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Expert/Knowledge-based
Systems

Early workers in the field of
AI hopedto constructan in­
telligent machine with a
perception component that
sensed and interpreted the
world, a component that al­
lowed the system to learn from its expe­
riences, and a mechanism for solving
general problems arising in interactions
with the environment. The knowledge
database would be provided initially by
the human designer, and then develop
autonomously as the system learned
about the world.

Although researchbased on this
paradigm is still beingpursued, workers
on systems that aspire to a human level
ofperformance have considerably scaled
down their original goals. Emphasis has

moved from a general problem
solving approachto a concen­
tration on specialized problem
domains. The basic assumption
is that the main source of capa­
bility in problem solving resides

in the knowledge databaseof the system,
rather than in the power of the deductive
apparatus used. There is no perceptually
based autonomous learningcomponent
in these systems. Rather, all of the knowl­
edge is entered bythe human designer, or
user, of the system; the emphasis is on
better ways to express and use the spe­
cialized knowledge. Expertsystemsbased
on this philosophy have already been
applied to diagnosis and design problems
in many fields, and have turned out to
be some ofthe mostcommercially
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successful applications ofartificial intelli­
gence.

Even thoughthe problem scopehas
been narrowed in going from general
problem solving to nonlearning expert
systems, many basic issues still remain.
For example, there is the fundamental
question as to whether the incremental
acquisition of piecemeal knowledge can
lead to global understanding of a subject.
There is the issue ofwhether intelligent
behavior can still be achieved ifweparti­
tion off, and operatewithin, an isolated
segmentof human knowledge or experi­
ence. The issue of control also arises:
there mustbe some methodof determin­
ing which knowledge is pertinent to a
given situation and how to guidethe se­
quence of deductions or transformations
without explicit programming. Thus, many
of the problems that arise in the design of
expert systems involve familiar AIissues,
and especially the trade-offs between
generality and effectiveness of operation.

This chapterwill be primarily con­
cerned with the "production system"
approach. We will briefly describe its
importance in the psychological model­
ing of intelligence, but we will focus par­
ticularly on its use in expertsystems. We
will also discuss general issues, such as
the problem of knowledge acquisition,
knowledge representation, and knowl­
edge utilization. Some of the questions
to be addressed are: .
• Whatare the characteristics ofa human

expert?
• Whatis a production-rule expert system?
• What are the characteristics ofa knowl­

edge domain that makeit suitableas an
application for an expertsystem?

• How can a domain of knowledge be

represented bydata structures in the
memory of the computer, and how can
this knowledge database be used in
problem solving?

• What are the basic AIissues that arise
in the design of expertsystems?

HUMAN EXPERTS

The dictionary defines an expert to be a
person with a high degree ofskill in, or
knowledge of, a certainsubject. The word
comes from the Latin experius, past parti­
ciple of experiri, to try. The word is apt,
because an expert usually attainsthat
status byinvesting a large amountof time
in trying, in obtaining experience in the
special domain.

The term prodigy is usedwhenex­
ceptional ability is shown at an early age.
There have been prodigies in mathemat­
ics, chess, and music, but it is rare to find
prodigies in acting, writing, drawing, and
painting. It is interesting that while there
are somenotable exceptions, few mental
prodigies meetearly expectations, while
most musical prodigies do go on to suc­
cessful careers.

A remarkable memory ability charac­
terizes many classes of experts; for exam­
ple, chess masters are able to play many
games simultaneously while blindfolded.
To study visual memory in chess, subjects
are typically exposed to a board position
for a short time and are later asked to
reproduce the board. Chess masters im­
pressively outperform novices only when
meaningful board positions are used.
When the pieces are put down at random,
then little difference exists. De Groot
[De Groot 65], in his study of chessmas­
ters, usedan introspective methodwhere
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the expert described his innerthinking
processes. Chess masters reported re­
membering the positions of "chunks"
consisting of fouror five pieces rather
than individual pieces. The same type of
results havebeen obtained in analyzing
the abilities of computer programming
experts [McKeithen 81]. Bothexperts and
novices are shown programs for a brief
time. Experts are quitegood at recon­
structing these programs. However, when
presentedwith scrambled, meaningless
programs, experts perform in a manner
similar to the novice.

Thus, pattern retention and recog­
nition playan important role in expert
performance. Simon [Newell 72a] esti­
mates that masters have acquired on the
order of 50,000different chess patterns
that they quickly recognize. Thesestored
patterns and their analysis free the expert
to concentrateon deeperstrategies. Stud­
ies of computerprogramming [Soloway
80] also indicate that experts in that field
have a largesupply of "templates" that
are applied to programming problems.

Studies of expert-vs-novice problem
solving in physics [Larkin 81] have shown
that the reasoning approach usedbythe
novice differs from the expert. The novice
uses a means-ends analysis, settingup and
satisfying a sequence ofsubgoals. This
requires the retention ofmany intermedi­
ate results. The expertseems to "know
where he isgoing," and uses forward
reasoning. The experthas the experience
to know which of the possible forward
reasoning alternatives are relevant to the
solution.

Representation is a crucial issue.
In some fields, such as mathematics, ex­
perts often convertproblem statements

into the terms oftheir specialty, and then
use their expertise in that specialty to
solve the problem. Expertsmay have a
collection of models that they employ in
solving problems, e.g., a specialist in
internal medicine will use a model of the
digestive system, of the blood circulation,
etc., in order to develop hypotheses con­
cerningan illness.

When attempting to devise machines
that are expert in a specialty, it is desir­
ableto emulate someof the key charac­
teristics of the human expert:

• Useof appropriate models of the world
and the ability to reason usingthese
models

• Asmooth falling offof competence as
the problem departs from his area of
expertise, and ability to deal with depar­
tures from a standard problem

• Knowledge of the limits of the expertise
• Ability to learn from experience
• Ability to explain what is beingdone

and why it is being done

In the remainder of this chapter, we
describe somemechanisms used to
achieve expert behavior in a machine.

PRODUCTION SYSTEMS

The production system (PS) is a simple
concept that has been used in a wide
variety of applications, rangingfromin­
vestigations of human intelligence to
computer-based expertsystems. In 1943,
Emil Post, a mathematician at the City
College ofNew York proposed an "if­
then" rule-based system that indicated
how strings of symbols couldbe converted
to other symbols [Post 43]. Post used his
productions to study computability. While
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he and Turing worked independently, it
was later shown that the Postsystem is
formally equivalent to the Turing machine.

In the 1960s Newell and Simon
[Newell 72] embedded the generality of
the if-then representation in a data-driven
control structure to produce the present
concept ofa production rulesystem that
views computation as the process of apply­
ing rules inan order determined by the
data. This view is fundamentally different
from the explicit sequencing of control
found in conventional programs. A PS
consists of three components:

1. Working memory (WM). The data
representing the currentstate of the
"world." The WM can be finite or
"unlimited" in size. Various strategies
can be used in the finite case when
the WM fills up, e.g., drop the oldest
data, keep onlyimportant data, etc.

2. Production rules. Aset of rulesof
the form, If <condition in WM>
THEN <action> , often designated
usingthe notationA -+ B. This indi­
cates that "if patternA matches a
patternin WM, takethe action de­
scribed in B." Inexpertdiagnosis
systems, rules are often of the form:
IF < evidence e is present in the
WM> THEN <add hypothesis h to
the WM>. Rule-based systems per­
mit representation of knowledge in a
highly modular manner, and are
relatively easy to modify, allowing
knowledge to be added incrementally.

3. Rule interpreter. The control mod­
ule that carries out the matching
operation to determine the next rule
to be activated. Some strategies used
when the condition portion ("left

side") of more than one rule is satis­
fied are: rule execution, based on the
ordering of rules on a rule-list; rule
execution of morespecific rulesbe­
fore general rules; and rule execution
based on the length of time sincea
rule was previously invoked.

Thus, "Computation" in a PS is the
action taken whenthe conditionfor a
particular rule is satisfied by data in the
WS, the repository of information about
the currentstate of the world.

Control Structures Used in
Production Systems

The strategy used by the rule interpreter
is called the "control strategy." The con­
trol strategy can be employed in various
ways: (1) the data-driven mode" that inter­
prets rules to mean that ifa specified
condition is observed in the WM, then a
corresponding action is taken; (2) the
backward chaining mode" that interprets
a rule to mean that ifa certain action is
desired, the system should try to establish
the corresponding condition, and (3) a
mixture of these.

Data-Driven Control. At first glance, the
rules used in a production system (PS)
seem very much like the well-known if­
then conditional statements used in most
high-level programming languages. How­
ever, although the form is the same, the
way that the rules are used differs consid-

"Also called the antecedent, event driven, or forward
chainingmode.
"Also called the consequent, goaldriven. or hypoth­
esis driven mode.
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erably. Unlike a conventional system in
which the programperforms the sequence
of programming steps specified by the
programmer, activity in a PS is controlled
strictly by the content of the working
storage. At every computation cycle of the
system, the left-hand sidesof the set of
rules are examined to determine which
rules are satisfied by the contents of the
working storage. As indicatedabove, if
more than one rule is activated, there
must be a method of determining which
rule should be allowed to act. A typical
"recognize-act" computation cycle is:

- Selection. A determination is made as
to which rule modules and working
storage itemsare'allowed to be consid­
ered for use duringthe next cycle.

- Matching. The active rules examine
active working storage lookingfor a
pattern match.

- Scheduling. A determination is made
as to which of the satisfied rules should
be allowed to fire.

-Execution. The rules performtheir
actions in the order determined by the
scheduling operation.

Bychoosingthe rule to be executed
on the basis of the contents of the work­
ing storage, a complete re-evaluation of
the state of the system must be performed
every computation cycle. This is one of
the keyfeaturesof a PS: a PS is sensitive
to any change in the entire environment
(any newdata in memory) and can react
to such changeswithin a single cycle. The
price of this responsiveness is the compu­
tation time required for the re-evaluation.

Becausethe working storage is accessi­
ble to every rule in the system, this data­
base acts as a broadcastcommunications
channel.

In a pure PS, the specified action,
(right-hand side) is a simple action and
not a complex procedure. Also, one
avoids rules that place private messages in
the working storage (messages that enable
onlyspecial rules to be activated). Practi­
cal expert systems oftendepart from the
pure PS format. For example, it maybe
natural to use certainrules in various
stages ofproblem solving, and to use
different rules in other stages. The set of
productionsis therefore often tagged to
indicateat which stageof the problem
solving procedure they can be activated.
The more we depart from purity of PS,
the more we lose the advantage of modu­
larity of the PS rules.

Goal-Driven Control. In goal-driven
control, the rules are used in a backward­
chaining mode, by examining the rules in
the database to see if a desired goal can
be found on the right-hand side of some
rule. If such a rule is found, then the
system determines the facts required to
actuate the left-hand side. Further back­
ward chainingmay be required to ac­
complish this, and at any time several
backward chains may be in progress. This
type of control limits attention to the rules
that can contributeto the goal. For exam­
ple, suppose the goal is to establish D and
wehavethe following rules:

A~B (1)
B~C (2)
C~D (3)
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The system finds the goal, I?, on the right..
hand side of rule (3) and backward chains
by lookingat the left-hand side of (3) to
find that the requiredsubgoal is finding C
in the working storageso that rule (3) can
be activated. Working on this subgoal
then leads to (2) which couldplace C in
the working storage if there were a B in
the working storage. B is the newsubgoal,
leading finally to (1) which tells the system
to establish A, possibly by askingthe user
if A is true.

Note that ifthe user asks why the
system wantsto know A, it can delineate
the backward chaining sequence as the
explanation. Thus, it would state that

knowing Awould, by rule (1) establish B,
which byrule (2) would establish C, which
by rule (3) would establish our original
goal of D. This type of explanation merely
indicates the role that the data and the
rules play in the computation and does
not try to present a deeper explanation of
the situation.

An example of backward chaining as
used in an expert repair system is pre­
sented in Box 7-1.

Other Control Strategies. A combina­
tion of data-driven and goal-driven proce­
dures is often used in a practical system.
For example, information volunteered by

• BOX 7-1 Use of Backward Chaining in an Expert Repair System

Supposewe have the set of rules
given below as part of the rules in an
expert system for repairing automo­
bileair conditioners.

• RULE 002: IFCAR DOES HAVE
THERMAL LIMITER, ANDTHER­
MAL LIMITER DOES NOT HAVE
POWER, THEN fAULTY FUSE.

• RULE 008: IFCLUTCH DOES NOT
HAVE POWER, AND CAR DOES
NOT HAVE THERMAL LIMITER,
THEN FAULl)! fUSE.

• RULE 017: IFTEST LIGHT CON­
NECTED TO CLUTCH WIRE, AND
TEST LIGHT ISOF~ THEN
CLUTCH DOES NOT HAVE
POWER.

'. RULE 021: IFTEST LIGHT CON­
NECTED TO THERMAL LIMITER
WIRE, AND TEST LIGHT Off,

THEN THERMAL LIMITER DOES
NOT HAVE POWER.

Suppose the expert system is
trying to establishthat the air con­
ditioningsystem is not working
because the fuse is faulty. It estab­
lishes FAULTY FUSE as a goal. The
system backward chains, looking
for rules that have a THENpart
FAULTY FUSE. RULE 008 and
RULE002 are such rules. Sincethe
systemhas no information that can
satisfy the IF part of these rules, it
must ask the user a question.

System: Doesthe car havea ther-
mal limiter?

User: No.

From this answer, the system
findsthat RULE 002 does not apply,

but RULE 008 does. However, the
IF part of RULE 008 requires
CLUTCH DOES NOT HAVE
POWER. The system has a new
goal, and looking at the THENparts
of the rules, it finds RULE 017.
RULE 017 requiresthat a test be
performed by the user, and the
system informs the user:

System: Connecttest lightto
clutchwire. What is status of
test light.

User: Testlightis off.

The system now notes that the
IF part of RULE 017 has been
satisfied and that CLUTCH DOES
NOT HAVE POWER. Now the IF
part of RULE 008 is satisfied, and
system can report to the user: "The
fuse is faulty."

........
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the user can be used in a data-driven
mode to determine a goal for the goal­
driven phase. The PROSPECTOR geol­
ogy expertsystem, described in Box7-2,
works in a goal-driven mode when it
seems to be making progress, but returns
to the user for helpin goal selection when
serious trouble is encountered.

The production system formalism
is useful when the knowledge can be
expressed as an independent set of
recognize-act pairs, but may be inappro­
priate to represent other types of knowl­
edge, such as set/element (taxonomic)
relations among objects in the domain.
The PROSPECTOR system addressed
thisproblem by using a semantic network
representation in a rule-based inference
system. Thisrepresentation retainsthe
desirable modularity of a rule-based ap­
proach, while permitting an explicit, struc­
tureddescription of the semantics of the
problem domain.

PRODUCTION SYSTEMS IN
PSYCHOLOGICAL MODELING

Some investigators view humanbehavior
in termsof an information processing
system, consisting ofa long-term memory
(LTM), a short-term memory (STM), and
an ability to carry out certainprocesses
involving symbols. They hope to gain
insight into the,natureof human informa­
tion processing by performing psychologi­
calexperiments with humansubjects
involving symbol manipulation and memo­
rization, and then developing a computer
model that behaves the sameway. Newell
and Simon [Newell 72] state their interest
in production systems (PS) as the compu-

tational tool for carrying out this investi­
gation:

We confess to a strongpremonition that
the actualorganization of human pro­
grams closely resembles the production
system organization.... We cannotyet
provethe correctness of thisjudgement,
and wesuspectthat the ultimate verifica­
tion may depend on the PS proving
relatively satisfactory in many different
small ways, no one of them decisive.

The features ofproduction systems that
particularly interestthese investigators
can be summarized as follows:

1. A production system is a completely
general programming methodology;
in theory, it can be used to express
any desired computation.

2. The rules of the PS provide a uni­
form encoding ofthe information
that instructs the PS how to behave.

3. In a PS, eachproduction is indepen­
dent of the others.

4. The PS has a strongstimulus­
response flavor.

5. The productions themselves seem to
represent"meaningful components"
of the problem solving process.

6. The dynamic working memory for a
PS corresponds to humanshort-term
memory, and the humanlong-term
memory may correspond to the rule­
base of the PS.

Newell's production-based approach
[Newell 73] was used to test theories that
attempt to explain the results of certain
memory scanning tasks.The subjectmem­
orizesa set ofdigits and responds to a
digitflashed on the screen by indicating
whetheror not it was in the original set.
The response times of the subject are
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I] I BOX 7-2 Prospector, A Geology Expert

The PROSPECTOR system emu­
lates the reasoning process of an
experienced exploration geologist in
assessing a given prospect site or
regionfor its likelihood of contain­
ing an ore deposit of a certain type.
The empirical knowledge contained
in PROSPECTOR consists of a
number of models that encode
knowledge about certain classesof
ore deposits. An ore deposit model
is encodedas an inference network,
a network of connections or rela­
tions between field evidenceand
importantgeological hypotheses.
For example, PROSPECTOR in­
cludesa sulfide model, a carbonate
lead/zinc model, a copper model, a
nickel sulfide model, and a sand­
stone uranium model. These models
are intendedto represent the most
authoritative and up-to-date informa­
tion about each class of ore deposit.

Given a rule such as Barite
overlying sulfidessuggeststhe
possible presenceofa massive
sulfidedeposit, a semantic network
is used for the antecedent, and a
separate one for the consequent.
The networks are represented using
linksand nodes; conceptually, the
networkfor the antecedent of the
barite rule would be:

There is some entity, E-3A, that
participates in an overlying
relationship, (PHY-REL-3A)
withsome other entity, £.3B.
Furthermore, E-3A is composed

of barite, and E-3B is com­
posedofsome material, V-3A ,
that is a memberofsulphides.

The semanticnetworkrepresenta­
tion has the advantage that all parts
ofa consequentand a related ante­
cendentdo not haveto match. Rules
can be linked implicitly throughset/
element chains. For example, sup­
posethat a samplecomposed of
galena is observed. Since galenais
an element of the lead sulfides which
in tum is a subset of the sulfide
minerals, this observation is relevant
to a rule concerningsulfides, and
can automatically activate such a
rule.

In the interactive consultation
mode, the geologist typically has
promising field data and wants
assistance in its evaluation. He or
she provides the programwith a list
of namesof rocks and minerals
observed, and enters other observa­
tions expressedin simple English
sentences. The programmatches
these data against its models, re­
quests additional information of
potential valuefor arriving at more
definite conclusions, and provides a
summary of the findings. The user
can ask at any timefor an elabora­
tion of the intent of a question, or
for the geological rationalefor
including a rule in the model, or for
an ongoingtrace of the effects of
answers on PROSPECTOR's conclu­
sions.The performance ofPROS-

PECTOR depends on the number of
models it contains, the typesof
deposits modeled, and the complete­
nessof eachmodel. Each model is
encoded as a separatedata struc­
ture, independent of the PROS­
PECTOR system perse. Thus
PROSPECTOR is a general mecha­
nism forusingsuch models to de­
liver expert information about ore
deposits to a user who can supply
it with dataabout a prospect or
region.

To dealwith the uncertainty of
user observations, PROSPECTOR
uses an inference mechanism based
primarily on subjective probability
theory. A probability is associated
with every statement in the knowl­
edgebase, measuring the degree to
which the statementis believed tobe
true. When engaged in consultation
about a particular propect, PROS­
PECTOR uses the specific geologi­
cal evidence furnished bythe userto
updatethe values of its storedprob­
abilities.

In developing the ore deposit
models, a significant resulthas been
the evolution of a methodology to
acquire and encodemodels. This
methodology involves interviewing
techniques, principles fordetermin­
ing the overall structureofa model,
toolsfor interactive construction,
modification, and testingof models,
and methods for evaluating and
revising a model.
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noted. The production system was refined
to incorporate new hypotheses about how
the symbols werebrought into the sub­
ject's memory, and eventually a successful
simulation was builtaround a small num­
ber of productions.

Someof Piaget's results have also
been modeled bypsychologists usingthe
production rule representation. For exam­
ple, for tasks involving the orderingof
members of a set of objects based on
length, weight, or size, Young [Young 76,
Boden81] shows how the behavior of any
given stage in a child's development can
be described by a specific productionrule
system.

PRODUCTION RULE-TYPE
EXPERT SYSTEMS

An expert system is a program that uses
largeamountsofknowledge about a sin­
gle domain to achieve a high level of
competence in that domain. While most
expertsystems do not use the pure PS
form, the PS framework can be found in
mostcurrent applications. Some charac­
teristics of such systems are discussed
below.

It is not trivial to buildup a database
of rules in practical application domains,
sincehuman expertsoften have trouble in
converting informal knowledge into for­
mal rules. In addition, it is difficult to
capturethe ability of an expert to deal
with uncertainty. While various Bayesian
and ad hoc approaches to uncertainty
have been incorporated into expert sys­
tems, experts oftencannot make useful
estimates of the requireda priori probabil­
ities or beliefvalues.

As is typical of a PS, the expert sys­
tems are often highly reactive; i.e., the
choiceof actions to be performednext by
the system depends primarily on signifi­
cant features of the current situation,
rather than on the type of fixed control
structure that characterizes conventional
software systems. Anotherdifference from
a conventional system is that theoretically
the rulesare modular in nature; rules can
nominally be added and deleted without
affecting other rules. In practice, though,
there are oftensideeffects, some of which
can be quitesubtle.

The expert system must be able to
communicate with the user in a mode that
is natural for the particular application.
The systems are ofteninteractive, using a
graphics display and communicaiton via
an approximation to a natural language
(e.g., English) extended to include the
jargon of the application domain. Further­
more, many expert systems can retrace
the reasoning sequence employed and
explain whatwas done at each step and
why, often based on keepinga time­
history of the rule firings or the backward
chaining.

In addition to the use of production
rules to represent domain knowledge,
frame-based representations havebeen
incorporated into many recent systems to
provide significant helpwith the rule­
management task byproviding a means of
organizing and indexing modularcollec­
tions ofproduction rules according to
their intended usage [Fikes 85].

Applying Expert Systems Expert sys­
tems can only be used in applications
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where knowledge can be expressed by
formal rules, such as medicine, engineer­
ing, and science, to aid users in design or
diagnosis tasks. For example, the Dendral
and Meta-Dendra! systems [Buchanan 78]
for analyzing mass spectrometer data were
amongthe firstsuccessful applied systems;
MYCIN is an expertsystem that acts as
a consultant to the physician in the field
of infectious disease, [Buchanan 84,
ShortIiffe 76]; Rl is an expert system
for designing computer configurations,
[McDermott 80, McDermott 81]; and
PROSPECTOR is a consultant system
for geological exploration, [Duda 79].

There are no expert systems to aid in
the writing of poetryor novels, or in
paintinga picture, since these creative
arts have not been expressed in formal
rules (andmay neverbe). Another re­
quirementfor an application is the exist­
ence of consensus among experts as to
whatis a proper procedureor what is
valid knowledge. Lack of consensus often
exists among experts in art, music, and
literature. The problem of consensus even
arises in technical fields when a lack of
understanding exists, e.g., in medicine a
diseasethat baffles the experts may result
in differing opinions as to diagnosis and
remedies. One may also have schoolsof
thought in a particularfield, such as exists
in the various approaches to psychiatric
problemsand their treatment. Finally, for
a field to be suitablefor expert system
application, there mustbea certain de­
gree of stability over time. The effortof
constantly changing rulesof an expert
system and validating the results would
make the system unattractive.

'TWo examples of expert systems for
relatively stable domains are PROSPEC­
TOR in the field ofgeology (see Box 7-2)

and MYCIN in the field of medicine (see
Box 7-3).

PlausibleReasoning in Expert
Systems

In some applications, such as engineering
design, the rules are usually stated as
certainties, e.g., "If conditions A and B
exist, THEN perform someaction." In
diagnosis systems, such as the MYCIN
medical system and the PROSPECTOR
geology expert, the ruleshavea probabi­
listic flavor, "Ifthere is evidence A and
evidence B, THEN hypothesis C is true
withcertainty of0.7." There also may be
a measureofuncertainty attachedto the
evidence itself, e.z., the user may feel that
the probability of evidence A beingtrue is
0..8. Terms such as "probability" and
"certainty" are not probabilities basedon
frequency as in the caseof cointossing or
card games, but rather are subjective
scores given byan expertto indicate the
relevance ofevidence to a hypothesis, or
the believability that a certainpiece of
evidence is true. Suchestimates are used
in everyday life whenwetalk about the
probability ofateam winning the game.

Ifwehave a database with a large
number of rules containing subjective
probability estimates, the expert system
must be able to derive new scoresfor
hypotheses as new evidence is presented
to the system. Each rule in the database
has an associated rule strength that mea­
sures the degree to which a change in the
probability of the evidence changes the
probability of the hypothesis. This change
can be positive or 'negative, sinceevi­
dence can be either favorable or un­
favorable for a hypothesis. These rule
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II BOX 7-3 MYCIN, A Medical Expert System

The MYCIN system diagnoses blood
and meningitis infections, and rec­
ommends drugtreatment. MYCIN
conducts its consultation with the
user in English, and constructs lines
ofreasoning leading to a diagnosis
and treatment plan. MYCIN's was
the first major rule-based system,
[Buchanan 84]. A typical MYCIN
production is:

IF: (1) The site of the culture is
blood, and (2) the gramstain of
the organism is gramneg, and
(3) the morphology of the
organism is rod, and (4) the
patientis a compromised host
THEN: There is suggestive
evidence (0.6) that the identity
of the organism is Pseudo­
monas aeruqinosa.

Thereare alsoproductionlike
rules concerning the use of other
rules:

IF: (1) The patient isa compro­
mised host, and (2) there are
satisfied rules which mention in
theirpremise Pseudomonas,

and (3) there are satisfied rules
which mention in their premise

, Klebsiella THEN: There is
suggestive evidence (0.4) that
the actions associated with the
former rules (2) should be
executedbefore the latter (3).

Each rule suppliedbyan expert
has associated withit a degree of
certainty representing the expert's
confidence in the validity of the rule
(a numberfrom 1 to 10).An ad hoc
procedure is used to cumulatethe
degreesof certainty of the rules used
in an inferencechain.

An interestingfeature of
MYCIN is that it can expose its line
of reasoning by offering explanations
of various kinds. "Why"and "how"
questions can be asked by the user
duringconsultation. The user can
ask the system, "Whydo you want
to know that?" and "Howdid you
conclude that?" For example, if
MYCIN asks the user "Is the pa­
tient's illness with ORGANISM-1 a
hospital acquired infection?" and the
user responds with WHY?, MYCIN
answers:

MYCIN: (1.0) This will aid in
determiningthe categoryof
ORGANISM-1 since it has
alreadybeen established that
(1.1) the gram stain of
ORGANISM-1 is gramneg, and
(1.2) the morphology of
ORGANISM-1 is rod, and (1.3)
the aerobicity of ORGANISM-1
is facultative. Therefore, if (1.4) .
the infection withORGANISM­
1 was not acquired while the
patient was hospitalizedthen
there is strongly suggestive
evidence (0.8) that the category
of ORGANISM-l is Pseudo­
monas aeruginosa.

Similarly, if the user asks HOW
(1.3), the system will indicate the
chainof reasoning that was used in
establishing "aerobicity," Becauseof
MYCIN's many usefulfeatures, such
as interactionin English, explana­
tory powerin answering WHYand
HOW questions,and the careful
construction of an expert database,
it has becomethe model for many
subsequentexpert systems.

strengths are usually obtained by inter­
viewing an authority; strengths that are
expressed initially in verbal termssuch as
"encouraging," "very unlikely," etc., must
be translated to a numerical scale.
Changes in probability are then computed
using somead hoc or formal scheme (see
the section on probabilitistic reasoning in
Chapter 4 for further discussion of this
topic).

An example of a formal approachto
probability updating is PROSPECTOR's
use of Bayes's theorem for modifying the
probability of a hypothesis based on evi­
dence E. This approach assumes that
before anyinformation has been obtained
from the user, every rule S has been as­
signedsome prior probability P(S) by the
designer. As evidence is acquired from
a user, an updated probability of S is
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computed. If E' denotes all the evidence
accumulated up to some point in the
consultation, then the probability P(SIE')
denotes the current probability of S given
the evidence E'. The updatingrelation­
ships and an actual PROSPECTOR com­
putation are presented in Appendix 7-1.
The simplestform of updatinginvolves a
hypothesis affected by a single piece of
certain evidence. The next more compli­
cated situation involves a hypothesis af­
fected by a single pieceof uncertain
evidence, e.g., the user says, "I am 70
percent certain that evidence E is true."
The most complicated case deals with
updating a hypothesis using multiple
rules, each with uncertain evidence. There
are many subtleties that arise in the actual
analysis, concerning uncertainty of evi­
dence, independence of evidence, and the
prevention of inconsistencies.

Basic AI Issues
At present, expert systems do not acquire
their expertise through experience, but
rather, they are given the needed informa­
tion and the organization of this informa­
tion by a knowledge engineer. An expert
systemcan be considered as an idiot
savant that can deal very effectively with a
specialized field, but is incompetent to
deal with topics not in this field. It is
instructive to examine the reasons for the
limitations of existing PS-based expert
systems:

• Lack of learning capability. The de­
signer of the system, and not the sys­
tem, learns by experience as the system
is used, and modifies the rule database
accordingly. Becauseit is a nontrivial
task to determine which rules need

modification whenthe system is not
performing up to expert standards, the
designer must consult with the human
experts to determine how the rules have
to be modified or augmented. The sys­
tem itselfhas no way of determining
why the end user may not be satisfied,
and no way of automatically correcting
the source of the difficulty.

• Lack of ability to generalize. There is
no reason to expect that the addition of
incremental amounts of knowledge will
lead to global understanding. To be able
to understand, the system must be able
to generate higher level conceptsby
comparing and generalizing problem
situations or groups of knowledge ele­
ments. No such ability has been pro­
vided in existing systems. Aswehave
indicatedpreviously in Chapter 5, this
ability to make comparisons and to
determine similarity is a crucial part of
generalization and learning.

• Explanation. The explanation ap­
proach used in most expert systems is in
terms of rules that havebeen satisfied
or will be satisfied ifcertain information
is provided. However, the user often
desires a causal explanation based on
physical reasoning. This type of expla­
nation usually requires that there be a
model of the process beingdiscussed.
Several recent medical expert systems
use such models for this purpose.

• Need for representing control knowl­
edge. Although a pure production
system is conceptually attractive, the
problem of control quickly arises in any
practical system. Control must be ex­
erted when more than one rule is acti­
vated by the working storage. The
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11 BOX 7-4 Shallow and Deep Reasoning in ExpertSystems

Most current expertsystems canbe
said to use "shallow" reasoning,
since thereis no mechanism in the
system for "understanding" the
domain ofexpertise. Anexpert
system based on deepreasoning
uses a model ofthe domain to moti­
vate the reasoning processes. For
example, a shallow electronic trou­
bleshooting system would contain
rules supplied byan expertrelating
failure symptoms to possible circuit
problems. A"deep" system would
usemodels ofelectronic compo­
nentsandtheirrole in circuits to
reason about the symptoms and how
they imply failures of components.
Thedifference between theseap­
proaches iswell stated byDe Kleer
[De Kleer 84al who has developed a
program that can reasonabout
electronic circuits, determining the
effects caused bycomponents ofthe
circuit, and their purpose(teleology)
in the circuit:

If I were interested in
building a performance pro-

gram, the temptation for in­
cluding.. . . extra knowledge
would be overwhelming. How­
ever, that would be short­
sighted. To understand what
causal reasoning, or teleologi­
cal reasoning is, one muststudy
it in isolation uncorrupted by
other forms of reasoning.
Otherwise one has merged two
types of reasoning without ever
identifying either one individu­
ally. In addition, little scientific
progress is madeand weare
not much closerto the ultimate
goal. ... Toachieve robust
performance, the underlying
theories mustbe identified.
Thismethodology stands in
sharp contradistinction with the
popular expert-systems method­
ology. Expertsystems are
aimed at producing whatper­
formance is possible in the
short term without consider­
ation ofthe longerterm. Typi­
cally this is achieved by
recording as many ofthe heu­
ristics and rulesof thumbthat
experts actually use in practice,
as possible. This is misguided.

The reasoning of expertsis
based on underlying theories
that mustbe teased out The
expertsystems approachcanbe
caricatured as a stimulus­
response model-good for
some purposes, but ineffective
in the longrun.

De Kleer is correct in his as­
sessment ofwhatis requiredto
attain a sophisticated expertsystem,
but he dismisses too casually the
importance of rule-based systems
that use an extensive knowledge
base. He is advocating a complete
return to the philosophy ofgeneral
reasoning in placeof an extensive
knowledge base. See Artificiallntel­
ligence, December 1984, for an
entirevolume devoted to this point
of view. The ideal approach is proba­
bly a system capable ofboth deep
and shallow reasoning, togetherwith
the ability to perceive and learn.
However, weshouldremember that
it tooknature 5 billion yearsto
design such systems!

designer mustprovide somemethodfor
determining which rule is to change the
state of the world first, and whether the
other activated rulesare to be allowed
to fire. In addition, since the matching
process is time-consuming, procedures
mustbe preprogrammed to determine
which rulesshould be examined, and
this often depends on whatphase of the
problem the system is working on. This

latter difficulty is related to the frame
selection problem, i.e., whenever a
situationis encountered wherea par­
ticularset of rulesis most applicable,
then attemptsat matching shouldbe
restrictedto the set of rules in a par­
ticular frame.

• Reasoning. Qualitative or common­
sense reasoning is not feasible since
most current systems are based on
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independent "chunks" of knowledge
(rules), ratherthat on an integrated
model. Thus, the system has no "over­
view" of its supposed field ofexpertise.
Box 7-4 discusses someattempts to deal
with thisproblem.

• Fragility. Most currrent systems are
fragile. The term "fragility" is usedto
denote a system that suddenly loses
competency when it strayssomewhat
from its intended domain. (This is in
contrastto the performance ofhuman
experts which tends to degrade
smoothly in a similar situation.) Since
expertsystems are designed to be nar­
rowly focused, there rriay be no resolu­
tion to this problem.

DISCUSSION

In this chapterwe showed how a rather
simple concept, the production system,

has beenused in psychological modeling
and in expertsystems. The PS offers an
interesting approach to control, one that
allows the data to direct the processing.
Another important feature is the modular­
ity of the rulebase, so that rules can be
added and deleted withoutthe need to
modify the control structure.

Expertsystems based on the PS
concept have become one of the most
successful and active areas of applied AI.
Although oftennot "pure" PS, they usu­
ally retain the importantfeatures ofdata
driven control, modularity of rules, and
explanation ability. In spite of their advan­
tages, the corresponding disadvantages of
PS, described in the previous section, are
severe enough to questiontheir long-term
potential. Without the ability to perceive,
learn, and reason, these systems would
seem to have a limited role to play in
future intelligent systems.

Appendix
7-1

PROSPECTOR Procedure for Hypothesis Updating

This appendix illustrates how PROS­
PECTOR propagates the effects of
newevidence through its inference
networks (chains of evidence and
hypotheses). Interactions between
separate chainsare not treated here.

The "odds-likelihood" form of
Bayesian updating was usedin
PROSPECTOR because it was felt
that geology expertscould make
their estimates best in that form.

The procedure involves three Quan­
tities:

1. The priorodds for the hypo­
thesis,O(H), where O(H)­
P(H)/(l-P(H». Notethat this
oddsrelationship corresponds
to the layman's useof odds,
e.g., when P=0.8, the oddsare
0.8/(1-0.8)-4, odour to one.

2. The posterior oddsfor the
hypothesis, giventhat evidence

E is observed to be present,
O(HIE)=p(HIE)/(l-p(HIE».

3. The likelihood ratio,
LS=P(EIH)/P(E !H), a ratio of
the probability of the appear­
ance of evidence given that a
hypothesis is true, to the proba­
bility of evidence ifthe hypoth­
esis is not true.

The updating relationship involv­
ing these Quantities is given by



a form ofBayes's theorem:

O(HIE) = LS· O(H)

If LSislarge, it means that
the observation of E is encouraging
for H. When LSis infinity, E estab­
lishes H.

A complementary set of equa­
tions describes the case in which E
is known to be absent.i.e., when - E
is true:

O(HI- E) = LN*O(H) , where
LN = P(-EIH)/P(-EI-H)

The quantity LNis called the
necessity measure. If LN is much
less than unity, the known absence
of E transforms neutralprior odds
on H intovery small posteriorodds
in favor of H. If LNis large, then the
absence of E is encouraging for H.

Aninference rule, If E THEN
(to degreeLS, LN) H, states "The
observed evidence E suggests (to
somedegree) the hypothesis H." To
apply the rule, the expert mustnot
only describe E and H, but must
alsosupply numerical values for LS,
LN, and O(H).

The updating formulas cannot
be applied directly whenthe user is
unableto statethat the evidence E
is either definitely present or defi­
nitely absent, but they can be ex­
tended to accommodate uncertainty
in E, see [Duda 76]for details. In
the example below [Duda 79], we
will use a nonlinear function of
the changein probability of E as
a weighting factor to obtain the
new odds.

The approach is to linearly
interpolate between two known
pointson the plot of P(HIE) vs.
P(E).Oneknown point is P(HIE)
when E is certain, and for the other
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we use the priors for both P(H) and
P(E). The corresponding values in
the odds updatingformulaat these
twopointsis that (1) when E is
known to be true, the newodds
equals (LS)*(oldodds), and (2) the
case where we have no newevi­
dence, for which the newodds
equalsthe old odds (thecase of
the priors).

PROSPECTOR ProbabilityUpdate
Computations. The relationships
used in the updatingcomputation
given below are:

• Probability = odds/(l +odds)
• Odds = probability/(l-prob­

ability)
• New odds = old odds * likelihood

ratio

The rules that will be used are
given below. (Abbreviations will be
used, e.g., SMIR for "suggested
morphology of igneousrocks," to
shorten the exposition; LS - likeli­
hood ratio.)

• IF INTRUSIVE BRECCIAS
THEN SUGGESTIVE MOR­
PHOLOGY OF IGNEOUS
ROCKS (SMIR) WITH LS - 20.

• IF SMIR THEN HYPABYSSAL
REGIONAL ENVIRONMENT
(HYPE) WITHLS - 300.

• IF HYPE THEN FAVORABLE
LEVEL OF EROSION (FLE)
WITH LS - 200.

The system beginswith the
following a prioriprobabilities:
SMIR - 0.03, HYPE - 0.01, and
FLE - 0.005. If the user indicates
certainty for INTRUSIVE BREC­
CIAS, the following probability
updating takes place:

1. SMIR odds = 0.03/(1-0.03)
- 0.031
Revised SMIR
odds = 20·(0.031)

= 0.62
(TheLS for the INTRUSIVE
BRECCIAS multiplies the
SMIR odds.)

Revised SMIR
prob. = 0.62/(1+ 0.62)

- 0.38
2. HYPE odds = 0.011(1-0.01)

= 0.0101
For a weighting factor of 0.36,
the revised HYPE
odds = 0.0101·300·0.36

- 1.09

(TheHYPE odds havebeen
increased by the LS of 300,
weighted bya function of the
degreeto which SMIR has
increased from its prior
probability.)

Revised HYPE
prob. - 1.09/(1+ 1.09)

- 0.52
3. FLE odds - 0.005/(1-0.005)

- 0.005
For a weighting factor of 0.515,
the revised FLE
odds - 0.005·200·0.515

- 0.52

Revised FLE
prob. - 0.521(1 +0.52)

- 0.34

Thus, the user indicating certainty
for INTRUSIVE BRECCAS has
increased the probability ofSMIR
from 0.03 to 0.38; of HYPE from
0.01 to 0.52; and of FLE from0.005
to 0.34. The propagation of proba­
bility updates continuesin this
mannerthroughout the network.


