through the following identifications:

e An object is a process that calls itself recursively and holds its

internal state in unshared arguments.

e Objects communicate with each other by instantiating shared vari-

ables.

3.4. Object Orientation 23

e An object becomes active when it receives a message, otherwise it
is suspended.

e An object can respond to a message either by sending the an-
swer back in another message, or instantiating an uninstantiated

answer variable in the message.

e Class hierarchies and inheritance can be formed using filters (Sha-
piro and Takeuchi [62]), which actively pass messages from a class
to the superclass when the method to handle a message is not

available in the class.

Parlog++[21] is an object-oriented extension to Parlog. The OOP features
(except for hierarchies and inheritance) described by Shapiro and Takeuchi
are built into the language so that the programmer can write object-oriented
code in a natural manner. As Shapiro and Takeuchi point out, their view
of objects is based on Hewitt’s actor model of computation, which in turn
is influenced by and influences Minsky’s frames model. Thus Parlog++ is
the most suitable language in which to implement our network-of-frames sys-
tem since it embodies the concurrent frame-based concepts required whilst
being a high level logic programming language with the consequent symbolic

processing and pattern matching capability.

Chapter 4

Architecture of SOO-PIN

In the last chapter, it was argued that the ideal image interpretation system is
a concurrent frame based network. It was also argued that a suitable language
in which to implement such a system is the Parlog+-+ language. What is now
required is a system concept and architecture. Hewitt’s [38] prescription for
defining an actor system (pg. 17), provides a guide for describing SOO-PIN,
as explained below. His first point, “what actors exist”, is now dealt with.

What is envisaged is a network of independent frames (which are here
called “concept-frames”), each dealing with an aspect of the overall interpre-
tation. To this end they communicate with other concept-frames, and also
access the (processed) image itself. Concept-frames store instances of the
concept it is concerned with (which are called “concept-instances”) as data
(as opposed to some object-oriented systems where instances are themselves
objects or classes). Each concept-frame carries its code (or methods, in OO
language) which determines its behavior.

The next two decisions in Hewitt’s list, “what messages the actors receive”
and “what they do upon receiving a message”, are now dealt with. The prob-
lem of what messages to convey around a network is similar to the situation
dealt with by Green [34] in the distributed artificial intelligence (DAI) con-
text. He deals with real-time systems in the area of robotics, and his system,
like SOO-PIN, also partly derives from the work of Minsky and Hewitt. In
his system, activation framework objects (AFO) form a community of experts

24

25

which communicate by means of message exchange. These messages come in

3 main types:

e automatic: if the AFO is given or deduces some new piece of
information, it will inform those AFOs that it knows and can use

this information.

e on-demand: one AFO can ask another about the current value of
an hypothesis, or can ask for the AFO to evaluate some data it is

sent, or data that it needs to acquire to respond to the request.

e suggestive: in this mode, one AFO sends a message to another
that results in a change in the activation level of the evidence for
or against some hypothesis that is in the domain of the second
AFO.

He points out that automatic messages correspond to forward chaining (or
bottom-up), and on-demand to backward chaining (or top-down).

In accordance with Green, SOO-PIN has two classes of message, query and
informative, which correspond to Green’s on-demand and automatic message
types respectively. The query messages contain queries like “list all concept-
instances of a certain concept-frame with a certain property” (called in SOO-
PIN an anyInst message), or “does a certain concept-instance have a certain
property” (the getVal message). The informative messages, in bottom-up
mode, inform concept-frames about the existence of a concept-instance in
another concept-frame, and suggests the recipient check specific relations re-
garding it (the check and create messages)'. The other informative message
simply updates specific concept-instances with new properties, and do not ini-
tiate any other activity (the updVal message). SOO-PIN has no analogy to
Green’s “suggestive” class of messages, as this relates to the scheduling mech-
anism used there, although it does bear some resemblance to the belUpd

message introduced later in Section 7.4.2.3.

Tt is worth noting that the informative messages have the effect of a spreading activation
through the network. This is analogous to the mechanism used in the system GRANT
(Cohen et al [53]) in which funding agencies are matched with funding applicants.

26 Chapter 4. Architecture of SOO-PIN

The final prescription in Hewitt’s list — “what acquaintances each ac-
tor has”, is reflected in SOO-PIN by the list in each concept-frame of other
concept-frames that are sent information in automatic (bottom-up) mode.
However, SOO-PIN allows concept-frames to react to messages from any-

where.

4.1 Procedural Description of SOO-PIN

In accord with the prescription given above, we now describe how SOO-PIN
behaves for a sample case in which the system recognizes a bicycle from low
level data.

When a concept-instance of the wheel concept-frame (see Figure 4.1) is
created —for whatever reason— it sends messages checkA to all associated
concept-frames (according to how the system has been connected to reflect
the domain knowledge, as per Hewitt’s acquaintance list) informing them of its
existence. These messages, in turn, prompt receiving concept-frames (ie, the
bicycle concept-frame) to check their “existence criteria”, possibly sending
inquiry messages inquiryB to other concept-frames to establish the criteria,
and, if successful, they create a concept-instance (ie, a bicycle instance). This
new creation, again, results in checkB messages being sent, for instance, to the
street concept-frame, and thus completing the loop. The existence criteria,
and messages sent as a result of existence, for all the interconnected concept-
frames in the system, constitute the “World Model” (as Bajcsy et al [5] call
it) — meaning the prior knowledge about the situation that gives meaning to
the low-level data in a given image. The specific state of the system as a
result of the low level data — the “Scene Model” [5] — is embodied in the list
of instances for each concept-frame.

As pointed out above, this architecture embodies both data-driven and
knowledge-based control, where the automatic (check and create) messages
represent the data-driven mode, and the on-demand (getVal and anyInst)
messages represent the knowledge-based mode, in that these messages are
prompted from the exploration of higher-level hypotheses. Using these two

4.1. Procedural Description of SOO-PIN 27

modes together avoids the large search space that results from using either
alone. For instance, knowledge-based control can entail exhaustive depth-
first search as the system begins searching at the top nodes of the search
tree, and must check all nodes down to the data level, usually with failure-
driven backtracking. On the other hand, data-driven search modes entail
combining all data in all possible patterns in order to explore higher nodes in
the search tree, and as Tsotsos [65] has pointed out in the area of vision, this
is NP-complete (meaning that it has exponential complexity). Our claim that
mixing top-down and bottom-up modes is more efficient than either alone, is
backed up in the area of linguistic parsing by Allen [2], who gives mixed-mode
chart parsing as an example.

N

—_
enquiry’

checkB

enquiryB

checkA

create

Figure 4.1: The SOO-PIN system concept: object concept-instance creations activate other
associated objects through sending “check” messages. These activations in turn prompt
further activations.

SOO-PIN requires a mechanism whereby a number of concept-frames can
communicate with each other. One means by which this can be arranged,
using a mechanism pointed out by Ringwood [58], is to use a central process

with which all concept-frames are in a client-server relationship. The output

28 Chapter 4. Architecture of SOO-PIN

channels from all these clients (the concept-frames) can then be merged to-
gether and input into the server. In SOO-PIN, this server process is called
the “switchboard”. Thus the function of the switchboard is to keep track of
the concept-frames’ input channels and redirect messages from one concept-
frames to another (see Figure 4.2). It is also the switchboard’s job to spawn
off new concept-frames as required. In Parlog++, spawning takes place
through invoking goals using and-parallelism, as mentioned in Section 3.3.
The concept-frames and switchboard also write output messages directly to

windows on the user console.

_— .
] e
\—

bicycle
_

whee

Figure 4.2: The implemented system architecture. Messages are relayed around the system
by being merged into the switchboard’s input channel, and then distributed to various
concept-frames (shown as rectangles). Ellipses represent other concurrent processes, and
arrows are message channels.

It should be pointed out that because SOO-PIN uses a network-of-frames
for its control-mechanism, and is implemented in a logic programming lan-
guage, it falls into Bunke’s [12] hybrid category of PC-SN (Predicate Calculus
— Semantic Net) in his overview of pattern recognition architectures.

Having sketched the structure of SOO-PIN, it is now necessary to fill it
out by considering some of the other constraints and requirements of the
system. One of the prime considerations with SOO-PIN is that it is not
simply a logic programming symbolic inference engine, but deals specifically

with image interpretation. Hence the following section is concerned with

4.2. Spatial Data 29

how spatial data is integrated into SOO-PIN. This theme is taken further in
the following section (Section 4.3) when we consider the interplay between
the spatial data of SOO-PIN and high-level concept-frames, especially those

of compound objects.

4.2 Spatial Data

If a compound object C is composed of objects A and B, then an object D
may be near C but not near A or B. That is, “nearness” depends on the scale
of the objects involved. This is not something that can be handled purely
symbolically, but must refer to the spatial data underlying the objects A, B
and D. Thus, when the system needs to instantiate the nearness predicate for
D and C, it first needs to determine the components of C, and then the com-
ponents’ spatial coordinates. If there is a deeply nested set of components the
system would need to search down the component tree for the components
with spatial data. This could be a large search and adds to the complexity of
the system. For this reason, in SOO-PIN, when a compound object is created,
an entry is inserted in the spatial database with the spatial coordinates of the
new object. These entries are calculated from the coordinates of its compo-
nents, and are used to calculate spatial predicates for compound objects in
the same way as for primitive objects.

Of course, the nearness predicate is but one of many potential spatial
predicates and, in general, the system could not store a large range of spa-
tial relationships as symbolic predicates. For instance, the system may store
the fact that objects A and B are near, but also requires to compute their
collinearity. In fact, as Herskovits [36] has pointed out, even the same predi-
cate can vary in meaning depending on the context — illustrating the need to
refer back to the spatial data. This is an important principle in the area of
computer vision (and other areas of Al as well), and relates to the necessity
of embedding cognitive systems in their environment in order to give meaning
to their symbols — situatedness. Situationists have made radical claims that

cognitive systems only use context for their representations, and that there

30 Chapter 4. Architecture of SOO-PIN

are no internal representations [16]. However, Slezak [63] has pointed out the
need to distinguish the representation used internally to implement cognitive
systems from that used for external communication, and how this clarifies
some of the situationists’ claims. However, in the context of SOO-PIN, this
reduces to noting the distinction between the representation of the spatial
data and the symbolic language of Parlog++-.

4.3 Compound Objects

High level concept-frames (for instance, compound objects) introduce an
“identity” problem. When a new concept-instance is to be created, the system
must check through existing concept-instances to see if the instance already
exists. The question of what constitutes a “unique key” to the concept-
instance can be subtle, and depends upon the domain (prior) knowledge of
the world. To further elaborate, if a system determines that a car exists at
some point in space, but there is already another car there, the knowledge
that only one car can exist at any given point would lead the system to iden-
tify the two. However, other objects can coexist in space, for instance, cakes
and ovens. This question of how ordinary objects work and interact has been
discussed by Hayes [35]. In SOO-PIN, each concept-frame has its domain
knowledge built in. Thus the “existence criteria” of concept-frames embody
the question of the identity of concept-instances.

Domain knowledge also comes into play in the case where “negative infor-
mation” is generated, for instance, from the deletion of a concept-instance.
Here the receiving concept-frame applies its domain knowledge to decide
whether any concept-instance critically depends upon the sender. If so, it
too is deleted. However, the situation becomes complex when evidence from
several sources justify the existence of the concept-instance. Deletion hap-
pens when, for instance, a bicycle is found to be joined to a third wheel (in
the case of a tricycle), or an existing component wheel is deleted (making
it a unicycle). This is an example of “non-monotonic reasoning” [46]. It

is not compatible with traditional predicate calculus, but in logic program-

4.4. Concept-Frame Structure 31

ming systems can be implemented procedurally. Humans use non-monotonic
reasoning often, for instance, when a default assumption is over-ridden by
subsequent information. Thus, in general, frame-based systems also deal in

non-monotonic reasoning because they too use slots with default values.

4.4 Concept-Frame Structure

This section defines the syntax of the data structures used in SOO-PIN
concept-frames and instances, and in the messages.

The concept-frame needs to store the concept-instances together with their
properties. The mechanism chosen to do this is the list, a data structure used
extensively in Parlog++, for instance, in implementing the data channel (see
Figure 3.1). Thus the concept-frame maintains a list of concept-instances,
which have the following structure:

inst(Id,PropList)

Here, each concept-instance has its identity string, Id above, and maintains
a list of its properties, be they unary or binary, as the PropList list. These
structures are further broken down in the following table:

Id = id(0bjectType, InstNumber)
ObjectType 1is the same as the concept-frame name
InstNumber is a unique identifier for the concept-instance

ProplList is a list of Prop

Prop = reln(RelnType,OtherId) or desc(Desc)

RelnType is any relationship, ie ‘‘near’’, ‘‘joined’’, ‘‘above’’
OtherId is the Id of the other party to the relationship

Desc is a structure giving a description, ie ‘‘colour(green)’’

Below is a schematic example of a typical concept-frame, showing its reac-
tion to received messages. The code can be read, between the “clauses” and
“end” statements, as a simple case statement (as in the language C), where
the system, upon receiving a message, searches down the list of clause heads
for one that matches the message. The clause body is then evaluated (not

shown here).

32 Chapter 4. Architecture of SOO-PIN

bicycle.
Out o-channel %output channel name
invisible InstList state, OutFile state
%state variables
initial open(bicycle.log,write,OutFile)
%activities when starting up concept-frame
clauses
create(Id,PropList)
% Concept-instance Id is added to InstList
%with its Props
check(composedOf)
%checks if a concept-instance should be created
check(Prop)
%checks if a concept-instance has relationship Prop
%with sender.
negCheck
%sender has been deleted,
%checks if a concept-instance should be deleted
%in turn.
inquiry(Id,Prop,FoundProps)
%Prop is searched for in concept-instance
%Id, and the answer bound to FoundProps
update(Id,Props)
%Props are added to property list of
%concept-instance Id
WrongMsg writeMy(OutFile,[WrongMsg]).
%default clause for erroneous messages
last
%clause to execute upon input channel close
end. %end of concept-frame

The first message received by the concept-frame activates the “initial” clause,
the persistent data of the concept-frame is stored in the “state” variables de-
fined in the “invisible” section, output messages to other concept-frames are
placed in the “o-channel” declared after the concept-frame name, user mes-

sages are written to the text file defined in the initial section. Erroneous mes-

4.4. Concept-Frame Structure 33

sages fall through to “WrongMsg” where they generate error text messages,
and finally, when the input channel closes, the “last” clause is executed.

In accordance with the parallelism of Parlog++, all the clauses in the
above code can execute in parallel, spawning a process for each message on
the input channel. They can also run sequentially, finishing one message
before starting the next. In SOO-PIN, the concept-frames run in parallel
with each other, while within a concept-frame, the code is implemented in
parallel for simple situations like sorting a list. Everything else is executed

sequentially.
Table 4.1 shows the action initiated by each message. This varies with the
logic built into each concept-frame, but these are the overall consistencies.

34 Chapter 4. Architecture of SOO-PIN

MESSAGE
ACTION
RESULTING MESSAGES
create(Id)
creates a concept-frame if it does not already exist
check message sent to associated concept-frames

check(composedOf)
checks if concept-instance already exists in relation
composedOf with sender.
If so, update sent to sender with this fact.
If not, then sends inquiry to associated
concept-frames to satisfy existence criteria.
checks if sender is a new component of existing instance
update sent to sender with this fact.
checks if this is a new concept-instance,
check sent to associates of new instance,
update sent to sender with “composedOf” Prop.
checks if any concept-instance should be deleted as a
result of this information,
negCheck sent to associates of deleted instance.

check(Prop)
checks if any concept-instance exists in rel’n Prop with sender
sends inquiry messages to determine this.

negCheck(Id)
informs receiver that Id has been deleted, may result
in deletion of this concept-frame.
If so, negCheck sent to associates.

inquiry (FoundList,Prop)
returns in FoundList a list of instances of this
concept-frame satisfying Prop, or list of
properties of specific instance satisfying Prop.

updval(Id,Prop)
updates Id with Prop properties.

Table 4.1: Table showing the actions performed, and the messages sent, by a concept-
frame as a result of receiving various messages. The received messages are shown in the
left column, the actions are given in the middle column, and the resulting messages in the
right column.

Chapter 5
Simple Scenarios

Having described the motivation and structure for SOO-PIN, we now consider
two simple implementations which demonstrate its power. First we deal with
the “cutlery” scenario, which uses no spatial database but calls upon pre-
defined relational predicates to drive the network. Second, we describe the
“wheels” scenario, which extends the implementation to include “negative”

information (see Section 4.3) in a more complex network.

5.1 Cutlery Scenario

Consider a camera observing a tabletop with various objects on it. We also
assume that the low-level vision problem of identifying and locating the var-
ious objects has been solved, and the job of SOO-PIN is to interpret the
image. The scenario (see Figure 5.1) consists of the primitive concept-frames
knife, fork, spoon and chopstick which are created initially from the low
level vision system. The higher-level stick_set embodies the concept of a
pair of near and parallel chopsticks, setting which deals with various combi-
nations of knife, fork and spoon, chinese_setting which similarly deals with
stick_sets and spoons, and at the top level is dinner and yumcha, which are in-
terpretations of the scene as a whole. Note that the primitive concept-frames,
ie, knife and fork, have no existence criteria as they are created directly from

the low-level data.

35

36 Chapter 5. Simple Scenarios

The spatial database in this scenario consists of various assertions about
which objects are near and parallel to each other, which is sufficient to group
the various cutlery pieces into “table settings”.

chinese
Setting

Com) (v

Figure 5.1: The cutlery scenario network-of-frames. The arrows refer to check (composed-

0f) and create messages, inquiry and update messages are not shown. stick_set refers
to a pair of chopsticks.

Creation of the primitive concept-frames (knife, fork, spoon and chop-
stick) results in the following messages:

5.1. Cutlery Scenario 37

knife:
check near to fork
check near to spoon
check composedOf to setting

fork:
check near to knife
check near to spoon
check composedO0f to setting

spoon:
check near to knife
check near to fork
check near to stick-set
check composedOf to setting
check composedO0f to chinese-setting

chopstick:
check near to spoon

check composedOf to stick-set

The next level in complexity is that of compound objects. Defining these
concept-frames requires more information, namely, the “existence criteria”,
the “uniqueness criteria” (ie, does the system add the sender to an existing
concept-instance, or create a new one), and the messages sent upon new
concept-instance creation.

Note that chopstick checks component-hood only with stick-set. Asa
single chopstick is not an acceptable implement in the chinese-setting, it
is the stick_set that behaves like a cutlery implement.

Existence criteria:
chopstick sending message is joined and
parallel to another chopstick
Messages sent upon creation:
check near to spoon
check composed0f to chinese-setting

Setting results from a knife, fork or spoon in certain spatial relationships:

38 Chapter 5. Simple Scenarios

Existence criteria:
sender is near and parallel to other knife, fork
or spoon.

Uniqueness criteria:
sender is not near and parallel to any cutlery
already in a setting.

Messages sent upon creation:
check composed0f to dinner.

Chinese-setting results from a stick-set and a spoon being in a certain

spatial relationship:

Existence criteria:
stick-set sending check message is near and
parallel to spoon.
spoon sending check message is near and
parallel to stick_set.

Uniqueness criteria:
sender is not near and parallel to any cutlery
already in a setting.

Messages sent upon creation:
check composed0f to yumcha.

Dinner is deduced from the activation of one or more settings:

Existence criteria:

Any setting passed.
Uniqueness criteria:

Any subsequent settings are added to the first dinner created.
No messages are sent upon creation as dinner is a top level production.

Yumcha is deduced from the activation of one or more chinese-settings:

Existence criteria:
Any chinese-setting passed.

Uniqueness criteria:
Any subsequent chinese-settings are added to the first yumcha
created.

No messages are sent upon creation as yumcha is a top level production.

5.2 Trial Runs of Cutlery Scenario

This first simple system was initialized with:

5.2. Trial Runs of Cutlery Scenario 39

create(id(knife,1)
create(id(fork,3)

and the “spatial database” was loaded with the following predicates:

near knife 1 fork 3
near fork 3 knife 1
parallel knife 1 fork 3
parallel fork 3 knife 1

When the system was run with this input, the following messages were passed
through the switch concept-frame. Note that messages are structured

msg(target ,message_body):

msg(knife,create(id(knife,1),[]1))
msg(fork,create(id(fork,3),[]1))
msg(knife,check(reln(near,id(fork,3)),.))

msg(spoon, check (reln(near,id(fork,3)),.))

msg(setting, check(reln(composedOf,id(fork,3)),.))
msg(knife,anyInst(2362,reln(near,id(fork,3))))
msg(fork,check(reln(near,id(knife,1)),yes))
msg(spoon,check(reln(near,id(knife,1)),.))

msg(setting, check(reln(composedOf,id(knife,1)),.))

10 msg(fork,updVal(id(fork,3), [reln(near,id(knife,1))]))

11 msg(knife,updVal(id(knife,1), [reln(near,id(fork,3))]1))

12 msg(knife,getVal(id(knife,1),reln(parallel,id(fork,3)),))
13 msg(spoon,anyInst(5847,reln(near,id(fork,3))))

14 msg(fork,updVal(id(fork,3), [reln(part0f,id(setting,4439))]1))
15 msg(knife,updVal(id(knife,1), [reln(part0f,id(setting,4439))1))
16 msg(dinner,check(reln(composed0f,id(setting,4439)),.))

17 msg(fork,updVal(id(fork,3), [reln(parallel,id(knife,1))]))

O ~NO UG WN -

©

As can be seen, the knife and fork sent check messages to spoon and
setting (messages 4,5), spoon had no reaction as there were none, but
setting reacted by sending inquiry messages (anyInst and getVal) to knife
to determine if any concept-instances were near and parallel to each other
(6,12). When setting was successful at creating an instance, it then sent
update (updVal) messages informing its components of their new status
(14,15,17). It then sent a check message on to dinner (16). Since dinner is

created from any setting, it, in turn, generated the following output message:

40 Chapter 5. Simple Scenarios

*dinner 1 consists of the following 1 settings
setting 4439 consists of the following pieces
fork 3
knife 1

no spoons, perhaps there is no desert!

It can be seen that the system generated a high-level interpretation on the
minimal input data by a process of each concept-frame dialoguing with its
associates. With this architecture it is quite easy to vary the response of the
system, and the high-level concept-frames are particularly relevant for this
purpose.

The next trial of the cutlery scenario involved an oriental meal. Here
the stick_set was introduced to demonstrate that the system coped with
a compound object that required updating the “spatial database”, allowing
other concept-frames to interact with it in the same way as for a simple object.

The system was initialized with:

create(id(spoon,1)
create(id(chopstick,1)
create(id(chopstick,?2)

and the “spatial database” was loaded with the following predicates:

joined chopstick 1 chopstick 2
joined chopstick 2 chopstick 1
parallel chopstick 1 chopstick 2
parallel chopstick 2 chopstick 1
near spoon 1 chopstick 1

near chopstick 1 spoon 1
parallel spoon 1 chopstick 1
parallel chopstick 1 spoon 1

When the system was run with this input, the following messages passed
through the switch:

o
%)

Trial Runs of Cutlery Scenario 41

O 00 ~NO O WN -

=
Ao

e e o
0 ~N OO WN

[y
©

20
21
22
23
24
25
26
27
28

29
30

msg (chopstick,create(id(chopstick,1),[]1))
msg(chopstick,create(id(chopstick,2),[1))
msg (spoon, create(id(spoon,1),[]1))
msg(stick_set,check(reln(near,id(spoon,1)),yes))
msg (knife, check(reln(near,id(spoon,1)),yes))
msg (fork,check(reln(near,id(spoon,1)),yes))
msg(chinese _setting,check(reln(composed0f,id(spoon,1)),.))
msg(setting, check(reln(composed0f,id(spoon,1)),yes))
msg(fork,anyInst([],reln(near,id(spoon,1))))
msg(knife,anyInst([],reln(near,id(spoon,1))))
msg(stick_set,anyInst(_10462,reln(near,id(spoon,1))))
msg(spoon, check(reln(near,id(chopstick,1)) ,yes))
msg (chopstick,updVal(id(chopstick,1), [reln(near,id(spoon,1))]))
msg(stick_set,check(reln(composed0f,id(chopstick,1)),.))
msg (spoon, check(reln(near,id(chopstick,2)),.))
msg(stick_set,check(reln(composed0f,id(chopstick,2)),))
msg(chopstick,anyInst(.598,reln(joined,id(chopstick,1))))
msg(chopstick,getVal(id(chopstick,2),reln(parallel,
id(chopstick,1)),.))
msg(chopstick,updVal(id(chopstick,1), [reln(partOf,
id(stick_set,4440))1))
msg(chopstick,updVal(id(chopstick,2), [reln(partOf,
id(stick_set,4440))1))
msg(spoon, check(reln(near,id(stick _set,4440)),.)),
id(stick_set,4440)),.))
msg(chopstick,updVal(id(chopstick,2), [reln(part0f,
id(stick_set,4440))1))
msg(chopstick,updVal(id(chopstick,1), [reln(parallel,
id(chopstick,2))]1))
msg(spoon,anyInst(3803,reln(near,id(stick set,4440))))
msg(stick_set,updVal (id(stick.set,4440),[reln(near,id(spoon,1))]))
msg (spoon,getVal (id(spoon,1) ,reln(parallel,id(stick_set,4440)),.))
msg(stick_set,updVal (id(stick set,4440), [reln(part0f,
id(chinese_setting,4441))]))
msg (spoon,updVal (id(spoon,1) ,reln(part0f,id(chinese setting,4441))))
msg (yumcha, check (reln(composed0f,id(chinese setting,4441)),.))
msg(stick_set,updVal (id(stick _set,4440) ,reln(parallel,id(spoon,1))))

It can be seen that amongst a number of messages from the spoon exploring

the dinner option (messages 8,9,10), the stick_set instantiated itself from the
chopsticks (14,16,17,18,19,20,22,23) and determined its proximity and paral-
lelness to the spoon (21,24,25,26). This involved updating the stick set
entry in the spatial database with the relationships of its components, the
chopsticks. The creation of the stick_set initiated the chinese_setting (27,28)

42 Chapter 5. Simple Scenarios

and thus the yumcha (29), which, at the end of processing, generated the
following story:

*yumcha 1 consists of the following 1 settings
chinese_setting 4441 consists of the following pieces
stick_set 4440
spoon 1

a lonely yumcha

Of course, with a real spatial database, the entry for stick_set need not simply
have inherited the relationships of the chopsticks, but could have generated
any appropriate entry. This initial prototype uses only symbolic predicates.
In summary, the cutlery scenario demonstrates how the network-of-frames
functions with a simple domain, for instance, the concept of mixed top-down
and bottom-up control, and concurrent execution of concept-frames, as is
evident from the messages passing through the switchboard. Although the
spatial data is here emulated with a symbolic list, this implementation also
demonstrates a compound object (the stick-set) deriving its spatial properties
from its components. In the next section the use of negative information (see

Section 4.3) is explored.

5.3 Wheels Scenario

In this scenario, it is assumed that the scene contains wheeled vehicles, the
job of the interpretation system is to deduce what the image is about on
the basis of what vehicles it finds. Once again, this is a symbolic system
only, in that the input consists of declarations of the primitive objects, and,
again, the spatial data consists of symbolic forms of their spatial relationships.
The vehicles under consideration are the unicycle, bicycle and tricycle. The
primitive concept-frames are the wheel and the seat. The interconnections
corresponding to the world model are shown in Figure 5.2. One reason for
introducing this scenario is to explore the operation of the negCheck message.

This arises from the unicycle concept-frame when it finds a second wheel

5.3. Wheels Scenario 43

attached to a unicycle instance. Another reason is to explore the scaling of
the system.

'circus ’ 'street ’ 'creche ’

cycle’ ' bicycle 'tricycle

/

Figure 5.2: The Wheels Scenario network. Boxes represent concept-frames and arrows
show where CHECK (composedOf) messages are sent.

The starting point is the wheel concept-frame. This is a primitive concept-
frame and is created directly. Upon creation, “check joined” messages are sent,
to seat and wheel, and “check composedOf” messages are sent to unicycle,
coplanar, coaxial and tricycle.

The seat concept-frame is similar, it too is a primitive concept-frame,
and when created sends “check joined” to wheel, and “check composedOf”
to unicycle, bicycle and tricycle.

Coplanar is a compound concept-frame and represents two or more wheels
that are joined and coplanar. Its existence criteria are that the wheel passed
to it is joined and coplanar with any other wheel. Upon creation it sends
“check joined” to seat and “check composedOf” to bicycle, provided there
are precisely two wheels.

Coaxial is similar to coplanar, as it represents two wheels that are joined
and whose axes are collinear. Upon creation, however, this concept-frame

sends “check composedOf” to tricycle.

44 Chapter 5. Simple Scenarios

Unicycle is created if a wheel is joined to, and under, a seat. It is deleted
if another wheel is added to the system. Upon creation (deletion) this sends
“check composedOf” (“negCheck”) to circus.

Bicycle is created if a coplanar has two wheels and is joined to, and
under, a seat. It is deleted if the number of wheels exceeds two. Upon
creation (deletion) it sends “check composedOf” (“negCheck”) to street.

Tricycle is created if a coaxial is joined and under a seat, and is joined
to another wheel, and is deleted if the number of wheels exceeds three. Upon
creation (deletion) it sends “check composedOf” (“negCheck”) to creche.

The remaining concept-frames are the high level interpretations of the
system, and correspond to “what the picture is about”, ie, if a unicycle is
found then a concept-instance of circus is created, similarly a tricycle results
in a creche and a bicycle a street. The higher-level concept-frames send

inquiries through the network and generate high level descriptions of the scene.

5.4 'Trial Runs of Wheels Scenario

In the trial run described below, a unicycle and circus was generated initially.
Then a second wheel was added. It can be seen how the system dismantled the
circus hypothesis and went on to generate the bicycle/street-scene hypothesis.

Firstly, the system was initialized with:

msg(seat,create(id(seat,1),[1)),
msg(wheel,create(id(wheel,1),[1))

and the database with:

below wheel 1 seat 1
above seat 1 wheel 1
joined wheel 1 seat 1
joined seat 1 wheel 1

Since many messages passed through the switchboard only a selected output

of the concept-frames are shown below:

5.4. Trial Runs of Wheels Scenario

wheel:

seat:

circus:

*created id(wheel,1)

*check relation joined from seat 1

*xupdate id(wheel,1) with [reln(joined,id(seat,1))]
xenquiry from id(wheel,1) re joined

*xenquiry from id(seat,l) re joined

xupdate id(wheel,1) with [reln(part0f,id(unicycle,4448))]
xupdate id(wheel,1) with [reln(below,id(seat,1))]

*created id(seat,1)

*check relation joined from wheel 1

*xupdate id(seat,1) with [reln(joined,id(wheel,1))]
xenquiry from id(wheel,1) re joined

*enquiry to id(seat,1) re reln(above,id(wheel,1))
xupdate id(seat,1) with [reln(partOf,id(unicycle,4448))]

unicycle:

xid(unicycle,4448) created from wheel 1
xcheck existing [id(unicycle,4448)] from seat 1

*circus 1 created from unicycle 4448

45

At this stage the system had deduced a unicycle from the single seat and

wheel, and from the unicycle deduced a circus scene. However, when another

wheel joined to the first was introduced, things became more complicated, as

shown below:

message to wheel:
msg(wheel,create(id(wheel,2),[1))

together with the spatial relations:

the system went on to

joined wheel 1 wheel 2
coplanar wheel 1 wheel 2
joined wheel 2 wheel 1
coplanar wheel 2 wheel 1
below wheel 2 seat 1
above seat 1 wheel 2
joined wheel 2 seat 1
joined seat 1 wheel 2

following concept-frames:

produce changes as reflected by the output of the

46 Chapter 5. Simple Scenarios

wheel:
xcreated id(wheel,?2)
xupdate id(wheel,2) with [reln(joined,id(seat,1))]
xenquiry from id(wheel,2) re joined
xenquiry to id(wheel,l1) re reln(coaxial,id(wheel,2))
xenquiry to id(wheel,1) re reln(coplanar,id(wheel,2))
xenquiry from id(wheel,2) re joined
xenquiry from id(seat,l1) re joined
xupdate id(wheel,2) with [reln(below,id(seat,1))]
xupdate id(wheel,2) with [reln(part0f,id(coplanar,4449))]
xupdate id(wheel,1) with [reln(part0f,id(coplanar,4449))]
xupdate id(wheel,2) with [reln(coplanar,id(wheel,1))]
*xid(unicycle,4448) removed from all relations

coplanar:
*check relation joined from wheel 1 not found
*check relation joined from seat 1 not found
xenquiry from id(seat,1) re joined
*check relation joined from wheel 2 not found
*xid(coplanar,4449) created from wheel 2
xupdate id(coplanar,4449) with [reln(joined,id(seat,1))]
xupdate id(coplanar,4449) with [reln(partOf,id(bicycle,4450))]
xupdate id(coplanar,4449) with [reln(below,id(seat,1)),

reln(below,id(seat,1))]

unicycle:
xdeleting instances id(unicycle,4448) composed of id(wheel,1)

circus:
*deleting instances composed of id(unicycle,4448)

bicycle:
xid(bicycle,4450) created from coplanar 4449

street:
*street 1 created from bicycle 4450

It can be seen how the unicycle found that the new wheel was joined to its
component wheel, which satisfied its delete criterion, thus it sent off negCheck
messages to its associates. Meanwhile, the new wheel formed the coplanar
compound with the original wheel, consequently the bicycle concept-frame
created an instance based on the coplanar being joined, and under, the seat.
Note how, like the stick_set in the previous scenario, this is an instance of
a compound inheriting spatial relations from its components, in this case the

5.5. Summary 47

coplanar inherited the wheels’ relations with the seat.

5.5 Summary

This chapter described two experimental implementations of the SOO-PIN
concept, the cutlery scenario and the wheels scenario. The first experiment
demonstrated, as expected, that the network-of-frames was able to come to the
correct conclusions for a simple example. The concept of mixed top-down and
bottom-up control, and concurrent execution of concept-frames was shown,
and it also demonstrated the “spatial database” ! being updated with new
relationships derived for deduced compound objects.

The second experiment, the wheels scenario, showed a more complex
network-of-frames which embodied an extra message, negCheck, to deal with
deleted objects.

Based on the same architecture for high-level interpretation, in the follow-
ing chapter we will discuss a more complex network for real scene interpreta-

tion.

lin this early implementation the spatial database was actually a list of spatial

predicates.

Chapter 6

Interpretation of Traffic Scenes

In order to test the capabilities of the SOO-PIN concept, the system is used
to interpret real images of outdoor scenes, in a context which is rich enough
to require an interesting network-of-frames, and yet constrained enough to
be tractable. The context chosen is that of traffic scenes. Here the images
are aerial views of city intersections (see Figure 6.1), taken by video. The
low-level processing is carried out to extract relevant objects (ie, cars) (see
Section 6.5). These objects are made available to the network in the form of
a spatial database and initiating messages passed to the low-level (primitive)
concept-frames. The traffic scenario was implemented in stages. Initially it
was implemented to run on single images, the low level data consisting of
labeled cars together with their centroid and major axis coordinates. Later,
the traffic scenario was extended to find and utilize the velocities of cars, and
the SOO-PIN system was extended to handle uncertainty. This chapter deals
with the initial traffic interpretation system.

The task of the network is to interpret vehicle activities (ie, vehicle A is
turning right from the west) and to produce analyses of the scene of interest
to, for instance, highway engineers and traffic light controllers. For example,

the ability to analyze image data for the following queries:
e whether the car is on the wrong side of road or intersection,

e when a car should give way to another. For instance:

48

49

Figure 6.1: Typical traffic scene processed by the SOO-PIN system

o give way to right at intersection,
© give way to oncoming when turning right,

¢ at T-intersections cars in ending road give way to those
on through road,

o at traffic lights or give way signs,
e traffic jams (ie, give-way deadlocks).

These concepts are incorporated in the network-of-frames shown in Figure 6.2,

which is discussed in more detail below.

50 Chapter 6. Interpretation of Traffic Scenes

glveWay

T

[glveWayToLeft |veWayToR| ghtj [glve\NayLeft glveWayToOnc glveWayUturnj

G i

/URN
\\

car / tinXn ? car / road
#

PRIMITIVE
inXn car road

Figure 6.2: The traffic scenario network-of-frames. The arrows refer to check or create mes-
sages, inquiry and update messages are not shown. inXn refers to “intersection”, tInXn to
“T-intersection”, rightTB to a right turn into the through-road of a T-intersection, carInXn
to the concept of a car in an intersection, carTInXn refers to a car in a T-intersection, and
carRoad to a car in a road.

6.1. Primitive Concept-Frames 51

6.1 Primitive Concept-Frames

The concept-frames car, inXn, tInXn and road correspond to the objects
either found by low level processing (see Section 6.5), or given (ie, intersection,
T-intersection and road are constant and input manually). These concept-
frames simply send check messages higher in the network, store information
about the concept-instances, and respond to queries about them (in much the

same way as the low-level concept-frames described earlier).

6.2 Turn Concept-Frames

On this level, carInXn, carTInXn and carRoad determine the containment of
cars in road structures (roads and intersections), ie, “car A is in intersection
B”. Upon receiving a message from a car or road structure concept-frame,
these concept-frames activate a procedural routine written in the C language
that read the spatial database and determine whether any of their instances
contained the car. This is done because the high-level interactions of a car
are dependent on the road structure.

When concept-instances of these concept-frames are created, a call is made
to a C routine, turn.c, to determine what the car is doing in the road struc-
ture. Because images of intersections are, in general, not taken from directly
above, this routine first uses an affine transformation that maps the inter-
section coordinates onto a square to normalize the car positions and heading
angles (using transformations derived from [69]). This transformation is also
useful because not all intersections are square, and so require to be normal-
ized. The various car activities, ie, right turn, left turn and straight from
the north, south, east and west, are unambiguously defined by regions within
a 3D product space of the normalized car positions and heading angles (see
Figure 6.3). This is analogous to the “spatio-temporal” buffer of Mohnhaupt
and Neumann [48] in which traffic events such as turning or overtaking are
represented as subsets of the “4D phase-space” of position, velocity direction
and speed. The “phase-space” used in SOO-PIN is of lower dimensionality,

being simply position and heading. The turn activity found by turn.c is sent

52 Chapter 6. Interpretation of Traffic Scenes

in a create message to the appropriate concept-frame, ie, right, rightTB
(turning right into the through road of a T-intersection), left, straight,
uTurn and illegal.

Note that heading angle, determined from the major axis of the car, con-
tains no information about which end of the car is the front. This is deduced
from within turn.c by assuming that cars are not heading in an illegal di-
rection on the road. This problem of determining heading angle is dealt with

directly by finding car velocities (see Section 8.1).

north
right from north
-
straight /
from east right from south
—€ —> +¢€ . +e —> 90-¢
degrees degrees

right from west

straight \

from south left from south
90— —>90+¢ | 90+ —> 180—¢
degrees degrees

Figure 6.3: Diagram showing how turn.c determines car activity from car position and
angle. Given that the car is in the south-west corner of the intersection, for the angle range
below each square, the system returns the activity as shown within the regions. The other 3
corners of the intersection work similarly. € is the maximum deviation from straight-ahead
that is accepted as straight, 6 degrees is used in the system.

Note that turn concept-frames have no existence criteria and so instances

are created by fiat. However, these are still useful concept-frames as they are

6.3. Give-Way Concept-Frames 53

a repository of information about what the various cars are doing, and can
be accessed by the usual inquiry messages from other concept-frames.

6.3 Give-Way Concept-Frames

When turn concept-instances are created, they send check messages to the
appropriate give-way concept-frames. These concept-frames check the context
of the car given in the message to see if any other vehicle is in a give-way
relationship with it. For instance, if the right concept-frame sends a check
message to the giveWayToOnc (give way to oncoming concept-frame, this first
determines the car’s heading, then checks the straight concept-frame for
any cars coming from the opposite direction — both in the intersection and
the adjoining road. If such a car exists, and the cars are close enough, and the
traffic lights do not override the give-way relationship, then a giveWayToOnc
concept-instance is created.

Upon a give-way concept-instance creation, a create message is sent to the
deadlock concept-frame, together with the identities of the two cars involved.
This concept-frame checks for cycles in give-way chains (for instance, if car
A gives way to car B, and car B gives way to car C, and car C gives way to
car A, then nobody can move), and if such a cycle is found reports a legal
deadlock or traffic jam.

The high-level interpretation of the network as a whole is generated by
deadlock and the give-way concept-frames and sent to a special output file.

6.4 Trial Runs using XFIG

Initially, the system was run on diagrams of intersections generated by XFIG,
a Unix drawing tool. This involved no low-level vision, just reading the XFIG
data file to find the road, intersection and car token coordinates. After this
point, the system ran in the same way as the full image system described

below. Figure 6.4 shows a simple situation in an intersection.

54 Chapter 6. Interpretation of Traffic Scenes

road 4

F"’rkﬁ road 3

car 3

I car 4

inXn 1
road 2

road 1

Figure 6.4: Diagram showing a schematic intersection used for testing SOO-PIN. Roads
and intersections are shown as line drawn quadrilaterals, and cars as grey filled rectangles.
Each object is labeled with an identifier used in the interpretation system. This scene
shows a simple give-way situation.

Shown below is output generated by selected concept-frames from the run
based on Figure 6.4.

output from car:
*created id(car,3)
*created id(car,4)
*check relation in from inXn 1
*check relation in from road 3 not found
*inquiry from id(road,3) re relation in
*check relation in from road 1 not found
*check relation in from road 2 not found
*check relation in from road 4 not found
*update id(car,3) with [reln(in,id(inXn,1))]
*update id(car,4) with [reln(in,id(inXn,1))]
*inquiry from id(road,1) re relation in
*inquiry from id(road,2) re relation in
*inquiry from id(road,4) re relation in

After the two cars were created, together with the roads and intersection,

6.4. Trial Runs using XFIG 55

they began by sending check messages exploring spatial and compositional
relations to the next level concept-frames, which can be seen in the check
messages above. Success is shown in the update messages where the two cars
were found to be in the intersection. The action then moved on to higher

concept-frames, of which the output from right is shown below.

output from right:
xinquiry regarding reln(composedOf,id(inXn,1))
xinquiry regarding desc(from(south))
xcreated id(right,4472)
xinquiry to id(right,4472) re desc(from(any))
*inquiry regarding reln(composed0f,id(inXn,1))
*inquiry regarding desc(from(east))
xinquiry to id(right,4472) re reln(composed0f,id(car,any))
xupdate id(right,4472) with [reln(part0f,id(giveWayToOnc,4473))]
xinquiry to id(right,4472) re reln(composed0f,id(inXn,any))
*inquiry regarding desc(from(north))
xinquiry to id(right,4472) re desc(from(any))
xinquiry to id(right,4472) re reln(composed0f,id(inXn,any))
xinquiry to id(right,4472) re desc(from(any))
xinquiry to id(right,4472) re reln(composed0f,id(car,any))
xinquiry regarding reln(composedOf,id(inXn,1))

After a couple of exploratory inquiries, one concept-instance of a right-turner
was created, as was a straight. These two objects caused the various give-
way concept-frames to begin generating inquiry messages, of which some can
be seen above. giveWayToOnc was successful, as can be seen from the update

message above.

output from giveWayToOnc:
xcheck relation composed0f from id(straight,4470)
xadding inst 4473 composed of id(straight,4470)
id(right,4472) id(car,3) id(car,4)
xcheck relation composed0f from id(right,4472)

giveWayToOnc was able to establish from the existence of id (straight,4470)
that there was a right-turner coming from the opposite direction, and which
was in range of it. Thus it created a new concept-instance, and generated the

following interpretation:

56 Chapter 6. Interpretation of Traffic Scenes

*xGive Way to oncoming: id(car,4) turning right from east
gives way to id(car,3) from west

Thus, briefly, it can be seen how the system was able to deduce the story
behind the picture by a process of independent agents each working on their
own concepts.

Below some more complex examples of SOO-PIN operating on XFIG di-
agrams of intersections are given, but because of the higher cardinality, it is
too space-consuming to show all the messages that move around the system,

so just the final interpretations are shown.

car5
car 6
road 2

(/ road 3
car 3
I car 4
car .
car 1l
inXn 1
road 2 [desc(north(red))]

road 1

Figure 6.5: Diagram showing a schematic intersection used for testing SOO-PIN. Roads
and intersections are shown as line drawn quadrilaterals, and cars as grey filled rectangles.
Each object is labeled with an identifier used in the interpretation system, the intersection
is also labeled with the traffic light status. This scene shows a give-way situation modified
by traffic lights.

The output from Figure 6.5 is shown below:

6.4. Trial Runs using XFIG 57

*Give Way to oncoming: id(car,2) turning right from west
gives way to id(car,1) from east

*Give Way to oncoming: id(car,4) turning right from east
gives way to id(car,3) from west

*Give Way to Right overridden by Traffic Sign red : id(car,6)
from north gives way to id(car,4) from east

It can be seen how the two right-turners have given way to the two straight-
throughers, and how the giveWayToRt concept-frame checked with the traffic
light status of the intersection to modify its report on the give-way situation

between id(car,6) and id(car,4).

F/ tinXn 1 road 3
[desc(west(red)),desc(east(red))]

car 3

car7

road 1

Figure 6.6: Diagram showing a schematic T-intersection used for testing SOO-PIN. Roads
and intersections are shown as line drawn quadrilaterals, and cars as grey filled rectangles.
The through road is east-west. Each object is labeled with an identifier used in the inter-
pretation system, the intersection is also labeled with the traffic light status. This scene
shows a rather complex and unlikely configuration intended to demonstrate the system.

Figure 6.6 shows a rather complex T-intersection in order to test the net-
work with many objects and interactions, and also shows the slightly modified

road rules that pertain in a T-intersection. The output is shown below:

58

Chapter 6. Interpretation of Traffic Scenes

xI1legal: car id(car,4) from east is on the wrong side
*Give Way to Left (T-inXn) overridden by Traffic Sign red :
*Give Way to oncoming: id(car,2) turning right from west
*Give Way overridden by Traffic Sign red : id(car,1) from
*Give Way to Right overridden by Traffic Sign red :

*Give Way to left-turner: id(car,2) turning right

of T-intersection id(tInXn,1)

id(car,3) from west gives way to id(car,8) from south
gives way to id(car,1) from east

east gives way to id(car,5) from south

id(car,1) from east gives way to id(car,8) from south

from west gives way to id(car,7) from east

The first novelty is that T-intersections generate an “illegal” report, as cars

should not appear as if they were doing a right or left turn into the blank side

of such an intersection. The other novelty (at least on Australian roads) is

that cars on the through road have priority over cars on the ending road, and

thus id(car,6) would normally have given way to id(car,3), except for the

case where traffic lights are present.

Figure 6.7 shows a section of road, with two cars id(car,7) and

id(car,8) traveling straight in opposite directions, and the rest of the cars

doing what the system interpreted as U-turns, ie, the cars were not parallel

to the road. The system interpretation follows:

*Give Way to Oncoming: id(car,6) U-turning gives way
to id(car,8) going straight

*Give Way to Oncoming: id(car,1) U-turning gives way
to id(car,8) going straight

*Give Way to Oncoming: id(car,1) U-turning gives way
to id(car,7) going straight

*Give Way to Oncoming: id(car,14) U-turning gives way
to id(car,7) going straight

*Give Way to Oncoming: id(car,14) U-turning gives way
to id(car,8) going straight

*Give Way to Oncoming: id(car,2) U-turning gives way
to id(car,8) going straight

*Give Way to Oncoming: id(car,2) U-turning gives way
to id(car,7) going straight

*Give Way to Oncoming: id(car,3) U-turning gives way
to id(car,7) going straight

6.4. Trial Runs using XFIG 59

car 8

road 1

car 14

carl

car 7

Figure 6.7: Diagram showing a section of road used for testing SOO-PIN. The road is shown
as a line drawn quadrilateral oriented north-south, and cars as grey filled rectangles. Each
object is labeled with an identifier used in the interpretation system. This scene shows a
rather complex configuration of cars in various orientations over a road.

60 Chapter 6. Interpretation of Traffic Scenes

6.5 Low-Level Processing

For the actual intersection data, the system ran on images recorded on video-
tape from a camera mounted above city intersections and the images were
digitized using an Abekas Digital Video system (in 720x576, 24 bit RGB for-
mat), see Figure 6.8(a). The subsequent low-level processing was performed
using the IPRS library of images processing routines [26] used in the Com-
puter Vision laboratory at Melbourne University. Background subtraction
was used for the detection of vehicles by subtracting an image of the corre-
sponding empty intersection (Figure 6.8(b)) from target views, that is, pixels
with less than a threshold difference in RGB (red-green-blue) space between
the empty and target images were set to zero, the rest to one, thus creat-
ing binary difference images (Figure 6.8(c)). These were then median filtered
(using a 3x3 window) [32] to remove noise and smooth edges. The resulting
regions were then separated into connected labeled regions using an “equiv-
alence tables” technique, and 4-connectedness (ie, the label of each pixel in
turn was compared with the labeling of it’s neighbours to the left and below
to determine whether to merge the labels or not), and then thresholded to
remove regions too small to be vehicles. Assuming that each residual region

!, region (vehicle) attributes were com-

corresponded to candidate vehicles
puted corresponding to centroids and best-fitting major axes (orientations)
(see Figure 6.8(d)). These values, together with the car identities and frame
numbers, for each image, were stored in a “spatial database” made available to
SOO-PIN. The (constant) intersection and road coordinates were also stored
in this database.

Note how in the example given in Figure 6.8, the dark car toward the top
right is lost before final recognition. This is inherent in the technique used,
a more sophisticated low level processing technique could have been used to
pick up these cases, but for the purpose of this study the current technique

was sufficient for “proof-of-concept” of the system.

L As will be seen, one benefit of the symbolic approach is that inappropriate segments
can be checked for their consistency, updated or deleted by the symbolic analyses

6.5. Low-Level Processing 61

Another inadequacy of the technique used is that it required manual se-
lection of the empty intersection, which, in a real world system, would have
to be done every few minutes to cope with changing lighting conditions. A
technique that could have been used to generate empty intersection images
automatically is to use a form of median filtering over time, ie, from contin-
uous video of the scene, save 5 images from the last, say, 10 minutes (long
enough for the traffic lights to cycle twice). Then for each output image pixel
choose the median of the corresponding pixels in the 5 saved images. Since
most parts of the scene are free of cars most of the time, this yields an image

of an empty intersection.

62 Chapter 6. Interpretation of Traffic Scenes

5.

s _Eﬂ
.k
L

2

T

Figure 6.8: Processing steps of real image: (a) Original image of intersection (b) Empty
intersection (c¢) Raw differenced binary image (d) Median filtered, size filtered and labeled
image, the lines on the cars are the major axes, the skew rectangle is the intersection

boundary (determined manually).

6.6. Trial Runs on Real Images 63

6.6 Trial Runs on Real Images

Using the image shown in Figure 6.8 as input into the traffic network described

above yields the following interpretation:

*Give Way to oncoming: id(car,c5.116) turning right from west gives
way to id(car,c3.116) from east.

*Give Way to left-turner: id(car,c5.116) turning right from west
gives way to id(car,c4.116) from east.

*Give Way to oncoming: id(car,c5.116) turning right from west gives
way to id(car,c2.116) from east.

*Give Way to left-turner: id(car,c5.116) turning right from west
gives way to id(car,cl1.116) from east.

*Give Way to left-turner: id(car,c6.116) turning right from east
gives way to id(car,c7.116) from west.

It can be seen how the system has interpreted id(car,c4_116) as a left turner,
when clearly it was going straight ahead. The trouble was that the car was
partly obscured by a tree, and thus the major axis of the car was skewed.
This resulted in the left turn interpretation. Later in this study, this problem
is rectified by the detection of car velocity.

The next example used an image from another intersection (see Fig-
ure 6.9), taken from a much lower camera resulting in an oblique view. This
image demonstrated the usefulness of normalizing the image with an affine
transformation onto a square. Potential problems with such normalization
are that, firstly, it will not work if the images of the cars overlap due to per-
spective. Secondly, it has the effect of moving the centroid of the cars, when
projected onto the plane of the intersection, further away from the camera.
Both of these effects limit the amount of obliqueness, and thus the minimum
height of the camera, that is acceptable.

The interpretation generated from Figure 6.9 is as follows:

*Give Way to left-turner: id(car,cb5.150) turning right from west
gives way to id(car,c1.150) from east.

64 Chapter 6. Interpretation of Traffic Scenes

Figure 6.9: (a) Original image of intersection (b) Median filtered, size filtered and labeled
image, the lines on the cars are the major axes, the skew rectangle is the intersection
boundary (input manually).

This is correct, as judged by eye, but it is not the full story. It can be seen
that car id(car,c4_150) was also turning right, but because its major axis
was roughly aligned with the road, it was labeled as a car traveling straight
ahead.

6.7 Traffic Trial Summary

In this chapter we have demonstrated the SOO-PIN concept implemented in
a traffic scenario. This has been a useful exercise as this involves quite a
complex network of frames to implement. Initially, it was implemented to
run from XFIG diagrams, which demonstrated the capability of the system
over a broad range of input situations. It was then shown how the system
runs on real images, which, while more complex to process initially, results
in simpler, more restricted traffic situations (in general, when videotaping
traffic, one very seldom, if ever, sees an interesting traffic law violation). It

was found that the system performed quite satisfactorily on these images,

6.7. Traffic Trial Summary 65

producing interpretations that the human observer would make.

Some limitations of the system resulted from using the orientation (major
axis) of the cars, with their position in the intersection, to judge their heading
and activity. This resulted in some inaccuracy in judging the direction the
car was heading with consequent misinterpretation of the car’s activity. This
could be partly rectified if the velocity of the vehicles could be determined,
which will be dealt with in a later chapter.

Another potential problem is the number of context dependent numerical
thresholds involved in the implementation, for instance, the allowable angle
that a car can be offset from straight ahead before it is judged to be doing
another activity. This calls for some kind of measure of confidence in the
judgments made within the various concept-frames to be passed around the

network in the messages. This is dealt with in the next chapter.

Chapter 7

Uncertainty

7.1 Introduction

In vision systems, uncertainty comes from a number of sources. For instance,
low-level object detection can return belief values deriving from identifying
a given segment as a certain object, spatial predicate instantiation can re-
turn uncertainty from mapping continuous variables onto symbols, and high-
level systems can involve uncertainty in deriving one proposition from others
through such processes as induction. In SOO-PIN, there is a need to cope
with uncertainty, at least to the extent of tracking it from predicate to predi-
cate so that the final interpretations reflect the degree of uncertainty involved
with their derivations.

There are two broad approaches to using uncertainty calculi in networks,
the Bayesian approach and the Dempster-Shafer (DS) approach. The first is
described by Pearl [52]. He shows how a network of nodes (in this case Markov
trees) propagates belief. In this approach, each node represents a variable
whose possible values are assigned probabilities (a frame of discernment),
connected by links with the conditional probabilities expressed as a matrix.
He distinguishes evidential support from causal support, which, in general,
convey belief in opposite directions. In acyclic networks it is important to
make that distinction as it prevents a change in probability at one node feeding

back on itself and giving itself credence. One application of this approach

66

7.1. Introduction 67

is that of Huang et al[41] who use a Bayesian belief network and inference
engine (HUGIN][3]) in sequences of highway traffic scenes to produce high-level
concepts like “lane_change” and “stalled”. A tool using Bayesian networks
based on Pearl’s ideas is BaRT [40] which is used to classify ship images.
Bogler [11] has pointed out that in the case of data fusion and object

recognition, the Bayesian approach has limitations, namely:

e sensors provide information at varying levels of abstraction, and,
for instance, if a sensor says “the target is of type A, B or C”
(where A, B and C are possible targets), with a certain probability,
the Bayesian approach forces the system to divide the probability
equally between the three types.

e the sensors are required to have a complete and accurate knowl-
edge of both the prior probability distribution and the conditional
probability matrices. If they do not have this data, the Bayesian
approach forces them to guess.

e if sensors give contradictory readings, the Bayesian approach has
no formal means of dealing with this. The usual solution is to

distribute various likelihoods where they are unknown.

Bogler shows how the Dempster-Shafer approach solves these difficulties, and
how this approach is used for target recognition.

Lowrance et al [44] in a report on evidential reasoning systems for the US
navy, like Pearl, deals with Markov trees that convey belief bidirectionally, in
this case from a Dempster-Shafer perspective (DS is explained further in Sec-
tion 7.2 below). In Lowrance’s system, each node is associated with a “frame
of discernment” where belief is expressed in the form of a mass distribution
over the set of subsets of the frame. Links are in the form of “compatibility
mappings” between the sets of subsets of the respective frames of discernment,
and thus play the role of Pearl’s conditional probability matrices. A pair of
nodes will have a compatibility mapping in each direction, and they are, like
Pearl, careful to avoid positive feedback (which would result in propositions

supporting themselves). A number of systems have been developed using the

68 Chapter 7. Uncertainty

Lowrance approach. For instance, Garvey [31] describes a helicopter route
planning system in which each pixel of a topographic map is attached to a
network of nodes representing such things as vegetation cover, terrain type,
visibility and overall danger.

Wesley [67] presents a system for labeling regions of 2D monochro-
matic scenes using Dempster-Shafer evidential reasoning — as described by
Lowrance. He limits the frames of discernment to the interpretation of given
regions, and discusses independence of evidence, noting the differences be-
tween the DS and Bayesian interpretation. Wesley argues that it is necessary
to develop a formal model to account for dependencies between knowledge
sources, — a poignant issue which he does not pursue.

Baldwin [6] describes a system (FRIL) which uses the basic Dempster-
Shafer formalism in a logic-programming inference system. This system is to
be distinguished from the approaches of Pearl and Lowrance in that it does not
deal with combining evidence within a frame of discernment, but rather with
combining belief between independent propositions. Later (Section 7.4.1) we
will show how this approach is particularly useful for vision.

The Dempster-Shafer uncertainty calculus is discussed below in more de-
tail, along with some verifications of Baldwin’s results which were not shown
in his original paper [6]. Following this, some criticisms and caveats regarding
Baldwin are dealt with, and the chapter finishes by showing how uncertainty
is implemented into the SOO-PIN system.

7.2 Dempster-Shafer Theory

Like Bayesian uncertainty calculus, Dempster-Shafer uncertainty calculus
starts from a set of exhaustive and mutually exclusive propositions in a “frame
of discernment”. Again, as in Bayes, there is an assignment of weights, but
in this case the weight is assigned to sets of these propositions, including the
set of all the propositions in the frame of discernment. This formulation al-
lows for an expression of degrees of ignorance. For instance, if the frame of

discernment is a set of possible burglars, then if the burglar is found to be

7.2. Dempster-Shafer Theory 69

male, then a weight can be associated with the set of all male burglars. In
Bayes, without prior knowledge, one would have to give an equal increment
of weight to each individual male burglar, thus implicitly providing more in-
formation than we actually have. This weight assignment is called a “mass

distribution”, and obeys the following:

m:2° — [0,1] (7.1)
AZ@TTL(AZ) = 1
@) = 0

where O is the frame of discernment, and 2© is the set of all subsets of ©.
Uncertainty of a proposition P is interpreted via its “support” and “plau-
sibility”. The support is given by the sum of all the weights attached to

subsets of the proposition, ie:
S(P) =Y m(4) (7.2)

The plausibility of a proposition P is the difference between certainty and the
support of =P, ie:
P(P)=1-8(—P) (7.3)

The support and plausibility are referred to below as the “belief pair” or
“belief interval” of a proposition.

Since the sum of all weights is unity, then S(P) + P(P) < 1 (Lowrance et
al [44, p7]). If in a degenerate case each and only singleton propositions are
given weight by the mass assignment, then the belief pair [S,P] has the one
value § = P and is equal to the Bayes probability. In this way Dempster-
Shafer uncertainty can be viewed as a superset of Bayesian probability. Pearl,
however, views DS as philosophically quite distinct to Bayes, namely, that the
DS belief values deal with the probability of the provability of propositions,
whereas Bayes deals with the probability of the truth of them. In Pearl’s
view, a model for DS is provided by thinking of each frame of discernment

as having a timer that assigns “truth” to each proposition for a fraction of

70 Chapter 7. Uncertainty

the time corresponding to the value of the mass of that proposition. One
then finds the logical outcome of the assignments for each time instance, and
ascribes mass to the outcomes by the proportion of the time they are true.

This model produces the required DS calculus as described below.

7.2.1 Combining Evidence within a Frame of Discern-

ment

If we have evidence for a proposition P in the form of a mass distribution
m; and other independent evidence in the form my, then Dempster’s rule of
combination [24] allows us to calculate the combined mass distribution msg

reflecting the combined evidence for P:

ms(P) = my & my(P) (7.4)
= 1 i n ;_P my (A;)ma(A4,)
Kk = AZA:% m1(Ai)ma(A4;)

The factor k is referred to as the conflict between the evidence represented
by m; and my (Lowrance et al [44, p8)), ie, if there is conflict, there are pairs
of sets with mass assigned by m; and msy respectively with no intersection.
This rule allows us to find the combined weight of evidence for an hypoth-
esis from various sources. For instance, if one source of evidence suggests that
a burglar is male with a mass distribution giving weight to the subset of males
(of, say, 0.8), and another source gives weight to the subset of redheads (of,
say, 0.7), then we can use Dempster’s rule to calculate the combined mass and
possibly suggest the culprit. Assuming the males are Alex, Bill and Chris,
and the redheads are Chris and Diane, then using Equation 7.4, we need to
calculate mgs given the two distributions from the evidence, namely m; giving
weight 0.8 to males and 0.2 to ® (all the suspects), and my giving weight 0.7
to redheads and 0.3 to ®. From Table 7.1 it can be seen that the only non-
empty intersecting subsets of the two distributions are Chris, male, redhead

7.2. Dempster-Shafer Theory 71

‘ N H male ‘ (0] ‘
redhead || Chris | redhead

(0] male | ®

Table 7.1: Evidence combinations for the burglar example. This table shows the non-empty
intersections of subsets assigned non-zero weight by each evidence source. ® represents all
the suspects, male is the set of males, and redhead is the set of redheads.

and ®. There are no empty intersecting sets, therefore x = 0 and = = 1.
The calculation of mjs is as follows:

1
mg(Chris) = R (male) x mo(redhead) = 0.8 x 0.7 = 0.56
1
ms(redhead) = T * m (@) *x mo(redhead) = 0.2 x 0.7 = 0.14
1
mgs(male) = [¥ (male) * mo(®) = 0.8 0.3 = 0.24
1
ms(®) = Tt my (®) * mg(P®) = 0.2% 0.3 = 0.06

(7.5)

It can be seen that the highest belief in the combined evidence is for Chris as
the culprit, with a weight of 0.56.

7.2.2 Combining Independent Propositions

Dempster-Shafer works well in situations where the frame of discernment is
clear, with evidence bearing upon this frame of discernment from indepen-
dent sources. However, as explained in Section 7.4.1, in Computer Vision,
frames of discernment are quite simple, but evidence bears upon independent
propositions. Therefore it is necessary to consider Baldwin’s [6] work, where

he deals with belief assigned to independent propositions. In this section a

72 Chapter 7. Uncertainty

result shown by Baldwin in which he combines belief intervals of two propo-
sitions in independent frames of discernment is justified. Another reason for
exploring this is that not only is his approach compatible with vision, but
such combinations fit nicely within logic programming. For instance, a typ-
ical Horn clause might be P < A A B (P is proven if both A and B are).
To include uncertainty one can use Baldwin’s combination of independent
propositions rules to compute the uncertainty of P given the uncertainty A
and B.

Given two propositions A and B with belief intervals [S(A),P(A)] and
[S(B),P(B)], then Baldwin’s combination rules are, firstly, conjunction:

S(AUB) = S(A)+S8(B) — S(A).S(B) (7.8)
— P(A).P(B) (7.9)

As can be seen, these rules are very similar to the equivalent Bayesian rules.
These rules allow propagation of uncertainty values through a network, each
node passing a belief pair in a message to other nodes which can calculate
the belief pairs for various logical statements. Of course, as explained in
Section 7.3, it is important to ensure that the network contains no dependency

loops, since this breaks the precondition for the combination rules.

7.2.2.1 Conjunction Rule

In his paper [6], Baldwin did not derive in detail the conjunction in the com-
bination rule Equation 7.6. This rule is now justified.

If proposition B is in Frame of Discernment ® and proposition A is in
Frame of Discernment ©, and we have S(B) and S(A), then we want to know

S(AN B). In order to combine propositions in independent, “orthogonal”

7.2. Dempster-Shafer Theory 73

Frames of Discernment we need to work in the cross product frame © x .
From the definition of the support of a proposition given in Equation 7.2,

S(B) = Y ms(X) (7.10)
then
S(B) = ma(X1) + ma(Xz) - - - ma(X5y)

where my(X;) are non-zero, and my is the mass assignment for the frame &.
Similarly for A:
S(A) = mi (Y1) +mi (Y2) - - -ma (V)

From the same definition,

SANB)= Y ma(X)

XCANB
XNYCANB

Since the only mass carrying members of © x ® are sets of the form X x &N
Y x O where X CO and Y C &,

Y]

from the enumerated non-zero mass subsets of © and ® given above.
Now from the definition of combined mass assignments given in Equa-
tion 7.4,

1

ms(X; x NY; x ©) = > my(V).me (W)

L =& v onwxe=xixeny; xo

= m1(X;).ma(Yj)

as there is only one pair V' x ® N W x © equal to X; x ® NY; x O, namely

74 Chapter 7. Uncertainty

themselves. The k is 0 as

K= > mq (V).mo(W) (7.11)

VX®NW xO=¢

and V and W are orthogonal and always have non-zero intersection.
Thus
A N B Z m1 Y})

= m(X Zm2

= S(A).S() (7.12)

again from the definition of the Belief function.

7.2.2.2 Disjunction Rule

For disjunction (Equation 7.8) we can assume without loss of generality that
the mass distribution in ® is limited to mq(B), mo(—B) and my(®) as the
mass of all other subsets can be subsumed under the total frame ®, similarly
for ©. This means S(B) = my(B), S(=B) = my(—B) and S(®) = my(P) =
1 — mgy(B) — my(—B) (this latter because mass distributions must sum to 1).
Thus support for B is my(B), plausibility of B is 1 — mq(—B), and doubt
about B is 1 — my(B) — mo(—B).

To deal with the disjunction AUB it will help to use the following Table 7.2.
The masses assigned to the sets in the table are calculated from Equation 7.12.
These values follow clearly from the conjunction rule above, except for the
cases involving © or . An example is shown below:

SAN®) = > ma(X)

XCAN®

which since the only non-zero mass subset is itself

