9.3. Summary of Results 117

(a) (b)

Figure 9.10: Swanston & Faraday Sts., frame 242. (a) Cars in intersection, original image.
(b) Cars found by system, with orientations given by lines through cars, and their labels.
Intersection boundary input manually, north is up. The interpretation follows:
*Give Way to oncoming: id(car,c2-242,bel(1,1)) turning right from west should have
(but hasn‘t) given way to id(car,c1-242,bel(1,1)) from east : bel(0.40,0.97)

118 Chapter 9. Runtime Results

oW,

. 25
"’“"”"’"’---,' ’ v

(a) (b)

Figure 9.11: Swanston & Faraday Sts., frame 316. (a) Cars in intersection, original image.
(b) Cars found by system, with orientations given by lines through cars, and their labels.
Intersection boundary input manually, north is up. The interpretation follows:
*Tllegal: car id(car,c5-316,bel(1,1)) from east is doing a right turn on the wrong side
of id(tInXn,1,bel) : bel(0.72,0.78)

Chapter 10
Conclusion

The philosopher Dan Dennett has described in [25] his concept of how con-
sciousness is a product of a network of interacting agents, none of which is the
“center” or “seat” of consciousness. In this book we have demonstrated a sys-
tem for interpreting images which, likewise, has no central controller. Rather
it is a network of interacting (peer) agents, which, nevertheless, produces sto-
ries about images. This is a far cry, of course, from consciousness, but it
does demonstrate how interesting high-level concepts can be generated from
low-level data through networks of agents. In this book, the agents (concept-
frames, or in Hewitt’s language, actors) behave as Hewitt prescribed [38].
The relationship with Minsky’s frames [47], is also close, but his slots (or
terminals) are not explicitly implemented in SOO-PIN, their role is taken by
property lists attached to each concept-instance. Together with the high-level
logic programming language in which SOO-PIN is implemented, property lists
provide a flexibility well suited for building a wide variety of concept-frames
necessary in a rich domain. At an engineering level, the SOO-PIN system
has demonstrated that an Object-Oriented Concurrent Logic Programming
approach is a viable means of producing useful image interpretation systems.
Another capability shown to be feasible by SOO-PIN is the use of a form
of Dempster-Shafer uncertainty calculus, which was shown to convey useful
uncertainty values through the network and produce intuitively reasonable
uncertainty values at the final interpretation stage.

119

120 Chapter 10. Conclusion

At the level of the traffic scenario, the system generated reasonable high
level interpretations which would be suitable for input into a number of sys-
tems, for instance, quite sophisticated traffic intersection statistics could be
accumulated, which would be of use to highway engineers. It would not take
too much extension to connect such a traffic interpretation system to actual
traffic light control and adjust the lights as a function of the types of driving
behaviors detected. In fact, in conjunction with a street-level camera, the
system could detect and report more complex illegal movements of cars as
part of a traffic law infringement system.

Clearly, the present traffic implementation has many limitations. For in-
stance, the background subtraction technique for low-level processing is crude,
and results in problems with shadows and obscuration by overhanging struc-
tures, and limits the obliqueness of the view to the near vertical (see Fig-
ures 9.5 9.6 9.11). The system would be more robust with an intelligent
object recognition system, such as one based on evidence-based techniques
[13][8]. Output from such low-level processors should include uncertainty
values which could be incorporated with the uncertainty measures currently
propagated through SOO-PIN.

Improvements to the traffic implementation could also be made in the
range of concept-frames. For instance, the system was not developed to detect
whether a car was intending to turn left or right while still in the road next
to an intersection. Also, the whyStopped concept-frame could be extended
to reason that cars stop because the car in front is blocking the way. The
system could also be extended to deal with other legally significant entities
like pedestrians, trams and emergency vehicles.

The uncertainty measure propagated through the system could be im-
proved by making the system more reactive to it, for instance, eliminating
hypotheses that have a belief below a certain threshold. The belUpd message
is a useful means of dealing with negative information (ie, the deletion of
concept-instances) and of updating belief values around the network. This
could have been implemented for the traffic scenario, except that, in some
ways, the traffic scenario was quite simple, and there was no situations where

121

hypotheses need to be deleted. Another improvement would be to map the
uncertainty values onto English phrases (hedges) for output, and it would be
an interesting problem to determine the most reasonable English phrases for
the various combinations of support and plausibility output by the system.

Future work for the SOO-PIN system also includes extending the network
of frames into low-level processing, creating concept-frames concerned with
segments, image attributes, labeled regions and objects. With such a system,
it would be possible to re-segment portions of the image where high-level
concept-frames expect to find objects (ie, cars) while varying the segmentation
parameters. This would be similar to the techniques used in Schema [27],
Sigma [45] and that of Bell and Pau [7].

In the traffic scenario, SOO-PIN was working on sparse images derived
from video image sequences. An obvious extension would be to deal with
the sequence in its entirety. This would require a fundamental rethink of the
architecture of the system, involving concepts of short-term and long-term
memory, time-varying versus static objects, and a different form of output
(whereas currently the system outputs interpretations when it has finished
running, there would need to some way of determining when was the right
time to generate output if it was running over a long sequence).

Finally, for the programmer, a useful improvement would be a graphical
user interface (GUI) for building the system, similar to the system employed
by Garvey [31] for his belief network. The current system was built using the
high-level logic programming language Parlog++, which greatly facilitated
the process, but it would be good to avoid the need for future programmers
to learn this language. If there was a suitable GUI in which the logical nature
and relationships of each concept-frame could be defined, then the Parlog++
code could be compiled from it. More speculatively, and in keeping with
Cognitive Science, it would be a significant development if Machine-Learning
could be involved in the construction (or evolution) of the network of concept-

frames.

Appendix A

Parlog++ Procedures

In this appendix we list selected code in the Parlog++ language used in SOO-
PIN.

A.1 Switchboard Source Code

The first source code example is the switchboard which controls message flow
around the network, and spawns new concept-frames as needed.

/* PARLOG++ ’switchboard’ that accepts messages on the input stream
and routes them to the appropriate concept-frame. If not found,
it spawns the addressed concept-frame. */

switch.
InStr istream, WriStr ostream

invisible ProcList state <= [], ObjType state <= switch,
MsgCount state <= 0

clauses

InStr: :msg(NameTo,Msg) =>
find_name(ProcList,NameTo,ProcInput,PLshort):
%debug, inq next line
ProcInput = [Msg|ProcInputl]&
WriStr: :msg(NameTo,Msg)& /*debug*/
%writeMy(OutFile,msg(NameTo,Msg))&
Count is MsgCount + 1,

122

A.1. Switchboard Source Code

InStr:

InStr:

InStr:

InStr:

InStr:

InStr:

writeCount (Count)&
MsgCount becomes Count&
ProcList becomes [proc(NameTo,ProcInputl) |PLshort] ;

:msg(NameTo,Msg) =>

checkProc(NameTo) :

Proc =.. [NameTo, [Msg|NewProcInput],NewProcOutput],
call(Proc), /*parallel, spin off new process*/
WriStr: :msg(NameTo,Msg) , /*debugx*/

JwriteMy (OutFile,msg(NameTo,Msg))&

merge (NewProcOutput, InStr ,NewInStr),

ProcList becomes [proc(NameTo,NewProcInput) |ProcList],

Count is MsgCount + 1,
writeCount (Count)&
MsgCount becomes Count&
InStr becomes NewInStr ;

:msg(NameTo,Msg) =>

Count is MsgCount + 1,

writeCount (Count)&

MsgCount becomes Count&

WriStr:: [unknown_proc,NameTo,Msgl&& ;

rerr (ErrMsg) =>

Count is MsgCount + 1,
writeCount (Count)&

MsgCount becomes Count&
WriStr:: [error_rcvd,ErrMsgl&& ;

:info(InfoMsg) =>

Count is MsgCount + 1,
writeCount (Count)&

MsgCount becomes Count&
WriStr:: [info_rcvd,InfoMsgl&& ;

:draw =>

drawNet (ProcList,NewProcList)&
WriStr: :draw&

Count is MsgCount + 1,
writeCount (Count)&

MsgCount becomes Count&
ProcList becomes NewProcList&& ;

rquit =>

WriStr: :stopping_procs&
WriStr: :msgCount (MsgCount)&

123

124 Appendix A. Parlog++ Procedures

stop_proc(ProcList)&& ;

InStr::last =>
WriStr::last&& ;

InStr: :BadMsg =>
WriStr::[bad_message,BadMsg] .
code

mode find_name(?,7,”,7).

/*find process named, outputting its input stream and a
proc list without that process. If not found then failx*/
find_name ([proc(Name,ProcInput) |PLshort] ,Name,ProcInput,PLshort) <-
true;
find_name ([Proc|PLRest] ,Name,ProcInput,PLshort) <-
PLshort = [Proc|PLshorter] &
find_name (PLRest,Name,ProcInput,PLshorter).

mode drawNet(?,”).

drawNet (ProcList,NewProcList) <-
open(network,write,NetFile)&
drawProc(ProcList,NetFile,NewProcList)&
close(NetFile)&
display_network.

mode drawProc(?,7,7).
drawProc([]1,_,[1).

drawProc([proc(Name,ProcInput) |Rest],NetFile,
[proc(Name,ProcInputl) |[Rest1]) <-
ProcInput = [dump(InstList,0bjLevel) |ProcInputi]&
writeNet (NetFile,InstList,0ObjLevel)&
drawProc(Rest,NetFile,Restl).

mode stop_proc(?).

stop_proc([]).

stop_proc([proc(Name,ProcInput) |Rest]) <-
ProcInput = []&

stop_proc(Rest) .

mode writeMsg(?,7).
%write destination and type of message

A.1. Switchboard Source Code

writeMsg(OutFile,msg(NameTo,Msg)) <-
functor (Msg,MsgType,Arity)&

writeMy(OutFile, [NameTo,MsgTypel) .

mode writeCount (7).
%write count if its a multiple of 5
writeCount (Count) <-
Rem is Count mod 5&
Rem =:= 0:
write(”’*”’)&
flush_output (user_output) ;
writeCount (Count) .

end.

125

126 Appendix A. Parlog++ Procedures

A.2 Give-Way Source Code

In the next example, a give Way concept-frame is shown, that which detects
the existence of a give-way situation between a U-turning car and an oncoming
car.

giveWayUt. %give way to oncoming traffic when U-turning on road
Out ostream
invisible InstList state <= [], ObjType state <= giveWayUt,
ObjLevel state <= 3, OutFile state
initial open(0bjType,write,OutFile)&
writeMy (OutFile , mmmmmmmmmmmmmmmmmmmmmmmmn) &
xterm(0bjType) && .
clauses
last => writeMy (OutFile, [stopping,InstList])&
close(OutFile)&
Out::last. /*dump insts & stopx/

dump (QutInstList,0OutObjLevel) =>
OutInstlList = InstList&
OutObjLevel = ObjLevel && ;

create(Id,Relns) =>
getInst(Id,InstList,inst(Targld,Props,Justn),ExcInstList):
writeList(OutFile, [create,unnecessary,as,Id,found])&
union(Relns,Props,NewProps)&
InstList becomes [inst(Targld,NewProps,Justn) |ExcInstList]

else /*inst not found */
writeList (QutFile, [created,Id])&
checkAssns(Id)& /*send ’check’ to likely
associates with this inst Idx/
InstList becomes
[inst(Id,Relns,[]) |InstList] && ;
/*dont process any more msgs until InstList is updated!*/

check(reln(composed0f,SendId,Bel) ,Done) =>

%Note Done flag to delay sender until this object updated

Done = yes&

writeList(OutFile, [check,relation,composed0f,from,SendId])&

getType(SendId,SendType)&

%get the road the ’right’ is in

Out: :msg(SendType,getVal (SendId,
reln(composed0f,id(road,any,bel) ,bel) ,RoadProps))&

Out: :msg(SendType,getVal(SendId,

A.2. Give-Way Source Code 127

desc(from(any) ,bel) ,RtFrom))&
sendRoad (QutFile,InstList,RoadProps,RtFrom,SendId,
NewInstList)&

/*found if FoundIds not empty*/
InstList becomes NewInstList&& ;

negCheck(Id) =>
%Id is removed from the Property lists of all Insts
writeList (OutFile, [Id,removed,from,all,relations])&
delRef (InstList,Id,NewInstList)&
InstList becomes NewInstList&& ;

anyInst(FoundList,Prop) =>
writeList (OutFile, [enquiry,regarding,Prop])&
/*Note: this only checks properties in the PropList*/
seek (InstList,Prop,FoundList)&& ;

getVal(WantId,Prop,FoundProplList) =>
%propagate to other traffic obj
getInst (WantId,InstList,inst(InstId,Props,Justn) ,ExcInstList):
/*fail if not foundx*/
writeList (QutFile, [enquiry,to,WantId,re,Propl)&
searchProps (Props,Prop,FoundProplList)&& ;

getVal (WantId,Prop,FoundPropList) =>
writeList(QutFile, [enquiry,to,WantId,re,Prop,failed])&
FoundPropList = []&& ; /*If Id wrong, return []*/

updVal(Id,Relns) =>
getInst(Id,InstlList,inst(Targld,Props,Justn),ExcInstList):
writeList (OutFile, [update,Id,with,Relns])&
union(Relns,Props,NewProps)&
InstList becomes [inst(Targld,NewProps,Justn) |ExcInstList]

else /*inst not found, so create it but dont checkAssns*/
writeList(OutFile, [update,of,Id,with,Relns,failed,not,found])&
InstList becomes
[inst(Id,Relns,[]) |InstList] && ;
inq => writeMy(OutFile, [inq,InstList])&& ;

WrongMsg => writeMy (OutFile, [bad_msg,WrongMsg]) .

code

128 Appendix A. Parlog++ Procedures

mode checkAssns(?7,”,7).

/* check normal associations of this object type to see if they exist in the
expected relationship. Note the result of this checking is returned in
msg ’updVal’ x/

checkAssns(InstList,InstList,InstId).

/K ko ok ok sk o ko o sk o ok ok o o o ko ko o sk ok ok o ko ok sk sk o sk o K ok ok ok o sk o ok ok ok ok ok o ko ok ok o ok o ok o k ok ok o sk o ko ok ek ok /
mode sendProps(7,7).
/* send list of properties to another object instance */
sendProps(_, [1); %if no props, dont send anything
sendProps (id(ToType, ToNum,Bel) ,Props) <-
Out: :msg(ToType,updVal(id(ToType,ToNum,Bel) ,Props)).

3% ok ok ok o o ok o o o o o o o ok ok ke ke ok sk sk sk stk sk ok ok o o ok o o o ok ok ok sk sk sk sk sk ok sk ok ok ok o o o o o ok ok ok sk sk sk ok skok ok ok ok ok ok ok ke k /
mode sendRoad(?,7,7,7,7,7). %0utFile, InstList,RoadProps,
%RtFrom,SendId,NewIL
%send to straight to get cars from other dirn
sendRoad (OutFile, InstList, [reln(composed0f,id(road,RoadNo,Bell),Bel) |Rest],
[desc(from(Dir) ,BelD) |Rest2],SendId,NewIL) <-
length(Rest,Len)&
writeListCond (user_output,Len, [SendId, composed,of,
more,than,one,inXn,Rest])&
length(Rest2,Len2)&
writeListCond (user_output,Len2, [SendId,from,more,
than,one,dirn,Rest2])&
Out: :msg(straight,anyInst(FoundStr,reln(composed0f,
id(road,RoadNo,BelI),Bel)))&
getIdLFromInstL (FoundStr,FoundIds)& %%%ds
checkTarget (DutFile, InstList,target0f ,FoundIds,

SendId,NewIL);
sendRoad (QutFile, InstList, [],_,_,InstList); %empty composure
sendRoad (OutFile, InstList,_, [],_,InstList); %empty from list

Yerror
sendRoad (OutFile,InstList,Wrongl,Wrong2,Wrong3,InstlList) <-
writeList (OutFile, [bad,call,to,sendRoad,in,giveWayUt,ie,Wrongl,
Wrong2,Wrong3]) .

ok ks ok ke ok sk ks e s e ks sk s ok ok sk s s ke ke sk s s o ok sk s s s ok sk sk sk ok ksl sk o s ok ksl e ok ksl o ke ok sk sk ke ksl sk sk e ke sk sk ke ok /
mode checkTarget(?,7,7,7,7,7). %0utFile,InstList,TargReln,CommStr,SendId,NewIL
%before creating the Inst, check car is pointing toward subject

checkTarget (QutFile, InstList,TargReln, [Id|Rest],SendId,NewIL) <-
Out: :msg(uTurn,getVal(SendId,reln(composedOf,
id(car,any,bel) ,bel) ,SendCarPropList))&
getType(Id,IdType)&

A.2. Give-Way Source Code 129

Out: :msg(IdType,getVal(Id,reln(composed0f,id(car,any,bel) ,bel),
CarPropList))&
checkTarget2(OutFile,InstList,TargReln,Id,CarPropList,
SendId,SendCarPropList,NewIL1)&
checkTarget (QutFile,NewIL1,TargReln,Rest,SendId,NewIL) ;

checkTarget (_,InstList,_,[],_,InstList).

1 ek ok ok ok o ok sk sk ok o o ok sk ok ok ok sk ok ok o ok ok ok ok sk sk ok o sk sk ok o sk o ok sk ok ok ok ok o ok ok ok ok sk sk ok ok ok sk ok ok k /
mode checkTarget2(?7,7,7,7,7,7,7,7).
%get the single car from the lists CarProplList & RightCarPropList, send
%to Ors to find if car coming targets left, if so call create.
%first check case where sender is target of car to give way to
checkTarget2(0utFile,InstList,target0f,Id, [reln(composed0f,CarId,Bel) |Rest],
SendId, [reln(composed0f,CarSendId,Bel2) |Rest1] ,NewIL) <-
Out: :msg(car,getVal(CarId,desc(reversed,bel) ,Return))&
reverseReln(target0f,Return,RReln)&
checkOrs (RReln,CarSendId,CarId,FoundProps)&
condCreatelnst (OutFile,InstList,Id,CarId,SendId,CarSendId,
FoundProps,NewIL) ;
%next check case where sender is targetting car to give way
checkTarget2(OutFile,InstList,targetting,Id, [reln(composed0f,CarId,Bel) |Rest],
SendId, [reln(composed0f,CarSendId,Bel2) |Rest1] ,NewIL) <-
Out: :msg(car,getVal(CarSendId,desc(reversed,bel) ,Return))&
reverseReln(targetting,Return,RReln)&
checkOrs (RReln,CarSendId,Carld,FoundProps)&
condCreatelnst (QutFile,InstList,SendId,CarSendId,
Id4,CarId,FoundProps,NewIL);

checkTarget2(OutFile,InstList,_,Id, [],SendId,_,InstList) <-
writeList (OutFile, [’Error in checkTarget2, got no cars composing’,
Id]);
checkTarget2(OutFile,InstList,-,Id,_,SendId, [],InstList) <-
writeList (OutFile, [’Error in checkTarget2, got no cars composing’,
SendId]).

%3k o ok ok ok ok ok o o o o o o o o ok ok ok ek sk sk sk stk sk ok ok o o o o ok ok ok ok ok sk sk sk sk sk sk sk ok ok o o o o ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok o o ko k /
mode reverseReln(?7,7,7).
%1f Return from car contains desc(reversed,bel), ie is non-empty,
%then put ’B’ on the end of input reln and pass back
reverseReln (Reln, [desc(reversed,BelD)],NewReln) <-
concatStr ([Reln,’’’B’’’],NewReln);
reverseReln(Reln,_,Reln).

33k 3k sk sk ke o ook sk sk sk sk e ook o sk sk kK kK e o o ook sk sk 3k k6 ko o o o sk sk sk Kk 3k o o o o ok sk sk sk k ok ok o o o ok ok sk ok kK Kk ke ok ok /
mode condCreateInst(?,7,7,7,7,7,7,7). %0utFile,InstList,SignDesc,
%StraightId,StrCarId,StDir,SendId,CarSendId,SeDir,FoundProps,NewIL

130 Appendix A. Parlog++ Procedures

%dont create if FoundProps is []
condCreateInst(_,InstList,_,_,_,_,[],InstList);
%test if new components are in existing Inst, create if not
condCreateInst(OutFile,InstList,Id,CarId,SendId,CarSendId,FoundProps,NewIL) <-
dupelInst(InstList, [reln(composed0f,Id,bel),
reln(composed0f,SendId,bel)] ,DupIlds)&
%Duplds is list of Ids of Insts with components
Duplds =@= []:
createIlnst (OutFile,InstList,Id,CarId,SendId,
CarSendId, [reln2(dum,Id,SendId,bel)] ,NewIL); %%ds
%or do nothing
condCreateInst(_,InstList,_,_,_,_,_,InstList).

3% ok ok ok o o ok o o o o o o o ok ok ke ke ok sk sk sk stk sk ok ok o o ok o o o ok ok ok sk sk sk sk sk ok sk ok ok ok o o o o o ok ok ok sk sk sk ok skok ok ok ok ok ok ok ke k /
mode createlInst(?,?,7,7,7,7,7,7). JOutFile,InstList,SignDesc,StraightId,
%StrCarId,StDir,SendId,CarSendlId,
%SeDir,Justn,NewIL
Yicreate new insts for members of CommStr
createInst (OutFile,InstList,Id,CarId,SendId,
CarSendId, Justn,NewIL) <-
getNewOrsAddr (NewNo) &
belTwoOfN(Justn,NewBel)&
union([inst (id(giveWayUt ,NewNo,NewBel), [reln(composed0f,Id,bel),
reln(composed0f,CarId,bel) ,reln(composed0f,SendId,bel),
reln(composed0f,CarSendId,bel),
desc(subject(CarId),bel)],Justn)],InstList,NewIl)&
getVel(CarSendId,Vel)&
velPhrase(Vel,Phrase)&
name (NL, [10,13])&
Out: :msg(result,result([’’’Give Way to Oncoming: ’’’,CarSendId,NL,
??? U-turning’’’ ,Phrase,to,Carld,going,

straight,’’’: ’?’ NL,NewBel]))&
writeList (OutFile, [adding,inst,NewNo, composed,of,Id,SendId,Carld,
CarSendId])&

getNewOrsAddr (NewNol)&

Out: :msg(giveWay,create(id(giveWay,NewNol,NewBel),
[reln(givesWay,CarId,bel) ,reln(right0fWay,CarSendId,bel)]))&

sendProps(Id, [reln(part0f,id(giveWayUt,NewNo,NewBel) ,bel)])&

sendProps(SendId, [reln(part0f,id (giveWayUt ,NewNo,NewBel) ,bel)]).

/***/

mode velPhrase(?,7). %0ffendId,velocity phrase
%send msg to result conditional upon speed of 0ffendId
velPhrase([],’’’ gives way ’’’); %velocity unknown

velPhrase([Vel],’’’has given way’’’) <-
stopped(Vel,stopped) :
true;

A.2. Give-Way Source Code 131

velPhrase([Vell,’’’should have (but hasn‘t) given way’’’);

velPhrase(Vel,_) <-
writeMy([error,in,velPhrase,parameter,is,Vel])&
fail.

ok sk ok ek sk sksk ok o o ok sk sk o o ok sk sk o o o ok ok ok ok sk sk sk ok sk o o ok sk stk o ok sk o ek sk ok o ko ok ok ek sk ko o sk skok ok ok k /
mode getVel(?,”). %id(Car,CarNo,Bel), [desc(vel(VelX,VelY),BelV)]
%get the velocity desc from car, if not there return [] %)vel
getVel(id(Car,CarNo,Bel3),VellList) <-
Out: :msg(Car,getVal(id(Car,CarNo,Bel3) ,desc(vel(any,any) ,bel),
VelList)).

end.

References

1]

2]

3]

[4]

[5]

[6]

AISBETT, J. Optical flow with an intensity-weighted smoothing. IEEE
Transactions on Pattern Analysis and Machine Intelligence 11, 5 (May
1989).

ALLEN, J. Natural Language Understanding. Benjamin/Cummings,
Menlo Park, 1987.

ANDERSEN, S. K., OLEsEN, K. G., JENSEN, F. V., AND JENSEN,
F. HUGIN - a shell for building Bayesian belief universes for expert
systems. In IJCAI-89 (Detroit, August 1989), pp. 1080-1085.

AnDRE, E., HERZOG, G., AND RisT, T. On the simultaneous in-
terpretation of real world image sequences and their natural language
descriptions: the system SOCCER. In FCAI 88. Proceedings of the 8th
european conference on artificial intelligence (UK, 1988), Y. Kodratoff,
Ed., pp. 449-54.

Bajcsy, R., JosHI, A., KROTKOV, E., AND ZWARICO, A. LAND-
SCAN: a natural language and computer vision system for analysing
aerial images. In IJCAI 85: Proceedings of the Ninth Intl Joint Conf on
Artificial Intelligence (1985), Int Joint conferences on Artificial Intelli-
gence Inc, Morgan Kaufmann.

BALDWIN, J. Support logic programming. In Fuzzy sets - Theory and
Applications, Proceedings of NATO Advanced Study Institute, A. Jones
et al., Eds. Reidel Pub. Co., Norwell, MA, 1986.

132

REFERENCES 133

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

BEeLL, B., AND PAU, L. F. Context knowledge and search control issues

in object-oriented prolog-based image understanding. Pattern Recogni-
tion Letters 13, 4 (April 1992), 279-290.

BiscHor, W. F., AND CAELLI, T. Learning structural descriptions of

patterns: a new technique for conditional clustering and rule generation.

Pattern Recognition 27,5 (1994), 689-697.

Bosick, A. F., AND BoOLLES, R. C. The representation space paradigm
of concurrent evolving object descriptions. IEEE Transactions on Pattern
Analysis and Machine Intelligence 14, 2 (Feb 1992), 146-156.

BobincTon, R., SuLLIVAN, G., AND BAKER, K. Experiments on
the use of the ATMS to label features for object recognition. In Com-
puter Vision - ECCV90 (Antibes, France, April 1990), O. Faugeras, Ed.,
vol. 427 of Lecture Notes in Computer Science, INRIA, Springer Verlag,
pp- 542-551.

BOGLER, P. L. Shafer-Dempster reasoning with applications to mul-
tisensor target identification systems. IEEFE Transactions on Systems,
Man and Cybernetics SMC-17, 6 (November 1987), 968-977.

BunkE, H. Hybrid methods in pattern recognition. In Pattern Recogni-
tion Theory and Applications, P. A. Devijer and J. Kittler, Eds., vol. F30
of NATO ASI. Springer-Verlag, 1987.

CAELL1, T., AND DREIER, A. Some new techniques for evidence-based
object recognition: EB-ORS1. In JAPR-92 Proceedings (Hague, Septem-
ber 1992), pp. 450-455.

CHARNIAK, E., AND McDERMOTT, D. Introduction to Artificial Intel-
ligence. Addison-Wesley, Reading, Massachusetts, 1985.

CrpoLLA, R., AND YAMAMOTO, M. Stereoscopic tracking of bodies in
motion. Image and Vision Computing 8, 1 (february 1990), 85-90.

134 REFERENCES

[16] CLANCEY, W. J. Situated cognition: How representations are created
and and given meaning. In AERA 1991 Symposium (Chicago, 1991).

[17] CoNLON, T. Programming in PARLOG. Addison-Wesley, Menlo Park,
Ca., 1989.

[18] DANCE, S., AND CAELLI, T. On the symbolic interpretation of traffic
scenes. In ACCV98 Proceedings of the Asian Conference on Computer
Vision (Osaka Japan, november 1993), pp. 798-801.

[19] DANCE, S., AND CAELLI, T. A symbolic object-oriented picture in-
terpretation network: SOO-PIN. In Advances in Structural and Syn-
tactic Pattern Recognition, Proceedings of the International Workshop
(Bern, Switzerland, 1993), H. Bunke, Ed., World Scientific Publishing
Co., pp. 530-541.

[20] DANCE, S., CAELLI, T., AND L1U, Z.-Q. A network-of-frames model
for symbolic scene interpretation. Submitted for publication to Pattern
Recognition Journal, August 1994.

[21] DAvisON, A. From Parlog to Polka in two easy steps. In PLILP’91 : 3rd
Int. Symp. on Programming Language Implementation and LP (Passau,

Germany, August 1991), no. 528 in Springer LNCS, Springer, pp. 171-
182.

[22] DE KLEER, J. An assumption based TMS. Artificial Intelligence 28, 2
(March 1986).

[23] DELLEPIANE, S., SERPICO, S. B., AND VERNAZZA, G. 3D organ recog-
nition by tomographic image analysis. In Pattern Recognition Theory and
Applications, P. A. Devijer and J. Kittler, Eds., vol. F30 of NATO ASL
Springer-Verlag, 1987.

[24] DEMPSTER, A. P. A generalization of Bayesian inference. Journal of
the Royal Statistical Society 30 (1968), 205-247.

REFERENCES 135

[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

DENNETT, D. Consciousness explained. Little, Brown and Co., Boston,
1991.

DiLon, C. Image pattern recognition system (IPRS) user manual.
Tech. Rep. 93/14, Computer Science, University of Melbourne, Parkville,
Victoria, Australia, 1993.

DrAPER, B. A., CoLrLins, R. T., Brovrio, J., HANSON, A. R., AND
RiseMAN, E. M. The Schema System. International Journal of Com-
puter Vision 2 (1989), 209-250.

DuBois, D., AND PRADE, H. A discussion of uncertainty handling in

support logic programming. International Journal of Intelligent Systems
5, 1 (March 1990), 15-42.

FELLER, W. An Introduction to Probability Theory and its Applications,
3rd ed., vol. 1. Wiley and Sons, New York, 1968.

Feri, R., ForesTI, G., MURINO, V., REGAZZONI, C., AND VER-
NAzZZA, G. Spatial reasoning by knowledge-based integration of visual
and IR fuzzy cues. In Signal Processing V. Theories and Applications.
Proceedings of EUSIPCO-90, Fifth European Signal Processing Confer-
ence (1990), L. Torres, E. Masgrau, and M. Lagunas, Eds., Elsevier
Amsterdam, Netherlands, pp. 1719-22 vol.3.

GARrVEY, T. D. Evidential reasoning for geographic evaluation for he-
licopter route planning. IEEE Transactions on Geoscience and Remote
Sensing GE-25, 3 (May 1987), 294-303.

GonzALEZ, R. C.; AND WIiNTZ, P. Digital Image Processing. Addison
Wesley, Reading, Massachusetts, 1987.

GOVINDARAJU, V., LAM, S. W., N1vocI, D., SHER, D. B., SRIHARI,
R., SriHARI, S. N., AND WANG, D. Newspaper image understanding.
In Knowledge based computer systems, S. Ramani, R. Chandrasekar, and
K. S. R. Anjaneyalu, Eds. Narosa Publishing House, New Delhi, India,
1990, pp. 375-84.

136 REFERENCES

[34] GREEN, P. E. AF: a framework for real-time distributed cooperative
problem solving. In Distributed Artificial Intelligence, M. N. Huhns, Ed.
Pitman, London, 1987, ch. 6, pp. 153-176.

[35] HAYES, P. J. The naive physics manifesto. In Ezpert Systems in the
Micro-FElectronic Age, D. Michie, Ed. Edinburgh University Press, Edin-
burgh, Scotland, 1979.

[36] HERSKOVITS, A. Language and Spatial Cognition. Cambridge University
Press, 1986.

[37] HEwITT, C. How to use what you know. In IJCAI-75 (Tbilisi, Georgia,
September 1975), pp. 189-198.

[38] HEwITT, C. Viewing control structures as patterns of passing messages.
Artificial Intelligence 8 (1977), 323-363.

[39] HEwITT, C. E. Planner: A language for proving theorems in robots. In
IJCAI’69 (Washington, D.C., 1969).

[40] HoTA, N., RAaMsEY, C. L., CHANG, L. W., AND BOOKER, L. B.
BaRT manual version 3.0. Tech. Rep. 6778, Naval Research Laboratory,
US Navy, Washington DC, Feb 1991.

[41] Huang, T., KOLLER, D., MALIK, J., OGASAWARA, G., Rao, B.,
RUSSELL, S., AND WEBER, J. Automatic symbolic traffic scene analysis
using belief networks. In Proc of AAAI-94 (Seattle, August 1994).

[42] KELLER, J., HoBsoN, G., WOOTTON, J., NAFARIEH, A., AND
LUETKEMEYER, K. Fuzzy confidence measures in midlevel vision. IEFE
Transactions on Systems, Man and Cybernetics SMC-17, 4 (july 1987),
676-683.

[43] LAKOFF, G. Women, Fire and Dangerous Things. University of Chicago
Press, 1987.

REFERENCES 137

[44]

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

LOWRANCE, J. D., STRAT, T. M., WESLEY, L. P., GARVEY, T. D.,
Ruspini, E. H., AND WILKINS, D. E. The theory, implementation and
practice of evidential reasoning. SRI Project 5701, SRI International,
Menlo Park, CA 94025, June 1991. Final report.

MATsuvAMA, T., AND HwaANG, V. S. SIGMA A Knowledge based

aerial image understanding system. Plenum Press, New York, 1990.

McDEeRMOTT, D. V., AND DOYLE, J. Non-monotonic logic I. Artificial
Intelligence 13, 1,2 (1980), 41-72.

Minsky, M. A framework for representing knowledge. In The psychology
of computer vision, P. H. Winston, Ed. McGraw-Hill, New York, 1975.

MouNHAUPT, M., AND NEUMANN, B. On the use of motion con-
cepts for top down control in traffic scenes. In Computer Vision ECCV
90. First european conference on computer vision proceedings (1990),
O. Faugeras, Ed., pp. 598-600.

MULDER, J. A., MACKWORTH, A. K., AND HAVENS, W. S. Knowl-
edge structuring and constraint satisfaction: The MAPSEE approach.
Tech. Rep. 87-21, Dept. of computer science, Uni of British Columbia,
Vancouver, BC, Canada V6T 1W5, June 1987.

NEUMANN, B. Natural language description of time-varying scenes.
In Semantic Structures: advances in natural language processing, D. L.
Waltz, Ed. Lawrence Erlbaum, Hillsdale, N.J, 1989, pp. 167-207.

NieMANN, H., BunkEe, H., HOFMANN, 1., SAGERER, G., WOLF, F.,
AND FEISTEL, H. A knowledge based system for analysis of gated blood
pool studies. IEEE Transactions on Pattern Analysis and Machine In-
telligence 7, 3 (may 1985), 246-259.

PEARL, J. Probabilistic reasoning in intelligent systems: Networks of

plausible inference. Morgan Kaufman, San Mateo, CA, 1988.

138 REFERENCES

[63] PR, C., AND R, K. Information retrieval by constrained spreading ac-
tivation in semantic networks. Information Processing and Management
23, 4 (1987), 255-268.

[54] PROVAN, G. M. An analysis of knowledge representation schemes for
high level vision. In Computer Vision - ECCV90 (Antibes, France, April
1990), O. Faugeras, Ed., vol. 427 of Lecture Notes in Computer Science,
INRIA, Springer Verlag, pp. 537-541.

[55] REITER, R., AND MACKWORTH, A. A logical framework for depiction
and image interpretation. Artificial Intelligence 41 (1990), 125-155.

[56] RETZ-ScHMIDT, G. Deictic and intrinsic use of spatial prepositions. In
Spatial Reasoning and Multi-Sensor Fusion (1987), A. Kak and S. Chen,
Eds., Morgan Kaufman, pp. 371-380.

[57] RicH, E., AND KNiGHT, K. Artificial Intelligence, 2nd ed. McGraw-
Hill, New York, 1991.

[58] RINGWOOD, G. A. The dining logicians. Master’s thesis, Department
of Computing, Imperial College, London, 1984.

[59] ROBINSON, J. A machine-oriented logic based on the resolution princi-
ple. Journal of the Association for Computing Machinery 12, 1 (1965).

[60] SCHANK, R., AND ABELSON, R. Scripts, Plans, Goals and Understand-
ing. Erlbaum, Hillsdale, N.J, 1977.

[61] ScHIRRA, J. R. J., BoscH, G., Sung, C. K., AND ZIMMERMANN, G.
From image sequences to natural language: a first step toward automatic
perception and description of motions. Applied Artificial Intelligence 1,
4 (87), 287-305.

[62] SHAPIRO, E., AND TAKEUCHI, A. Object oriented programming in
concurrent prolog. In Concurrent Prolog, E. Shapiro, Ed., vol. 2. MIT
Press, 1987, ch. 29, pp. 251-273.

REFERENCES 139

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

SLEZAK, P. Situated cognition: Empirical issue, paradigm shift or con-
ceptual confusion. In Proceedings of the Sizteenth Conference of the Cog-
nitive Sccience Society (Atlanta, August 1994), A. Ram and K. Eiselt,
Eds., Lawrence Erlbaum, Hillsdale, New Jersey, pp. 806-811.

TrROPF, AND WALTERS. An ATN for 3D recognition of solids in single
images. In Proceedings of the 8th Int’l Joint Conf. on Artificial Intelli-
gence (1983).

Tsorsos, J. K. The complexity of perceptual search tasks. In Proc.
International Joint Conference on Artificial Intelligence (Detroit, August
1989), N. S. Sridharan, Ed., Morgan Kaufman, pp. 1571 — 1577.

VERRI, A., AND PocGaio, T. Against quantitative optical flow. In First
International conference on Computer Vision (1987), IEEE, pp. 171-180.

WESLEY, L. P. Evidential knowledge-based computer vision. Tech. Rep.
374, A. 1. Centre, SRI International, Menlo Park, CA 94025, January
1986.

WINSTON, P. Artificial Intelligence, second ed. Addison-Wesley, Read-
ing, Massachusetts, 1984.

WYLIE JR, C. Introduction to Projective Geometry. McGraw-Hill, 1970.

YoNEzZAWA, A., AND HEwITT, C. Modelling distributed systems. In
IJCAI-77 (Massachusetts, August 1977), Kaufman, pp. 370-376.

Index

A* search, 6

acceleration, 97

accuracy, 106

actors, 17, 24

acyclic networks, 66

affine transformation, 51

Allen, 27

Andre et al, 8

assignment of weights, 68

associative network, 6

assumption-based truth mainte-
nance system, 7, 84

ATMS, 7, 84

ATN, 5,6

augmented transition network, 5

background subtraction, 60
Bajcsy et al, 5, 26

Baldwin, 2, 3, 68, 71, 77, 80, 81
BaRT, 67

Bayes, 66, 72

Bayesian belief network, 10
belief, 3, 66

belief and vision, 81

belief interval, 69

belief pair, 69, 78, 81, 82, 84, 106
belief updating, 83

140

Bell and Pau, 10, 18, 121
belTwoOfN, 77, 79, 83
belUpd, 84

blackboard systems, 18
Bobick and Bolles, 10
Boddington et al, 7, 106
Bogler, 67

bottom-up, 4, 17, 27, 42, 47
Bunke, 28

burglars, 68, 70

car velocities, 52

CARRS, 7

causal support, 66

centroid, 48, 90

Cipolla and Yamamoto, 89

CITYTOUR, 8

Cohen et al, 25

collisions, 96, 100

combining belief, 77

combining evidence, 70, 82

combining independent proposi-
tions, 71

communication channel, 22

comparing match lists, 92

compatibility mappings, 67

compound objects, 30, 37, 46, 77

INDEX

concept-frame, 3, 24, 31, 83
concept-instance, 24, 82
conceptual dependency, 17
concurrent execution, 2, 42, 47
concurrent, prolog, 20
conditional probabilities, 66
conflicting evidence, 70
conjunction, 72, 76, 79
connected labeled regions, 60

constraint propagation networks, 6

correspondence problem, 3, 89
curvature, 99

cutlery scenario, 3, 35

data channel, 31

data structure, 31, 82
deadlock concept-frame, 53
deletion of instances, 84
Dellepiane et al, 6

Dempster, 70
Dempster-Shafer, 66, 68, 77, 80
Dennett, 119

dependency, 72, 82, 84
disjunction, 74, 76, 79
domain knowledge, 1, 30, 106
Draper et al, 17

Dubois and Prade, 81

evidential reasoning, 67
evidential support, 66

existence criteria, 30, 83

Feller, 77
Feri et al, 9

141

first order predicate calculus, 20

frame of discernment, 66—68, 71,

78, 81
frames, 3, 16
FRIL, 68

fuzzy confidence measures, 86

Gabor filter, 89

Garvey, 68, 121

geometric scene description, 8
give-way concept-frame, 53
Govindaraju et al, 6
GRANT, 25

graph parsing, 4

Green, 24

Hayes, 30

heading angle, 52
Herskovits, 2, 15, 29
Hewitt, 2, 17, 21, 24, 119
high-level vision, 1, 2
highway traffic scenes, 67
Horn clause, 72, 81
Huang et al, 10, 67
HUGIN, 10, 67

human categorization, 14
hypothesize and test, 2, 4, 6, 10

idealized cognitive models, 14
identity, 82

identity problem, 30
illegality, 94, 100, 106

image sequences, 88
independence, 77, 80

142

intersection, 51
IPRS library, 60

justification list, 83, 84
Keller et al, 86

Lakoff, 2, 14, 19

linguistic hedges, 86

logic programming, 2, 10, 20, 81
low-level processing, 3, 48, 60
Lowrance et al, 67, 69, 70, 81

Mackworth, 7

major axis, 48, 52, 90
MAPSEE, 7

Markov trees, 66

mass distribution, 67, 69
Matsuyama and Hwang, 9
median filtering, 60
message passing, 31, 84
Minsky, 2, 16, 21, 119
Mohnhaupt and Neumann, 51, 89
Mulder et al, 6
multi-threaded systems, 5

multiple frames, 104

nearness predicate, 29, 85
negative information, 30, 42
negCheck, 84
network-of-frames, 28, 47
Neumann, 8, 18

Nieman et al, 6

non-monotonic reasoning, 30

INDEX

object orientation, 2, 9, 21
optical flow, 88

orientation, 90, 91

pairing, 90, 91

parlog, 20

parlog++, 3, 23, 28, 31, 78, 81, 93
parsing, 5

Pearl, 66, 80, 81
pedestrian, 97

phase space, 51
PLANNER, 20
plausibility, 69, 76, 82
predicate calculus, 6
probability, 66, 77
procedural subroutines, 84
prolog, 10, 20

Provan, 7

proximity to boundary, 85

real images, 48

red light, 103

Reiter and Mackworth, 7
results, 103

Ringwood, 27

road, 51

Robinson, 20

rotation rates, 92

runtime experiments, 85

scene analysis, 2
scene model, 26
Schank, 2, 17
SCHEMA, 17

INDEX 143

Schema, 121 Tropf and Walters, 5
Schirra et al, 8, 86 Tsotsos, 27

scripts, 17 turn activity, 94
segmentation problem, 105 turn concept-frames, 51
semantic network, 6 Tweety, 80

SGI Personal Iris, 106

Shapiro and Takeuchi, 2, 22 U-turn, 106

uncertainty, 3, 66, 81, 88

SIGMA, 9, 18

Sigma, 121 velocity, 2, 3, 88, 89, 91, 104, 105
single-threaded systems, 2, 5 Venn diagram, 77

situatedness, 29 Verri and Poggio, 88

Slezak, 2, 30 video images, 3, 88

smalltalk, 21 visual tracking, 89

SOCCER, 8

SOO-PIN, 1, 24, 81 Wesley, 68

sparse image sequences, 89 wheels scenario, 3, 42

spatial database, 47, 48 whyStopped concept-frame, 97, 104

spatial predicates, 29, 66, 84, 93 world model, 26
spatial prepositions, 15 wrong interpretations, 106

Sun SparcStation II, 106 wrong side of road, 94

support, 69, 75, 82 XFIG, 53, 86, 103
switchboard, 28, 44

T-intersection, 51, 103, 105
targeting, 104

tense, 88, 97

token matching, 2, 88
top-down, 4, 17, 27, 42, 47
traffic, 2, 3, 48, 88, 103
traffic jam, 53

traj concept-frame, 93
trajectory, 90, 92

transition network, 2, 5

