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The Brain
and the Computer

The human brain is the
most highly organized and
complex structure in the
known universe. What do
we really know about this
remarkable organ and
where does this knowledge come from?

Our understanding of the human
brainis based on:

1. Physiological and psychological inves­
tigations, going backat least2500
years" to the work of Hippocrates,
that attemptto catalog and relate
brain structureand function by ex­
periment and directobservation

'Knowledge of the neurological symptoms resulting
from specific brain injuries existed as earlyas 3000
B.C. For example, the Edward Smith Papyrus, a
surgical treatise, describes the location of certain
sensory and motor control areasin the brain.

2. Analogy to the mechanical
devices built by man that
attempt to duplicate some
of the brain's functional
abilities
We will review some of the

anatomical knowledge about the brain's
architecture, but there is littlehope that
the structures we can currently observe
and describe will shed much light on how
the brain really functions. In a device as
complex as the brain, function is too
deeply encoded in structure to be deci­
pheredwithout already knowing the rela­
tionships for which we 'are searching. We
can trace some of the sensory and motor
pathways for a short distance into the
brain, but once wepass beyond the point
ofdirect sensor signal transmission, con­
ditioning, and reflex behavior, we have
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little understanding of whatthe brain is
actually doing.

At present, our best hope for under­
standingthe brain and the nature of hu­
man intelligence appears to be through
analogy with the computer and the associ­
ated mathematical theory ofcomputation.
This may be a false hope, both with re­
spect to understanding and to man's at­
tempts to buildan intelligent device in his
ownimage. Historically, attempts have
been made to explain the brain's behavior
in terms of the mostadvanced artifacts of
the time: in terms of clockwork mecha­
nisms, telephone switchboard analogies,
and now the digital computer.

One of our main goals in this chapter
is to address the question ofwhether
there are essential differences between the
brain and the computerthat will prevent
machine intelligence from reaching hu­
man levels of achievement. In particular,
weexamine the ultimate capacity .of the
computeras an intelligence engine:

(a) To whatextent is the computer an
adequate model for explaining the
functioning and competence of the
brain?

(b) Are there problems that cannot be
solved (inpractice or in theory) by
a logical device?

(c) Is there a limit to the complexity of a
physical device beyond which unreli­
ability renders it successively less
(rather than more) competent?

THE HUMAN BRAIN

The human brain is constructed out of
more than 10 billion individual compo­
nents (nerve cells). Canwe really hope to

understand how something so complex
operates, or even determine what it is
doing or trying to accomplish? Our cur­
rent view, that the brain controls the
body and is the seat ofconsciousness,
and our understanding of the nature of
intelligence and intelligent behavior,
is still developing.

In this sectionwefirst discuss the
evolution of the brain and present a
model of its organization basedon an
evolutionary perspective, the so-called
triune brain of MacLean. Next, wede­
scribe the architecture of the brain and
present two functionally oriented models,
one due to Luria, and the second, with
more of a philosophical flavor, due to
Penfield.

Evolution of the Brain

How did the brain evolve? Is there a con­
tinuousspectrum of elaboration reaching
from the simplest organisms to man, or is
there a sequence of distinct "inventions"
that sharply partitions the competence of
the organisms with brains incorporating
these inventions?

Living organisms have evolved two
distinctstrategiesfor obtaining the food
and energy necessary to sustain life.
Plants are stationaryfactories that exploit
the largely renewable nonliving resources
in their environment. Animals eat other
living things and mustbe capable ofboth
finding and catching their prey-i.e., of
perception and motion. The physiological
correlatesof purposive movement through
the environment are sensors, muscles,
and an effective apparatus for interpre­
tation, coordination, and control.

The essential invention that allowed
higher-level animal life to evolve was the
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nerve cell (Appendix 2-1), and indeed,
one ofthe most important distinctions
between animal and plant life (once we
pass beyond the mostprimitive organisms)
is that animals possess nervous tissue and
plants do not. The nerve cell provides a
way ofrapidly transmitting sensed infor­
mation and muscular control commands
using a unique combination ofelectrical
and chemical signals, while in plantlife,
coordination of activity is accomplished
exclusively bymuch slower chemical mes­
sages. In addition to a speed advantage,
nervous tissue possesses an unusual de­
greeof"plasticity" (modification offunc­
tion dueto environmental influences) that
seems to provide the basis for learning.

The first simple animals, like plants,

were passive organisms, either stationary
or drifters-movedmostly bywind or tide.
It is believed that one ofman's mostdis­
tant ancestors was a miniscule wormlike
creaturethat floated in the surface layers
of the warm Cambrian seassome500
million years ago, and that a strip of light­
sensing cells and associated neurons
developed on itsdorsal (back) surface to
improve its ability to properly orient and
position itself relative to the surface illu­
mination. This stripof nerve cells, by
creasing and folding inward (invaginating),
first formed a tubular nerve cord and
eventually evolved intothe spinalcord
that distinguishes the vertebrates, includ­
ing the higher forms ofanimal life, and
ultimately man. (See Table 2-1, Fig.2-1

TABLE 2-1 • The Evolution of Animal Life

Years
Era Period Epoch Before Present Life Forms

(millions)

Quaternary Holocene 3 Modem man
Pleistocene Early man

Tertiary Pliocene Large carnivores
Cenozoic Miocene Grazingmammals

Oligocene 70 Large mammals
Eocene Modem mammals
Paleocene Earlymammals, modembirds

Cretaceous 130 Climax of reptiles, conifers,

Mesozoic
first flowering plants

Jurassic 165 Firsttrue mammals, first birds
Triassic 200 Firstdinosaurs, amphibians

Permian 230 Abundant insectlife
Pennsylvanian 300 Firstreptiles
Mississippian 320 Sharks

Paleozoic Devonian 360 Firstamphibians
Silurian 400 Firstland plants
Ordovician 480 Firstfishes
Cambrian 550 Abundant marine life

Precambrian
600 Very primitive organisms (Few

fossils found)
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FIGURE 2-1
Evolution of the Vertebrate Brain.

It appears that the aboriginalverte­
brate brain(the somewhat enlarged ante­
rior end ofthe spinal cord) underwent a
seriesof three evolutionary expansions to
permit the development of the three main
distance receptors (See Fig. 2-1): the
hindbrain for vibration andsound, the
midbrain for vision, and the forebrain for
olfaction (smell). In the higher vertebrates,
and especially man with his elaborated
cortex, the sensory interpretation func­
tions migrated from the lower centers
where they originally evolved, and now
mainly reside in the cortexitself. Never­
theless, in the growth of the individual,
the vastly more complex modern chordate
brain still develops from these three
bulges in the embryonic neural tube (Fig.
2-1 and 2-2). The hindbrain gives rise to
the cerebellum, the main center for mus­
cular coordination; the midbrain enlarges
into the optic tectum, which still serves as
the mainvisual center in birdsand fish;
and the forebrain, which grows into the
large multifunction cerebrum in man, is
an inconspicuous swelling in many lower
vertebrates that is employed to analyze
the inputsfrom their olfactory organs
(Color Plate 1). It should be noted that
olfaction is the dominant sense in most
mammals. Food selection, hunting, social­
izing, mating, and navigation can all be
effectively basedon a keen senseofsmell.
Almost alone among mammals, vision
dominates smell in the primates. This is
undoubtedly due to the fact that the pri­
matesevolved in the treeswhere three­
dimensional vision is critical to survival,
and scents quickly fade.

the overall data transmission require­
mentsand time delays, a process called
"neurobiotaxis."

Spinal
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oblongata

Hindbrain

Cerebellum

Nerve
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Tectum

Midbrain

Cerebrum

Cerebrum
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and 2-2, and Box 2-1). In the course of
evolutionary development, sense organs
tended to develop on the forward (ante­
rior) end of the organisms, for that is
the end that first penetrates new envi­
ronments. Nerve centers concerned
with analysis of data from these sensory
organs also moved forward to minimize

(a) Diagrammatic depiction of the three primary swell­
ings of the neural tube as it is believed to exist in ab­
originalchordates, and as it appears in embryonic
development of the human brain. (b) Evolutionary
developments believed to haveoccurred in the roof of
the primitive neural tube. (After C. M. U. Smith. The
Brain, 1bwards an Understanding. Capricorn Books,
NewYork, 1972.) (c) Elaboration of the neural tube in
embryonic development of the human brain.

(a)

(b)
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Part II: Embryonic Development of the
Human Brain.

The three main parts of the brain (the forebrain, the
midbrain and the hindbrain) originate as prominent
swellings at the head end of the earlyneural tube. The
cerebralhemispheres eventually overgrow the midbrain
and the hind brainand also partly obscurethe cerebel­
lum. The characteristic convolutions and invaginations
of the brain's surface do not begin to appear untilabout
the middle of pregnancy. (FromScientific American,
1979. Reprinted by permission.)

--
(b)

Proliferating
cells

(c)

Neural fold----::l~

Neural crest---~l'It~
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Cd)

Neural---!::..m"-.i
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Neural---'
cavity
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(a)

(a) Ectodermalcellsform a neural plate in the midline,
andproliferate to form a multicellular layer. (b) Ascells
at each sideof the neuralplate proliferate, the sides
are elevated (arrows) to form neuralfoldsenclosinga
groove. (c)The neural groove deepens and the neural
folds come together in the midline (arrows), fuse, and
formthe neuraltube. (d)The neuraltube formsthe
primitive centralnervous system. The overlying neural
crest will form the peripheral nervous system and related
cells. (From E. L. Weinreb. AnatomyandPhysiology.
Addison-Wesley, Reading, Mass., 1984, p.l58, with
permission.)

FIGURE 2·2
Part I: Embryonic Development of the
Nervous System.
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1]1BOX 2-1 Animal Evolution

TABLE 2-2 • Classification of Man

ORGANISM: Man

KINGDOM: Animal (Other kingdoms are plant, Protista, Monera.)

PHYLUM: Chordata (Distinguished bya backbone or notochord, a longi-
tudinal stiffening rod which liesbetween the central nervous system and
the alimentary canal; a hol1ow, dorsal nerve cord; and embryonic gill slits.
The chordatesinclude over 70,000species distributed overfoursub-
phyla. Other majorphyla include the Arthropoda, Mollusca, and Echino-
dermata.

SUBPHYLUM: Vertebrata (The embryonic notochord is replaced bya
backbone of vertebraeas the centralaxis of the endoskeleton.)

CLASS: Mammalia (Warm-blooded; air-breathing; milk-producing; four-
chambered heart; possesses hair; youngborn alive. Otherclasses include
fish, amphibians, reptiles, and birds.)

ORDER: Primates(Enlarged cranium with eyes located on front ofhead;
stands erect; thumbs opposing the fingers; fingers have nails instead of
claws. Other orders include rodents and carnivores.)

FAMILY: Hominidae (Large cerebralhemispheres overhanging the cere-
bel1um and medulla. Apesbelongto the family Pongidae which consists
of the gorilla, chimpanzee, orangutan, and gibbon. There are two sepa-
rate families of monkeys that also include the baboons.)

SPECIES: Homo sapiens (Man is the only living species ofthe family
Hominidae.)

The human brain developed in the
context of animal evolution. The
storyof this evolution can be told
in terms of a series of "inventions"
involving not onlysensory and
integrative systems(based on the
original invention of the nerve cel1),
but also inventions with respectto:

1. Heredity and reproduction­
e.g., DNA, sex

2. Skeletal, effector, and locomo­
tion systems-e.g., bones,
muscles, skin, hair, spinal
column and vertebrae, legs,
arms, fingers, opposing thumb

3. Energy acquisition and utiliza­
tion via internal transport
systems-e.g., ATP, lungs,
blood, digestive enzymes,
alimentary tract

4. Systems for internalregulation
and body maintenance-e.g.,
the immune system, control of
temperature , breathing, heart
rate and bloodflow, thirst.
hunger, emotions

While no one invention stands
by itself, a system of classification
based on some of the moreobvious
and easily observable inventions has

beendevised to distinguish the
various life forms and their evolu­
tionary progression. The classifica-

tion of man is shown in the Table
2-2. Further discussion can be found
in Wasserman [Wasserman 73].

One of the more interesting accounts
of the present structureof the human
brain, based on evolutionary develop­
ment, is due to Maclean [Maclean 73].
He hypothesizes that the brain consists of
three interconnected biological computers
(the "triune brain," Fig. 2-3), each with its
own type of intelligence, subjectivity,

sense of time and space, memory, motor,
and other functions. Each of these three
brains (known to be distinctanatomically,
chemically, and functionally) corresponds
to a separate evolutionary step. The com­
binationof spinal cord, hindbrain, and
midbrain (collectively called the "neural
chassis") contains the neuralmachinery
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FIGURE 2-3 The Triune Brain.

Ceneral schematic of the three major components of the
triune brain. (After P. D. Maclean. A Triune Concept
ofBrain and Behavior. University of Toronto Press.
Toronto. 1973.)

necessary for reproduction and self­
preservation, including control of temper­
ature, muscle tone, sleep rhythm, blood
circulation, and respiratory functions. In a
fish or amphibian, this is almostall the
brain there is; however, more highly
evolved organisms are animatedby "supe­
rior" brain structures, and are reduced to
a vegetative state when these higher brain
structures are rendered inoperative. Mac­
Lean distinguishes three separate drivers
of the neural chassis:

1. The reptilian or R-complex, which
probably evolved 200 to 300 mil­
lion years ago, consists of the struc­
tures immediately surrounding the

midbrain (corpus striatum, globus
pallidus). Weshare this complex with
other mammals and reptiles. It plays
a majorrole in aggressive behavior,
territoriality, ritual, and the establish­
ment of social hierarchies. It is sur­
prising how much of modern human
conductcan be ascribed to these
primitive behaviorpatterns.

2. The limbic system (thalamus, hypo­
thalamus, hippocampus, amygdala,
pituitary), which evolved more than
150 million years ago, is located on
top of the R-complex. Weshare the
limbic system with other mammals,
but some of its structures are not
possessed by reptiles. The limbic
system appears to be the site of
emotional response (fear, love, hate,
pleasure and especially sexual plea­
sure, pain, altruism, sentiment)and
isa majorcenter for memory storage
and recall. The oldest part of the
limbic system, the olfactory cortex,
which originally evolved to analyze
scents and smells, still serves in this
capacity. The role of smell in sexual
behavior, and its involvement in
memory, is not accidental.

3. The neocortex, sitting like a cap on
the rest of the brain, evolved in the
last 50 million years, but the rate of
its evolutionary growth increased
dramatically in the last few million
years in the primates and especially
in man.

MacLean has based his theory on
years of careful study of the behavior of
animals, rangingfrom lizards to squirrel
monkeys, in which he determined which
parts of the brain control what types of
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behavior. Further, his theory of evolu­
tion byaddition and preservation of pre­
existing structure is alsojustified, in part,
bythe argument that it is very difficult to
evolve by randomly altering a complex
system-anysuch changeis likely to be
lethal. However, fundamental change can
be accomplished bythe addition of new
systems to the old ones.

Architecture of the Brain

The human brain (See Box 2-2, Table 2·3,
and Color Plate 1) is dominated by a
massive cortex, which is bilaterally sym­
metrical in structure. Eachcortical hemi­
sphere is composed of fourmajor regions
or lobes. These are named the frontal,
parietal, temporal, and occipital lobes.

While it is clearthat these lobes do not
act as independentfunctional units, (most
higher level functions are known to be
distributed across morethan one region
of the cortex), it is still the case that many
human attributes and functions appearto
be strongly associated with a single lobe.

The frontal lobesappear to be associ­
ated with initiative, anticipation, caution,
and the general regulation and planning
of action; the temporal lobes with the
integration ofperceptual information,
especially speech and vision; the parietal
lobeswith symbolic processes (reading,
writing, arithmetic), spatial perception,
and motor control; and the occipital lobes
with vision, the dominantsense in hu­
mans and other primates.

Man has convolutions in his cerebral

TABLE 2-3 • Physical Attributes of the Human Brain

Attribute The Brain

Types ofprocessing elements Neuron: up to 100 distinct classes; functional differences not
known

Number of elements 1010 to 1012 neurons

Size/volume Brain volume (man) = 1500 cc
Neuron (cell) body diameter = 0.004 in.
Axon length: up to a few feet

Weight 3,3lb

Power 10 watts

Transmission and switching Transmission speed:function ofaxon diameter and insula-
speed tion, ranges from 30 to 360 ft/sec

Maximum switching speed 0,5 x 10'"sec

Interconnection complexity Upto 200,000 connections (for Purkinjecell)
per computing element

Reliability Componentreliability: low, neuronsdying continuously
System reliability: high, design life 70+ yr

Information coding Digital: frequencymodulation
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II BOX 2-2 Structural Organization of the Mammalian Neocortex

The neocortex is remarkably similar
in the brains of all mammals, includ­
ingman. Thesamecelltypes are
found andthe samestratified struc­
ture with sixparallel layers* is ob­
served.

Numbered from one to six from
the surface inward, layer 1 contains
mostly fibers from neurons in other
layers; layers 2, 3, and the upper
portion oflayer 5 dealwith inter-
nalprocessing; layer 4 is largely
involved in receiving sensory infor..
mation;and the lower portionof
layer 5 andall oflayer6 are con­
cerned with muscle control. The

•From a functional standpoint, the
vertical organization ofthe cortexis
as important as the layered horizontal
organization: the entireneocortex seems
to consist of a mosaic of overlapping
functional columns. Thevertical organi­
zation isdescribed in Chapter8 forthe
visual system.

thickness of the neocortex varies
somewhat in different brainregions
ranging between 50 to 100 cells in
depth.

The number of cells lying
beneath a fixed-size patch ofsurface
area is essentially constantfor all
areas of the neocortex: 140,000
neurons per squaremillimeter of
surface with the exception ofthe
visual area whereprimates have
2.5 timesas many cells as in other
areas. The human neocortex has a
surface area of about 2200 ern' and
is estimated to contain30 billion
neurons. The corresponding num­
bers for the chimp and gorilla are
500 em" and 7.5 billion cortical
neurons; the cat has 4 to 5 em" of
cortexcontaining65 million neu­
rons. The average thickness of the
neocortex increases bya factor of
three in the evolutionary progression
from rat to man, reflecting an in-

crease in the amountof "wiring"
neededto interconnect the larger
numberof neurons; however, the
density of synapses seemsto have
remained unchanged.

Thus, the human brainis not
visibly distinguished in eithergross
structural formation, celltype, cell
distribution, celldensity, or density
of synapses, as weascendthe evolu­
tionaryscalefrom the lower mam­
mals. The majorvisible evolutionary
change is the continuous quantita­
tive increase in neocortex surface
area, thickness, total number of
neurons, and the total number of
connections between neurons. From
fish to man, the brain assumes an
increasingly greater fraction ofbody
weight. In mammals, the neocortex
size (or equivalent surface area)
shows a similarevolutionary in­
creaserelative to the total brain
size [Changeux 85, Smith 72].

cortex that are new from the point of view
ofevolution, and not committed to motor
or sensory functions. Theseareas, which
are "programmed" to function afterbirth,
are primarily in the prefrontal and tempo­
rallobes. During childhood, some of this
uncommitted areaon one sideor the
other (butusually the leftside) of the
temporal lobes will be programmed for
speech. The remaining area, called the
interpretation cortex, is apparently re­
served for the interpretation ofpresent
events in the lightofpast experience.

A theory that attempts to character-

ize the functional organization of the
brainis due to Luria [Luria 73]. He
describes three main functional units.
The first unit, centeredmainly in the
upperbrainstem(especially the reticu­
lar formation) and in the limbic region,
is concerned with the maintenance and
regulation of the general "tone" or level
of activity in the brain, and more gener­
ally, with consciousness and emotion.

The second unit is concerned with
modeling the relation ofthe organism to
the external world, and thus with the
interpretation and storage ofsensory
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information. This second unit is com­
posed of independentsubsystems for each
of the different sensory modalities (e.g.,
visual, auditory, cutaneous, and kines­
thetic senses). However, each of these
subsystems is organized alongsimilar
architectural lines: each sensory modality
has a primary receptionarea that orga­
nizes information received directly from
the sensory organs. A secondary region,
also specific to each sensory modality,
appears to interpret the primary sensory
output in the lightof stored knowledge
and past experience, and is responsible
for the symbolic encoding of the sensory
signals. Finally, a tertiary area, shared
among the different senses, integrates
symbolic information from the different
sensory modalities in creatinga composite
modelof the world. Luriaasserts that this
tertiary area is a unique human brain
structure that converts concrete percep­
tion into abstract verbal thinking employ­
ing some of the same machinery
associated with the speech function.

Luria's third unit, centered largely in
the frontal lobes, is concernedwith the
formation of intentions, the creation of
plans, and the monitoring of performance.
The third unit controlsthe actions and
thus the motor systems of the organism.
Again, Luria asserts that the frontal (pre­
frontal) lobes, much more highly devel­
oped in man than in any other animal
(occupying up to one quarter of the total
massof the human brain), are organized
to employ symbols and speechprocesses
in their functioning.

Rather than continuing to catalog
our admittedly limited knowledge of the
relationshipsbetween brainstructure
and function, in the remainder of this
subsection we will give a briefspecula-

tive account of what is known about the
highest and most fascinating brain func­
tions: mind, consciousness, personality,
pleasureand pain, learning and memory,
and reasoning. Perception is discussed
extensively in a later chapter.

Mind, Personality, Consciousness, and the
Soul. Each human brain appears to house
a single individual, although there are rare
pathological cases of multiple personalities
alternately manifesting their presence in a
singlebody. How do 10 billion nerve cells
interact to produce a single conscious­
ness? Where is the site of the "1, " con­
scious awareness, or eventhe mind or soul
should one or the other existindependent
of the physical structures of the brain?

In a view contraryto that of the
"triune brain" as hypothesized by Mac­
Lean, and also distinctfrom that of Luria,
WilderPenfield [Penfield 78] believes that
the brain is a tightly integrated whole, and
that conscious awareness resides not in
the new brain (neocortex) but rather in
the old (the brain stem). In Penfield's
theory, the brain consists of two major
systems, (1) the mechanisms associated
with the existenceand maintenance of
consciousawareness, the mind, and
(2) the mechanisms involved in sensory­
motor coordination, called the central
integratingsystem.

Penfield, one of the world's foremost
neurologists/neurosurgeons at the timeof
his death in 1976, formulated his views
after a lifetime of studying how the brain
functions and malfunctions, especially in
the presence of epilepsy. He observed that
epileptic fits, abnormal and uncontrolled
electricaldischarges in the brain that
disable the affected areas, generally limit
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themselves to one functional system. One
such typeof epileptic fit, called a petit
mal,' converts the individual into an au­
tomaton. The patientbecomes uncon­
scious, but may wander about in an aim­
less manneror he may continue to carry
out whatever task he had started before
the attack, following a stereotyped pattern
of behavior. He can make few, if any, deci­
sions for which there has been no prece­
dent, and makes no recordofa stream of
consciousness-he will have complete am­
nesiafor the period ofepileptic discharge.
The regions of the brainaffected by petit
mal are the prefrontal and temporal
lobesand the gray matterin the higher
brainstem. Whenan epileptic discharge
occurs in the cerebral cortex in any of
the sensory or motorareas (e.g., in the
parietalor occipital lobes), and spreads to
the higherbrainstem, the result is always
a majorconvulsive attack (grand mah,
neveran attack of "automatism."

We note that both the central inte­
gratingsystem (essentially a computer)
and the mechanisms responsible for mind
(consciousness, awareness) haveprimary,
but distinct, centers in the graymatter
of the higher brainstem(diencephalon)
where they engage in a close functional
relationship. With the exception of pain
and possibly smell sensations, which make
no detour to the cerebral cortex,all sen­
sorysignals comefirst to the higher brain
stem, and then continue on to an appro­
priate region of the cerebral cortex; from
there, they return to specific areas of
the diencephalon. Thus, according to

'Weuse Penfield's terminology, even though it is
now considered obsolete.

Penfield, the cerebral cortex, instead of
beingthe highestlevel of integration, is
an elaboration layer, partitioned into
distinctfunctional areas.

The indispensable machinery that
supports consciousness liesoutside of the
cerebralcortex: removal of large portions
of the cerebralcortex does not cause loss
of consciousness, but injury or interfer­
ence with function in the higher brain
stem, even in small areas, abolishes con­
sciousness completely.

In summary, Penfield views the sen­
sory interpretation and motor control
areas of the cerebrum as a "computer"
that operates in the service of the "mind."
The structures that support the highest
function of the brain, conscious aware­
ness, are thought to be located primarily
in the higher brain stem and in the "un­
committed areas" of the cerebrum (espe­
cially the prefrontal and temporal lobes).
Even if Penfield is correct, we still under­
stand very littleabout the nature of con­
scious awareness, nor do we have any
definitive way of answering questionssuch
as: Atwhat point in evolutionary develop­
ment did conscious awareness first arise,
and at whatpoint in the debilitation of the
human brain does it finally depart? Specu­
lative discussion pertaining to these mat­
ters is presented in Box 2-3.

Pleasure, Pain, and the Emotions. The
emotions of pleasure and pain appear to
be such deep integral parts of the human
experience that it is difficult to believe
that all that is happeningwithin the brain
is the firing of a few specific neurons. Yet,
it can be demonstrated that in some sense
this is indeed the case.

In experiments performedin 1939
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I] BOX 2-3 The Origins and Machinery of Consciousness

When and how did consciousness
evolve, and where does it reside in
the human brain? Three books
addressing these questions all sug­
gest that consciousness is a recent
biological invention, closely linked
to linguistic competence.

JulianJaynes [Jaynes 77] offers
the strange and somewhat unbeliev­
able thesisthat consciousness was
first"invented" in Mesopotamia
around 1300 B.C. He associates
consciousness with the ability to
think, plan, desire, hope, and de­
ceive, and asserts that these attrib­
utes were lacking in early man and
lower animalswhowere onlycapable
of a stimulus-response pattern of
behavior. He believes that the brain
was originally organized into two
functional components, an executive
part called a "god" and a follower
part called a "man," neither of
which wereconscious in the sense
given above. Jaynes'smain argument
in support of his theory is that early
man ascribedhis actions to the
inner voice of the god telling him
whatto do «.s.Odysseus in the
Iliad) . Consciousness, according to
Jaynes, was invented by man coming
to the explicit realizationthat it is
he, and not the gods, who directshis
actions. With a different view of his
thought processes, man's behavior
itselfchanged from reflexive to
introspective awareness.

CurtisSmith [Smith 85] argues
that biological mechanisms created a
linguistic capability before human
language was invented, and that
both language and consciousness
are related evolutionary conse-

quences of purely neurological
developments. These criticalbiologi­
cal inventions, specifically the devel­
opmentof a mental capacity for
manipulation of informationin the
form of a general symbolic code,
were required to integrate informa­
tion from differentsensory modali­
ties" each describing the perceived
world in a different"language." The
evolutionary changes supposedly
occurredwith the emergence of Cro­
Magnonman as a replacement for
the prelinguistic preconsciousNean­
derthal man on the order of 50,000
to 100,000years ago. (Neanderthal
man, the first representativeof our
species, appeared approximately
150,000years ago, but non-ape
hominoids whomade tools and used
fire had already existed for more
than 21/2 million years.) Language
allowed Cro-Magnon man to rise
above the limitations of sensory
experience, enabling him to possess
an internal conscious worldwith the
capacity to dream, imagine, remem­
ber,t and create.

Michael Cazzaniga [Gazzaniga
85],a keyscientist in the split-brain
experiments described in Box 1-3,
offers a uniqueand extremely pro­
vocative theory of consciousness.
Like C.G. Smith, he believes that

"Such anintegrative ability is completely
lacking in lower animals.

tMemory and consciousness areinti­
mately related; in a sense, memory
retrieval is consciousness. It follow that
memory retrieval inlower animals that
lack language must bea simpler and
more sensory-oriented phenomena.

consciousness is only possible in
man, and only developed after the
evolution of both language and
reasoning ability. However, he as­
serts that the brain is composed of
multiple independent nonverbal
modules and a single verbal module.
The verbal module, which is the seat
ofconsciousness, "observes" and
attempts to explain the actions of
the other modules:

It has been commonplace to
think that our conscious cogni­
tiveselfis organized and exists
in sucha way that our language
system is always in complete
touch with all our thoughts. It
knows where in our brains to
find all information we have
stored there, and it assists in
all computations or problem­
solving activities we engage in.
Indeed, the strongsubjective
sense we all possess of our­
selves is that we are a single,
unified, conscious agent con­
trolling life's events with a
singular integrated purpose....
Andit is not true.. .. There
are a vastnumber of relatively
independent systems in the
brain that compute data from
the outside world. These inde­
pendentsystems candeliver the
results of thesecomputations to
the conscious verbal system, or
theycan express their reactions
byactually controlling the body
and affecting realbehaviors.

Thus, according to Oazzaniga,
conscious beliefs are explanations
(devised bythe verbal module) of the
behavior ofthe independent entities
constituting the brainviewed as a
social system.
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COLOR PLATE 1(a)
Comparative Anatomy of the Vertebrate Brain
As indicated by the diagrams on this page, the evolution of the
humanbrain has been a process of rearranging and augmenting
the basic parts of the brains of lower vertebrate animals. Each
of the brains that has developed has been appropriate to the
survival of its particular species. For example, the shark, which
hunts with its nose, has a brain devoted predominantly to the
sense of smell. As perceptionbecomes more versatile in higher
animals, the smell brain (green) shrinks in relative size. Patterns
of instinctive behavior involved in fleeing, fighting, feeding, and
matingare controlled by the hypothalmus (magenta) and associ­
ated nerve centers; these man has inherited virtually intact from
lower mammals. The thalamus (orange),which serves as a final
staging area for messages to the cerebrum (Yellow), has grown
roughly in parallel with the growthof the cerebrum. A relatively
late evolutionary development has been the growthof the
cerebral cortex (deep yellow), which plays a major role in rea­
soned behavior. In fact, the most striking difference between
man's brain and those of other mammals is the extent of his
cortex. If spread out l1at, this thin covering of the brain would
be the size of a newspaper page. It fits into the human skull only
by being crumpled and wrapped around the rest of the brain
like an umbrella. (Max Geschwind in G. Boehm article, Fortune,
Feb. 1986, with permission.)
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~ COLORPLATE 1(b)
comparative Anatomy ofthe Vertebrate Brain (continued)

s indicated by the diagrams on this page, the evolution ofthe Brain andspinal chord ofhuman beings and
other mammals canbe subdivided intosmaller regions according to gross appearance, embyology, or cellular
organization. Atthe topa human brain hasbeen drawn so that itsinternal structures arevisible through
"transparent" outerlayers ofthe cerebrum. Atthe bottom, a generalized mammalian brain isshown ina
highlyschematicview. Corresponding structures in the realistic andschematic models are the same color. The
most general way ofdividing the brain is into hindbrain, midbrain, andforebrain. Thehindbrain includes the
cerebellum. Themidbrain includes the two elevations known as the inferior andsuperior colliculi. Thefore­
brain ismore complex. Itsouterpart isthe cerebral hemisphere, the surface ofwhich isthe convoluted sheet
ofthe cerebral cortex, which incorporates the hippocampus, the neocortex, and the olfactory fields. Within
the hemisphere are the amygdala andcorpus striatum, which includes the globus pallidus andstriatum. The
rest of the forebrain isthe diencephalon: the upper two thirds comprises the thalamus (which hasnumerous
subdivisions) andthe lower third the hypothalamus (which connects to pituitary complex). (From W. Nanta
and M. Feirtag, Scientific American, Sept. 1979, with permission.)
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COLORPLATE 2
ASynthetic Scene Generated using Fractal Textures.

(Fractal landscape rendering by R.F. Voss. From B.Mandelbrot. The Fractal Geometry ofNature. W. H.
Freeman, SanFrancisco, © 1982 with permission.)



COLOR PLATE 3
Histogram Analysis for Automatic
Threshold Setting.

Top right:Color image ofa roadscene.
Middle right: Blue component ofcolor image.
Bottom right: Partitioned image, showing road,

vegetation, andsky.
Above left: Histogram ofblue component ofcolor

image, showing threshold settings.
(Photos courtesy ofSRI International,

Menlo Park, Calif.)
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by Kluver and Suey at the University of
Chicago, it was discovered that when
the region of the brainlying between the
outer cortex and the centerof the brain
was damaged, monkeys behaved as if their
emotional and motivational machinery
was destroyed: they ate nutsand bolts as
happily as raisins and randomly and inap­
propriately intermixed pleasure and fear
responses to test situations.

More recent attempts to locate the
emotional centersof the brain have nar­
rowed the search to the hypothalamus,
known (in addition to other functions) to
control feeding, drinking, and sexual
behavior. In 1953, James Olds discovered
a region near the anteriorhypothalamus
of the rat that, when stimulated with an
electrical current introduced through a
"brain probe," provided such a high level
ofgratification that to get this reward rats
would cross an electrified grid that previ­
ously had stoppedrats starved for 24
hoursfrom runningfor food.

While the positive responses to elec­
trical stimulation of the hypothalamus has
been demonstrated in rats, fish, birds,
cats, dogs, monkeys, porpoises, and man,
the interpretation ofwhat is actually hap­
pening is not completely clear. In some
cases it appears that the stimulation pre­
vents termination or enhances the cur­
rently ongoing activity, rather than provid­
ingthe subjectwith a pleasure reward.
However, human subjects experiencing
the positive effect, generally report that
the stimulation caused reduction of anxi­
etyor pain, or pleasurable feelings related
to sex. One implication ofthese findings
is that in spiteofthe complexity ofhuman
behavior, simple switches in the brain

'Regions of negative response have also beenfound.

can tum on or offsome of our strong­
est drives and motivating mechanisms.

Memory. Memory, nominally the ability
to store and recall past events, is a critical
component of human intelligence; after
all, most of our reasoning dealswith .our
previously stored knowledge of the world
rather than exclusively with currently
sensed data-defective memory is one of
the most frequently observed symptoms
of impaired brain function. What kinds
of memory are there? How longcan differ­
ent kinds ofthings (apicture, a sound, a
word, a story) be remembered? Does the
human memory span exceed that of most
other organisms? Is indeed memory sim­
plya matter of storage and recall? Or is it
a more complex function? Whatdo mem­
ory defects tell us about the nature of
normal human memory?

The first significant modem study of
the psychology ofmemory was published
by Hermann Ebbinghaus in 1885. He
addressedsuch issues as the rate of for­
getting (memory lossoccurs quickly at
first, then more slowly); "overmernoriz­
ing" and relearning ("each repetition
engraved the material more and more
deeply on the nervous system"); the
amount of material that can be memo­
rized (the learningtime for n nonsense
syllables is proportional to nlognfor lists
shorter than the immediate memory
span); the effect of how the learningtime
is distributed (it is better to haveseveral
short learningsessions spaced out at
intervals than to have one unbrokenper­
iod of work), and a host of similar items.

Since memory was known to be
strongly influenced by the meaning and
novelty that the material has for the mem­
orizer, the Ebbinghaus and most subse-
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quent formal memory experiments at­
tempted to achieve generality by employ­
ing nonsense syllables as data to be mem­
orized. This approach masksthe fact that,
except in rare cases, the symbolic infor­
mation memorized is an abstraction of the
originally sensed data, rather than an
exact copy. Thus, in normalsituations
memory is not simply a matter of storage
and recall, but rather a complex process
involving a considerable amount of cogni­
tiveprocessing.

The portions of the human brain
thought to be involved with memory are
the association areas of the frontal, pari­
etal, occipital, and temporallobes, and
parts of the limbic system, especially the
hippocampus. Little is knownabout the
actual storage mechanisms and even less
is known about the following ability which
has no counterpart in computermemory
systems: Aperson knows whensomething
is stored in his memory, and when it is
not. Thus, wewill exert much effortto
recallsomethingthat we"knowwe know,"
while wewill make no effort to recall
somethingthat we know we do not know.
For example, given the question, "What
wasBenjamin Franklin's telephone num­
ber?," we will not try to recallall of the
telephone numbers that weknow, but
immediately conclude that no such num­
ber is stored in our memory.

Humanmemory is not a monolithic
function-many different kinds of pro­
cessesare involved and there are at least
three"different typesof memory: memory

"Theremaybe additional types of memory, e.g.,
Gazzaniga[Gazzaniga 85]describes evidence for the
existenceof memory mechanisms for storing proce­
dural knowledge (such as motorskills) as distinct
from mechanisms for storingdeclarative knowledge
(facts or events).

for sensed data, short-term memory, and
long-term memory. The designation
"short-term memory" is usedto denote
the ability to recall information presented
a short time previously-short-term mem­
ory leaves no permanent imprint on the
brain. One theory ofshort-term memory
is basedon the idea of "reverberation"
of neuronal circuits in which an impulse
travelsthrougha closed circuit of neurons
again and again. In this view, an incoming
thought can be recalled while the rever­
beration continues. "Long-term memory,"
the indefinite retention ofa memory
trace, cannot be explained by reverbera­
tion. Rather, the conceptof "facilitation"
at synapses is used: when incoming infor­
mation entersa neuronal circuit, the
synapses in the circuitbecome "facili­
tated" forthe passageof a similar signal
later (triggered by someportion of the
newsignal which duplicates the original
stimulus). Another theorysuggests that
long-term memory is relatedto protein
synthesis by RNA: memory results from
the production by RNA of specific pro­
teins foreach recorded event.

Eachsensory modality (e.g., vision or
speech)appearsto incorporate a means of
storing the complete incoming signal for
on the orderof 0.10 to 1.0 second. For
example, we have allhad the experience
of not immediately understanding a spo­
ken phrase, but by "replaying it" in our
"mind's ear,"we can recover the intended
meaning. There are alsovisual "after­
images" which occur in a very short inter­
val after the withdrawal of the stimulus,
and are distinguished from other forms of
visual memory in that these afterimages
are not under voluntary control. We can
inspect afterimages withour "mind's eye"
and "see"things wedid not observe
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when the visual stimulus was physically
present.

In addition to very short-term sensory
memory, there appears to be another
form of short-term memory which lasts
anywhere from 30 seconds to a few hours.
Retaining a telephone number "in our
heads" until we can complete the dialing
-the numberis typically forgotten almost
immediately afterward-is an example of
thistype ofmemory.

Importantinformation that is re­
tained overlongperiods of timeappears
to be stored bya completely different
mechanism from that used for the various
types of short-term memory. But even
here, morethan one facility is involved.
For example, there are memory disabili­
ties in human patients that affect their
ability to store and recall verbal material,
while leaving intacttheir memory ability
for nonverbal material.

Many other types of memory disor­
ders are known that shed lighton the
multifaceted natureofhuman memory.
For example, traumatic amnesia can be
experienced bya person who has been
knocked out bya blow on the head. In
a confusional state lasting from days to
weeks, the individual is unable to store
new memories, and on recovery reports
total amnesia for that period. Anterograde
amnesia is the impaired ability to store
memories of new experiences. (It is inter­
esting to note that short term memory is
typically intactamong most amnesia suf­
ferers. Someexperimental psychologists
believe that the primary factor in amnesia
is the inability to transferinformation
from short-term to long-term storage.)
Korsakoff's syndrome is a gross defectof
short-term memory in which the sufferer
may have access to memories of events

occuring prior to the onset of the syn­
drome, but now immediately forgets each
new experience; he lives only in the imme­
diate present with no continuity between
one experience and the next.

To summarize our mainobservation,
exceptfor very short-term sensory stor­
age, the memory function is a complex
activity that involves distinctmodesof
information partitioning, selection, and
abstraction. It has all of the attributes of
perception, and in fact, memory recall
can be viewed as a form of internal per­
ception. We do not generally retrievea
unique "token" in the exact form in which
it was stored, but rather synthesize a
"mental construct" (possibly from many
different brain storagemodalities) that is
relevant to some purposeor ongoing
process. The designation of perception,
learning, and memory as distinctbrain
functions is a simplification which masks
the true nature and interrelations of these
activities.

Reasoning. Man has the ability to use
current and past events to foresee possi­
ble futures, to plan and judgealternative
courses of action, to deduce newfacts
from stored knowledge, and to recon­
struct his environment from sensorydata.
Where and how does the human brain
perform these functions which we ascribe
to the general faculty calledreasoning? It
is in this particular matter that we least
understandthe machinery of the brain.

From a functional standpoint, we
havealready seen that reasoning is not a
monolithic activity, but rather that there
are at least two distinctparadigms the
brain employs to solve the problems
posed to it. The left hemisphere appears
to be especially adept at solving problems
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Areas:
1, 2, 3: Primary sensory (somesthetic)

4: Primary motor
6: Premotor

5, 7: Somesthetic association
8: Voluntary eye movements

17: Primary visual
18, 19: Visual association

22: Auditory association
(Wemicke's area)

41, 42: Primary auditory
43: Primary gustatory

44, 45: Motor (Broca's) speech center
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FIGURE 2-4 Functional Localization in the Human Cerebral Cortex,

(a) External anatomy of the cerebral hemisphere. Lobes, gyri, fissure, and sulci of the left cerebral hemisphere. The insula
(indicated by broken lines)is hidden by the overlyinglobes. (b) Functional areasof the cerebral cortex. The general area is
shaded black. (From E. L. Weinreb. Anatomy and Physiology. Addison-Wesley, Reading, Mass., 1984, pp, 166,167, with
permission.)
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having a sequential/logical character,
while the righthemisphere is superior in
dealing with problems having a spatialI
gestalt character. Otherthan the centers
specialized to deal with data from specific
motor and sensory systems (Fig. 2-4), no
additional localization of the reasoning
machinery is known. The computer anal­
ogy suggests that assemblies of neurons,
individually capable ofactingas both the
logical switches and memory cells of a
digital computer, indeed act as compo­
nents in a distributed general-purpose
computational engine executing relocat­
able algorithms recalled from memory
as the need arises. There is no way at
presentto eitherverify or falsify this con­
jecture. In our currentstate ofknowledge,
we know as much (oras little) about rea­
soning in the brain aswedo about the
location and functioning of the human
soul.

The Brain and the Computer. Beforewe
move on to the computer portionof this
chapter, let us examine where we have
been and where we wantto go. We stud­
iedthe brainwith the goalof learning
more about intelligence. We discussed the
physical structure of the brain, what the
effects of damage are, and whatwecan
introspect about human intelligence.
Although these topics are ofgreat intel­
lectual interest, they do not provide the
insights about intelligence that weorigi­
nally hoped to attain,

We therefore turn to the computer
with the expectation that, because wecan
analyze itsstructureand functioning in a
way wecannot hope to do with the brain,
we may be able toresolve someof our
still-unanswered questions about intelli­
gence.

THE COMPUTER

In its mostbasic sense, the computer is a
machine that operateson information; it
takes in information (or data) and trans­
forms it in somespecific way. As a physi­
cal device, the computer actson physical
quantities, and the assertion that it actu­
ally transforms information is an interpre­
tation we impose on its behavior. Thus
anyphysical system (the human brain, a
dust cloud, a pocketcalculator) is capable
of being viewed as a computer.

Tounderstand the behavior of a
physical system viewed as a computer,
and to determine what it is actually or
ultimately capable of, a number ofab­
stractions have been createdthat attempt
to capture the essence of the concepts
"computer" and "computation." It
should be realized that the conclusions
we draw byanalyzing these abstractions­
for example, conclusions about limits of
performance-are valid assertions about
the physical system onlywhen viewed in
the contextof the abstraction; i.e., the
limits are those of the abstraction. The
most useful and powerful abstractions we
have devised forformalizing the concepts
of information, computer, and computa­
tion are based on the following two ideas:

1. The computer is an instruction fol­
lower.

2. The most complex set of instructions
can be rewritten in a very simple
language; i.e., a language which has
an alphabetof only two letters (0,1)
and a vocabulary of lessthan twenty
distinctoperations for altering strings
of 1's and O's,

The Turing machine, an abstraction
based on these concepts, is described
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later in' this chapter. It will be seen that
while the Turing machine does not lead
to practical ideasabout how to construct
useful computers, it allows us to under­
stand the limitations ofall computer
systems viewed as symbolic informa-
tion processors (instruction followers
that transformstrings of symbols).

The Nature of Computer Programs
and Algorithms

The digitalcomputer (Appendix 2-2), the
most widely used form of the computer,
can be considered to be an instruction­
following device, with the instructions
presented in the form of a program. In
most current computersystems, the hard­
ware is controlled by a special internal
program known as the operating system,
which keeps track of how the computer
resources are beingused, and howthe
work is progressing. The user-provided
programs to be processed are known as
the applications programs. However, from
the standpoint of the user, the separation
betweenthe hardware and the operating
system is unimportantand often invis­
ible; the combination forms the com­
puter which "understands" instructions
presented in one or more specialized
languages.

Procedures mustbe described to
an instruction follower in terms that are
understandable to it. The instruction
follower must be physically able to carry
out the procedures, want to, or be made
to, carry out the instructions in a practical
amount of time, and be able to monitor
progress and have a way of determining
when the task has been completed. These
requirements, assumed to be satisfied

when we communicate with a person,
must be explicitly met when communi­
cating witha robot or computer.

Natural vs, Formal (Computer) Lan­
guages. Procedures are described
to computers by means of programming
languages, which have very precise rules
of syntaxand use. Suchformal languages
differ from natural languages such as
English or French in the following ways:

• Ambiguity. A programming language is
designed so as to avoid ambiguity; a
singlemeaning can be found for each
expression. On the other hand, natural
language is often ambiguous: "I saw the
orange truck."

• Context dependency. The meaning ofa
programming language expression is
minimally dependenton its context; its
meaning is almostalways the same
regardless ofwhat its surrounding ex­
pressions are. In natural language, a
sentencesuch as "I disapprove ofyour
drinking" is changedin meaning when
we add "so much milk."

• Well·formedness. In writing a program­
ming language expression, one must
follow the syntax rulesexactly, otherwise
the instructions will not be accepted by
the system. In naturallanguage, espe­
cially the spoken form, violations of
syntaxgenerallydo not affect a person's
comprehension of the expression.

Procedural vs. Nonprocedural Instruc­
tions. When presenting instructions to
an instruction follower, weoftenspecify
both whatwewantdone and specifically
howwewant the task carried out. This is
known as providing procedural instruc­
tions. If, on the other hand, weindicate
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what wewantdone, but do not specify
"how," this is called a nonprocedural or
declarative instruction. An example of a
nonprocedural instruction is, "Buy a loaf
of bread on your way home"; the desired
end-effect is specified, but no specific
instructions as to how to attain the goal
are given. It is quite difficult to devise
nonprocedural language systems, because
the interpretation system within the com­
puter mustsupply the 'how' by itself. The
interpretive system mustknow about the
"world" it is dealing with, and the effects
of actions on this world. It must also un­
derstand the nature of the problembeing
solved. Using this knowledge, the system
must devise a plan, a sequence of steps
that must be performed to attain the goal.
Because of these difficulties, only a few
languages havebeen developed that have
nonprocedural capabilities and these are
generally limited to some specific domain.

Representation of Data in a Computer.
A computer can be basedon two distinct
typesof data representation: isomorphic
or symbolic. In the "isomorphic" repre­
sentation, data is modeled bya quantity
which has a "natural" functional and pos­
sibly physical resemblance to the original
data itself. For example, beadsare used
in the abacusto representnumbers, and
the beads are physically moved to per­
form the computations. In the "symbolic"
representation, the nature of the symbols
used to represent the data is completely
independentof the characteristics of the
data being represented; the desired
correspondence is established by a sub­
sidiary set of rules. Thus, if we represent
a number by its binary form, there is no

natural relationship between the num­
ber and the form of its representation.

In current computer technology, the
isomorphic representation is employed in
the analog computer, which is fast and
useful for dealing with certain physical
problems, but has limitedaccuracy and
flexibility. The symbolic representation is
employed in the digital computer, which
is extremely flexible and has unlimited
numerical accuracy, but is comparatively
slow and presents significant practical
problems in accurately modeling many
physical situations. For example, since the
relationship between the physical situation
and the computerrepresentation is com­
pletelyarbitrary, only those aspects
of the physical situation that are both
understood and can be described in a
formal manner are capable of being mod­
eled. Thus, a complete representa-
tion of an outdoor scene in a symbolic
languagewould be an almost impossible
task.

The Turing Machine

In order to proveformally what tasks can
and cannot be performed by a computing
device, Alan Turing, a British mathemati­
cian (1912-1954), postulated an abstrac­
tion, nowcalled a "Turing machine," that
is functionally equivalent to any computer.
Turing's thesis was that any process that
can be calledan 'effective procedure' can
be realized by his machine.

An effective procedure is a set of
formal rules that tell a device from mo­
ment to momentprecisely whatopera­
tions to perform. (A computer program is
an exampleof an effective procedure.)
Turing's thesis cannot be established by
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proof-it is actually a definition of the
intuitiveconcept of a computable func­
tion, i.e., a function that can be evaluated
by some finite algorithm. All attempts to
define computability in some reasonable
way have been shown to be equivalentto
Turingcomputability.

In the Turing machine, the reduction
of a process to elementaryoperations is
carried to its limit. Even a simple opera­
tion such as addition is broken down into
a chain of far simpleroperations. This
increases the number of steps in the
computations carried out by the machine,
but simplifies the logical structure for
theoretical investigations.

As shown in Fig. 2-5, the 'luring
machine consists of a linear tape, assumed
to be infinite in both directions, which is
ruled into a sequence of boxes, or cells.
The machine has a read/write head that
can movefrom cell to cell of the tape,
and can read or write symbols. At each
moment of time, the machine is assumed

Control

Read/write head

Symbol
marked on tape
(e.g., 0)

FIGURE 2-5 The TuringMachine.

to be in one of a finite number of inter­
nal "states" that are identified by the
numbers 0, 1, 2, ... The machineopera­
tion is controlled by a "state table" stored
within the machine that specifies (1) the
symbol to be "overprinted" at the current
tape location (i.e., the old symbol is
erased and a new symbol written), (2) the
direction of head movement, and (3) the
next state of the machine. The symbol
printed, head movementdirection, and
the next state are determinedby the cur­
rent state of the machine, and the symbol
that is on the cell of the tape currently
being scanned.

The various operations that the ma­
chine can carry out are: the machine can
halt; the previous symbol in a cell can be
replaced by a new symbol; the read/write
head can move one unit to the right or
left; and the state number of the machine
can be changed.

The state table 'instructions' are in
the form of rows, each of which contains
five elements: (1) old state, (2) symbol now
being read, (3) symbol to be overprinted,
(4) direction of head movement, and
(5) new state. Thus, a state table entry
[3,#,· ,R,7] asserts, "If the old state is
state 3, and the symbol being read is #,
then the symbol • should be overprinted,
the head should be moved one cell to the
right, and the machine should go to
the new state 7." Note that the first two
symbols of a row cannot be the same as
another row, since that would mean that
there would be more than one opera-
tion specified for a given state and input
symbol.

Turingshowedthat a state table
could be prepared for each of the com­
mon operators such as addition, multipli­
cation, and division, that more complex
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operations couldbe composed from sim­
pleones in a formal manner, and that his
simple machine could carryout effective
procedures equivalent to that possible on
any computing device. Thus, anything
proved about the ultimate capability of a
Turing machine will holdfor all com­
puters. Box2-4shows a complete state
table and how the corresponding 'luring
machine operates on a tape.

The Universal Turing Machine

It is possible to convert the entire state
table ofa 'luringmachine into a single
number such that the original table can
be recovered bydecoding this number.
Atechnique forperforming this coding
and decoding is shown in Box2-5. We
can thus saythat the complete description
ofa Turing machine is given byits code
number.

A "universal Turing machine" is a
Turing machine that can take such a code
number, decode it to obtain the state
table of the original machine, and then
execute that table. Thus, the universal
Turing machine can simulate the opera­
tion of any'Iuring machine, given the
code numberof the machine.

LIMITATIONS ON THE
COMPUTATIONAL ABILITY
OFA LOGICAL DEVICE

A machine that operates on the basisof
formal logical rulescan be shown to have
theoretical limits on its problem solving
ability: there are certainwell-posed prob­
lems for which no algorithm is possible,
using the formal rules. In other words,
we can provethat it is impossible for the
machine to solve suchproblems!

The Godel Incompleteness Theorem

At the beginning of this century, it was
expected that mathematics would soon
be mechanical in nature. Given a set of
axioms and deduction rules, new mathe­
matics would be produced by"blindly"
applying the deduction rules to the ever­
increasing set of mathematical truths.
This mathematics would be consistent
(no two statements producedwould con­
tradict each other), and it would be com­
plete (every truth would be producible).
Thus, one couldeventually produce all
true statements and neverproducea
falsehood.

This expectation was destroyed in
1931 byKurt Godel who showed that
there are true statementsin mathematics
that a consistentformal system will not
produce, i.e., that it is impossible to alter
the foundations ofmathematics to exclude
unprovable propositions. Codel showed
how to produce a true statement, S, that
could not be proved by a consistent sys­
tem, F,usinga set of axioms and a proof
procedure. He did this byshowing that if
S couldbe proved, then a contradiction
would arise. F is therefore "incomplete"
since it does not produceall true state­
ments. The approach is a formal treat­
ment of the "liar'sparadox":

Given the statementS: This state­
ment is a lie. Then ifS is true, S is false,
while ifS is false, then S is true. Codel's
approach used the form:

S: Thisstatement is notprovable.
Then ifS is provable, S is not true, and
our formal system has produceda false­
hood. IfS is not provable, then wehave a
statement that is true, but not provable in
the system, and the system is incomplete.

GOdel's approach to proving the
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11 BOX 2-4 Programming a Turing Machine: The Parity Problem

Programming a Turing machine with
"alphabet" [0,1] consists of prepar­
inga controltable that will causeit
to operate on a binary input tape in
a desired manner. Numbers on the
tape can be represented as strings
of"1" marks (the number 5 =

"11111"), and if we have twonum­
berswe can separate them by a cell
that has a zero in it, e.g. 2,5 would
be represented as
". ..001101111100. . .". Adding two
numbers consists of preparing a
control tablethat removes the zero
between the strings; subtraction
consists ofshuttling back and forth
between the two strings, stripping off
1's alternately foreach until no 1's
remain in the smaller string. Multi­
plication of a stringm l's long by
one n L'slongconsists of replacing
each 1 ofn bym 1'5.

Wewill assume that the ma­
chine mustshift leftor right after
performing an overprint and prior to

enteringits next state. The machine
is always started at a specific posi­
tion on the tape in control state 1. If
the machine enters the zero state, it
halts without performing any further
operations.

The parity problem discussed
below requires the machine to deter­
minewhether there is an even or
odd number of 1'5 on a tape. Con­
ceptually, a control table couldbe
set up so as to toggle betweenthe
twostates as the head moves along
the tape. When a zero cell is en­
countered, the machine reports in
some specified manner and halts.
Wewill examineseveral formsofthe
problem.

Parity Problem (PI)

1. Input consists of string of
consecutive 1's with start posi­
tion at the rightmost 1 of
string. The machine starts in
state 1.

2. For odd parity (odd number of
1's in inputstring) we require
the machine to stop at the
leftmost 1 of the inputstringas
shown in the example below:

inputstring ... 0011100 . ..
i

output string ... 0011100 ...
t

3. For evenparity (even number
of 1'5 in inputstring) were­
quirethe machine to stop
under the second0 to the left
of the input stringas in the
example below:

input string ... 001100 ...
t

output string . .. 001100 ...
i

Acontroltable to solve the
above parity problem is shown in
Fig. 2-6. It is obvious that the PI
parityproblem cannot be solved by a

FIGURE 2-6 Turing Machine for Solving the Parity Problem.

Control Present
state symbol Overprint Move New state

1 0 0 o (left) o (halt)

1 1 1 o (left) 2

2 0 0 1 (right) o (halt)

2 I 1 o (left) 1

(a)

(
presentj OverprintI Move)
symbol

HALT

1/1/L

(b)
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BOX 2-4 (continued)

machine with a single control state.
Thus, the above machine is optimal
since it solves the parity problem
with the minimum possible number
of control states.

Now consider an apparently
trivial variation of the parity problem
in which we merely change the
reporting requirements:

ParityProblem (P2)

1. Forodd parity, print a 1 on the
second squareto the leftofthe
input string and stop at this
location:

input string . . .0011100...
t

output string ... 001011100 ...
t

2. For evenparity, print l's in the
secondand thirdsquares to the
leftof the inputstringand stop
at the second square:

inputstring . . .001100...
i

outputstring ... 001101100...
i

'fry to finda machine that will
solve the P2 problem. It should be
easy to finda six-state machine; if
youare very clever and are willing to
spenda lot of time,youmay even
find a four-state machine [Rado 62].

Nobody has yet found a three­
statesolution to P2, nor do we know
ifoneexists. It might seemfeasible
to resolve the issueof the existence
of a three-state machine bywriting a

conventional computer program to
exhaustively try out allpossibilities.
We note that there are more than 16
million three-state machines, andfor
eachsuch machine wewould have
to determine if it will report parity
correctly, and halt, for every possible
inputstring.As discussed earlier in
this chapter, and in Box2-6, even
deciding whether a machine will
halt, given an all-zero inputtape, is
a generally undecidable problem.
Thus, while intuitive or heuristic
searchtechniques could conceivably
producea three-state solution to the
P2problem, failure to find such a
solution does not imply that one
doesnot exist, nor do wehave a
formal method, at present, to re­
solve this issue.

general existence of unsolvable problems
hassubsequently been used to showthat
specific problems are unsolvable. For
example, Hilbert's tenth problem, one of
the famous problems of mathematics, has
been shown to be unsolvable. (This prob­
lemis to find a general algorithm that
could determine in a finite numberof
stepswhetheror not a given Diophantine
equationhas an integersolution..) This
has been shown to be unsolvable by using
a proofthat involves Codel numbering of
a statementrelatedto Diophantine equa­
tions, and demonstrating the Codel con­
tradiction.

Unsolvability by Machine

The Codelconcepts carryoverinto ma­
chineunsolvability, sinceonce wehave

the idea of a single number representing
an entire machine (see "The Turing
Machine" above), we can prove theorems
about unsolvability, For example, Box 2-6
presents an informal proof for the halting
problem: there cannot be a machineX
that whengiven the state table of an arbi­
trary machine Y and its starting tape, is
able to tell whethermachineY will ever
stop. Box 2-7 discusses the busybeaver
problem, which demonstrates noncom­
putability, Other examples ofunsolvable
problems for a Turing machine (thusany
computer) are:

• Machine equivalence. It is impossible
to have a machine that, given the state
tables of any two Turingmachines, S
and T, always can tell whetherS is
equivalent to T.
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I] BOX 2-5 Godel Coding: Coding a State Table into a Single Number

There are many ways ofcoding a sequence of numbers
into a single numberso that the number can be uniquely
decoded back into the original sequence. The one used
bythe mathematician Kurt Codel in hisoriginal work on
undecidability is basedon prime factors. If wehave a
sequenceof non-zero integers S = a, b, c, . .. nk, we
can form the product, N= (2')(3b)(5') .. . (Pk"k), where
2,3,5, ... Pkare all prime numbers, and P, is the kth

primenumber. N is then the code numberof the original
sequence, and sinceN was formed from the productof
primes raised to a power, wecanuniquely determine the
power of each primeand hencecan recover the original
sequenceof numbers.

Civen a controltableof a Turing machine, we first
convertall the entriesto numbers andeliminate any
zeros in the table:

• Right, left, and halt are denotedbysome numbers,
say1,2,3, respectively

• Any symbols to be printedare represented bya
number

• If anystate is labeled as 0, add 1 to all states

We now have a set of five numbers in each row of

• Symbol prediction. It is impossible to
have a machine that can determine
whetheran arbitrary machine Awill
ever write the symbol S whenstarted
on tape B.

Implications of G6del's Theorem

Godel's theorem, showing that in any
formal system there are true statements
that are unprovable in the system, has
had a profound effect on the philosophy
of mind. Somesee the theorem as indicat­
ing a basiclimitation on both human and
machine intelligence, while others see the

the control table, and wecan concatenate rows to form
a longsequence of numbers. The sequence can be
converted into a single number using the prime number
encoding approach described above. We can then talk
about the Turing machine N, meaning the control table
of the machine codedinto the number N using Codel
coding." Asan example ofthis, consider the control
table usedin Box2-4. We first eliminate the 0 values by
adding one to all numbers. We then obtain a Codel
number for each row:

10000 -+ 21111 -+22 x3x5 x7 x9 = A
1 1 1 02 -+ 222 1 3 -+22x32 x52x7 x93 = B
20010 -+ 31121 -+23x3x5x72 x9 = C
21101 -+ 32212 -+23x32x52x7 x9 2 = D

Ifwecallthe row Codel numbers A, B, C, and D, then
wecan codethe entiretable into the number
N=2 Ax 3Bx 5cx 7°. Since N encodes the original control
table, wecan then usethe designation "machine N."

"Notethat this codingapproach is conceptual, rather than
practical, since the product of the primesraised to a poweris
an impractically large number.

human as somehow escaping the Codellan
limitation. There is alsothe view that
G6del's theorem has little relevance to the
issueof achieving intelligent behavior.
The arguments are as follows:

Manand machine limitation. Bothpeople
and machines consist of"hardware"
that operates according to strict
mechanical laws. In the caseof com­
puters, the electronic mechanism
constitutes the formal system, while
for the human, the formal system is
the neural structure. Therefore, there
will be truths unknowable by both
man and machine.
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Only machine limitation. People are
not machines-they exceed strictly
mechanical limits bytheir ability
to introspect and to interpretexpe­
rience. The powers ofmind exceed
those of a logical inference machine.

Neither man nor machine. The impor­
tance of prooftechniques in consis­
tent systems has been overrated.
Most of our knowledge about the
world comes from inductive methods
that operate in inconsistent systems.
Codel's incompleteness theorem
simply places a limit on one mode of
obtaining new knowledge.

/ Computational Complexity-the
Existence of Solvable but Intrinsically
Difficult Problems

We havealready observed that there are
somewell-posed problems in mathematics
and logic for which no algorithm can ever
be written (e.g., the halting problem)­
thus there exists a set of theoretically
unsolvable problems. However, evenfor
problems that have solutions, there is a
subclass of intrinsically difficult problems
-problems forwhich there cannot exist
an efficient algorithm. Intrinsically diffi­
cult problems are characterized by the
fact that their solution time grows (at
least) exponentially with some parame-
ter indicative of problem size (e.g., the
numberof 'lUring machine controlstates
in the caseof the busy beaver problem
discussed in Box2-7). Suchintractable
problems oftenarisefrom the need to
exhaustively search a solution space which
grows exponentially with problem size;
many optimization problems for which
no solution spacegradientexists (and

can only be solved by the equivalent of
a "backtrack" search algorithm) have
this characteristic. Thus in addition to
theoretically unsolvable problems, wealso
havea classofcomputationally unsolvable
problems.

Between those problems for which we
have efficient (polynomial time") solu­
tions, and those problems known to be
intractable, there exists a large classof
problems with the following interestingset
of characteristics:

(a) There is no currently known poly­
nomial time sequential algorithm
for any ofthese problems; wesus­
pect that theyare all intractable,
but cannot prove it.

(b) Theyare all equivalent to the satis­
fiability problem (Does a given Bool­
ean or logical expression have an
assignment of its variables that makes
it "true?"See Chapter 4). If a polyno­
mial time algorithm could be found
for anyone of these problems, then
they couldall be solved with polyno­
mial timealgorithms.

(c) While the size of their solutionspace
grows exponentially, the number of
operations needed to find a solution
to any of these problemsis polyno­
mial ifwe choose all the correct
alternatives. Thus, with enough
computers running in parallel, each
checking a different alternative at
each decision point, we can achieve
polynomial time solutionswith an
exponentially large amount of hard-

"The numberof computational steps needed to
assure a solution is expressible as a polynomial in
one or more of the main variables in which the
problemis posed.
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1]1BOX 2-6 The Halting Problem

The following dialogue is an informal proofofthe impos­
sibility ofhaving a machine that can tell in general
whether another machine will everhalt.

John: I've written a program calIed TESTER that tells
when anotherprogram has an endlessloop in it.

Mary: How does it work?

John: I havea way of uniquely assigning a number that
represents an entire program. For example, ifyou
give me a program, I firstcompute the number of
the program. Then yougive me the number that
you would input to that program. Suppose I am
given a program whose number I find to be 397 and
you wantto know whether it will halt ifyou feed in
the number 14 to it. I feed these two numbers into
TESTER, and if program 397 would haltgiven an
input 14, then TESTERwill output a 1, otherwise it
will outputa O. TESTER has the form (see Fig.
2-7a):

TESTER(N,D) :
If Program N would halt on input D,
RETURN 1:
else return 0

ware. Further, for all ofthese prob­
lems, if wecould somehow guess the
correctanswer, we couldcheck the
validity of the answer in polynomial
time.

This class of problems, called the
NP-complete class, includes suchwell­
known problems as the "traveling sales­
manproblem" (find the shortestclosed
route overa given set of roads that passes
exactly once through each of a given set
of cities) and the "Steiner minimal tree
problem" (design the shortest network of

]
Mary: Is it O.K. forme to write the following program?

(see Fig. 2-Th):

TRYOUT(X) :
Label L: If TESTER(X,X) - 1

then go to Label L;
else RETURNX

John: TRYOUT seems to be O.K. It says that if
TESTER using the program numberedX and in­
put dataX causes TESTERto output a 1, then
TRYOUT wiIlloop endlessly to L, otherwise
TRYOUT returns X.

Mary: Does TRYOUThave a number?
John: Ofcourse, every program has a number. Let's

see, it comes out to 4,39Q. So TRYOUT(4,396)
would say that ifTESTER(4,396, 4,396) - 1 then
goto L; elseRETURN (4,396).

Mary: I think that something is wrong. If the outputof
TESTER is 1, then the program being tested is a
program that would halt.

John: Right.

roads that connects a given set ofcities).
The existence of intrinsically difficult

problems indicates the need to employ
representations and algorithms that can
find approximate solutions, i.e., repre­
sentations that embody the conceptof
distance to a solution. We note that some
ofour most powerful "exact" techniques
(such as the logical formalism, Chapter 4)
do not have a natural way of representing
solution space distance.

An important question left unan­
swered in thissubsection iswhetherthe
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BOX 2·6 (continued)

Mary: ButifTESTER outputs a 1 when using my
program TRYOUT having a number 4,396. that
means that TESTER thinks that my program
should halt.

John: Right.

Mary: Butlookat my program. With a 1 output from
TESTER. my program loops! What's more, if
TESTER outputsa O. that means my program
doesn'thalt, but if you lookat my program you see

that with a 0 outputfrom TESTER my program
halts(see Fig. 2-7c).

John: That seems a lot like the paradox, "This state­
mentis a lie." If the statementis true, then it's
false, and if it's false, it's true.

Mary: That's right, this proofof the halting problem
uses that general approach.

A rigorous treatmentof the above Turing machine
proofcan be found in Minsky [Minsky 67J.

(a)

(b)

N~ TESTER I _1 = Program N,using data D, will halt
D~....._(N_,D_)__......I 0 = Program N,using data D, will loop endlessly

x=j TESTER H ~. If output ofTESTER = 1, then TRYOUT loops endlessly
TRYOUT If output ofTESTER = 0, then TRYOUT returns X

X (X,X) and halts"- ...... ---J

4396 =j H ~ IfTESTER outputs a1, it means that program
(e) TES.TER TRYOUT 4396 will halt, but a 1 causes TRYOUT, which

4396 (4396,4396) isprogram 4396, to loop endlessly

FIGURE 2-7 Programs for Illustrating the Unsolvability of the Halting Problem.

(a) Program TESTER. (b) Program TRYOUT. (e) The paradox.

classification of a problem as tractable or
intractable" is a function of the represen­
tation employed. This question can be
answered for the caseofTuring machine
equivalent computers-any reasonable
problem encoding doesnot alter tracta­
bility-but whathappens ifweemploy
an analog device that is not equivalent
to a 'luring machine (see Box2-8)? While
we do not yetknow the answer, it is

"Whetherthe problem hasa polynomial timesolu­
tion or not

interesting to observe that no analog
solutionshave been found for intractable
problems.

LIMITATIONS ON THE
COMPUTATIONAL ABILITY
OF A PHYSICAL DEVICE

From the dayof birth, and probably be­
fore, but certainly every day afterward,
upward of 1000 neurons die in the human
brain and are not replaced. How can the
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11 BOX 2-7 Nonsolvability, Noncomputability, and the Busy Beaver Problem

(a) State table and state diagram. (b)Startingwitha blanktape. the machinewrites
four 1'5 and then halts. (After A. K.Dewdney. ScientificAmerican251:19-23, 1984.)

FIGURE 2-8
Turing Machine Solution for the Two-State Busy Beaver Problem.

State

I ~Blanktape

2~

I~ Successive

~
tape configurations

2

®
~

'} Indicates
. I head position

CD
2 ~Halt

(b)

HALT

lIi/HALT

O/l/R

State Diagram forthe Two-State
Busy Beaver Problem

O/l/L

( present/overprint/ Move)
symbol(a)

State Table for the Two-State
Busy Beaver Problem

Control Present Overprint Move New
state symbol state

1 0 1 R 2

1 1 1 L 2

2 0 1 L 1

2 1 1 Halt -

It has been known for some time
that unsolvable problemsexist
withinspecific mathematical sys­
tems. For example, it can be shown
to be impossible to trisect an arbi­
trary angle using onlya straightedge
and compass. There are also unde­
cidablequestions: for example,
Lobachevsky proved that the parallel
postulate in geometryis independent
of Euclid's axioms, and thus, neither
it, nor its negation, can be proved
within a Euclidean system. Whilethe
abovespecific examplesare easily
dealt with by extending the axiom
systems in whichthese problems are
embedded," there are also problems
that are absolutely unsolvable in
the sense that there is no finite
algorithmfor dealing with them.
Such problems, first introduced by
Church, Codel, and Turing, are
called "recursively unsolvable."

There is a close relationship
between the incompleteness theo­
rems of Codel and the noncomputa­
bility results of Turing, Both relyon
a form of Gddel codingto make self­
referring statements in a modified
version of the "liar's paradox"; the
proofs are then establishedby con­
tradiction. While mathematically
sound, these methods do not pro­
vide an intuitive explanationas to
why, for example, there should be
well-defined numericalvaluesthat
cannot be computed, or the relation-

"Though, asCodel showed, such exten­
sions introduce new undecidable prob­
lems
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BOX 2-7 (continued)

ship between noncomputability and
intrinsically difficult problems. The
busy beaver problem discussed
below win clarify someofthese
issues.

Consider the problem ofdeter­
mining the maximum number of 1's
thatcanbe written on an initially
blank tape bya Turing machine (Box
2-4) having an n-state control table.
We will call this the busy beaver-a
problem, and will let b(n) designate a
solution machine and g(n) the cor­
responding numberof l.'s.We will
only consider as valid solutions
machines that halt afterwriting their
tape. Figure 2-8shows a two-state
busy beaver machine that begins
with a blank tape, writes four I's,
andthen stops.

It can be shown that there are
m(n) - [4(n+ l)J2n machines hav­
ingn states, and sincewemust

examine each machine to determine
b(n) and g(n), then the busy beaver
problem is intrinsically hard since
m(n) grows exponentially with n.

For example, we have:

m(l) = 64
m(2) = 21(Hf)
m(3) - 17(106

)

m(4) = 26(109)

m(5) = 63(1012)

Thus, m(n) is ofastronomical
size, evenfor low values ofn. The
number of L's, g(n), ultimately grows
at a much faster rate-in fact, it can
be proved that for any computable
function f(n) there is a value ofn
beyond which the value ofg exceeds
that off. Sinceg grows fasterthan
every computable function, g(n)
cannotbe computed; i.e., a finite
algorithm cannot be formulated that
will producecorrect values for g(n).

For small values ofn we can explic­
itly evaluate g as shown below:

g(l) - 1 g(5) < 17
g(2) = 4 g(6) < 36
g(3) = 6 g(7) < 23,000
g(4) < 14 g(8) < 10"

Intuitively, it appears that we
can ascribe noncomputability (at
least in the above case) to the inabil­
ityof finite algorithms, basedon
primitive arithmetic operations, to
express allpossible functions, espe­
cially those with a sufficiently fast
rate ofgrowth. However, wecannot
ignorethe fact that the busy beaver
problem includes the halting prob­
lem (i.e., we must examine boththe
numberof 1's produced byevery
potential solutionmachine andalso
assureourselves that it stops), and
the halting problem againimplies
the presence of the Godelian para­
dox [Jones 74].

brain continueto function under such
conditions, since the lossofeven a single
component in a modem digital computer
will typically render it inoperative? Even
more to the point, somebiological mecha­
nisms appear to be deliberately designed
to take advantage of failure and error in
their physical components-one such
example is the paradigm for evolution
employed by DNA (mutation and natural
selection). It is believed that DNA actually
adjusts its error rate to produce a percent­
age of mutations appropriate for current
environmental conditions. Underless
favorable conditions, a higher rate of
mutation has an improved survival value
for the species.

Reliable Computation with
Unreliable Components

Below a certainlevel of complexity, things
tend to break down-to become more
randomin their organization. This obser­
vation is importantenough to havebeen
elevated to a basiclawof physics (the
second law of thermodynamics). However,
very complex systems can be organizedso
that in spite of the breakdown of their
individual components, they continue to
function; most living organisms have this
characteristic.

In 1952, John vonNeumann showed
that if the neurons of the brain couldbe
considered to behave as logical switches,
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I BOX 2-8 Avoiding the Apparent Bounds on Computational Complexity

TheTuring machine is morethan an
abstraction of the digital computer,
it is actually a formalization of the
sequential logical paradigm-in a
sense, it can be taken as an abstrac­
tionof the conscious mode of hu­
manthinking. Thus it comes as a
surprise that complexity bounds,
derived for sequential algorithmic
computation, can be violated by
using a different underlying repre­
sentation.

For example, considerthe
problem ofsorting a set of numbers.
In order to put the numbers into
sequential order, the basicoperation
to be performed is that of compari­
son, and it has been proved that
at least"on the order of" nlogn
comparisons are required to sort n
numbers; i.e., that computation time
must grow faster than a linearfunc­
tionofn. Now considerperforming
the samesorting task on the "spa­
ghetti computer" [Dewdney 84).
We first cut n pieces of uncooked
spaghetti so that each piece has
a length proportionalto one of the
numbers to be sorted; this requires a
time proportional to n. Next, loosely
holding all the cut pieces of spa-

ghetti in one hand, bring the bundle
sharply down on a flat horizontal
surface, thus aligning the ends of all
the pieces ofspaghetti-a single
operation. Finally, obtain the desired
sorted sequenceby first removing
the tallest (most protruding) piece;
then the tallest of the remaining
pieces, and so on until the bundle is
exhausted. As each piece is removed
from the bundle, it is measuredand
the resulting numberis recorded;
this set of operations is linear in n.
Thus, the entire sorting operation
doneon the spaghetticomputer
requires a seriesof linear time oper­
ations and can be accomplished in
lineartime-violating the nlogn
computational bound on sorting
derived for sequential machines.

1Wo additional examples of how
computation in an appropriately
chosenanalog(isomorphic) repre­
sentation can violate a bound on
sequential computation are:

(a) The "convex hull"of n points
is the smallest convex region
containing all n points. The
convex hull is a polygon, each
ofwhose vertices corresponds

to one of the extremepointsof
the set of points.While there is
a nlogn bound on finding a
planarconvex hull, this sequen­
tial machine bound can be
violated byusingthe "rubber
band computer" (Fig. 2-9).
Whenstretched to fitoverall
the pins and then released, the
rubberband will form the
convex hull of the points.

(b) The problem of finding the
shortest path joiningtwo se­
lectedvertices of a graph has a
sequential machine complexity
of order n2

• We can violate the

FIGURE 2-9
The Rubber Band Computer.

Thiscomputer determines theconvex
hullof a planarset of points.(After A.K.
Dewdney. Scientific American 250:19-26,
1984.)

as in a computer, then an arbitrary degree
of failure tolerant operation couldbe
achieved at a cost of massive redundancy
or repetition; i.e., byemploying switchesl
neurons wired in parallel and performing
the same function (see Box2-9). In 1948,
ClaudeShannon proposed a moresophis­
ticated schemefor using redundancy in

the context of achieving reliable transmis­
sion or storage of information. Heshowed
that rather than just repeating the mes­
sage many times, it was moreefficient to
encode the message so that each valid
message had no close "neighbors" in
"message space." Thus, ifa message was
slightly altered by noise or transmission
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BOX 2-8 (continued)

n' bound onfinding a short­
est path in a graph using the
"string computer" (Fig. 2-10).
Each vertex is represented by

(a)

a.---....-~----.-- ..

(b)

FIGURE 2-10
The String Computer.

This computer finds the shortestpath
between two specified vertices in a graph.
(a)Stringanalog ofa given network. We
are required to find the shortestpath
between the two darkened vertices. (b)
The solution pathfound bygrasping the
selectedvertices, and pulling in opposite
directions.

a ring or knot, and if two verti­
cesarejoinedby an edge, the
corresponding rings are con­
nected bya pieceofstringcut
to the correctlength and tied
to the rings. Tofind the short­
est pathbetween vertices a and
b, pick up the network bythe
rings a and b and pullthe net­
work taut. The shortestpath is
the sequence of taut strings.
(As an interesting aside, ifwe
pullhard enough to breakthe
strings, the last set ofstrings
that retains the connectivity
between rings a and b is usually
the longest path between .these
rings. It can alsobe shown that
the longest path between any
two vertexes can be found by
first picking up the tree byany
ring, and then holding the tree
bythe lowest dangling ring; the
longest path runs from the ring
being held to the onethat now
hangs lowest [Dewdney 85).)

While no examples ofanalog
computation are known to provide a
complete effective solution to intrin­
sically difficult problems, the "soap
film computer" (Fig. 2-11) can find
individual potentially optimal solu-

tionsto the NP-complete Steiner
minimal tree problem in lineartime.
TheSteiner-treeproblem asksthat n
points in the planebe connectedby
a graph ofminimum overall length.
One isallowed to take as vertices of
the graph not only the original n
points, but additional ones as well.
Thesoap film computer consists of
two sheets of rigid plastic with pins
between the sheetsto represent the
points to be spanned. When this
device is dipped into a soapsolution,
thesoap film connects the n pins in
a Steiner-tree network.

FIGURE 2-11
The Soap Film Computer.

Thiscomputer finds the solution for the
shortest path connecting a planarset of
points (the minimum Steiner-tree prob­
lem). (After R. Courantand H. Robbins.
What isMathematics? Oxford University
Press, London, 1941.)

error, the resulting messagewould likely
correspond to a point in message space
that was near the original message but
which itself did not correspond to another
validmessage. The original message could
then be recovered from a received errone­
ous message by finding the nearest valid .
message in message space. Figure 2-13

shows the "space" of all conceivable mes­
sages, and the legal messages are indi­
cated as distinguished points in that
space. A message containing an error will
not coincide with any of the distinguished
points, but if it lies within the shaded
sphere surrounding a legal message, then
it is assigned to that legal message.
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I] BOX 2-9 The Use of Redundancy to Achieve Fault Tolerant Computing

We are so used to the idea that the
transcription of symbolic informa­
tion and the operations performed
in mathematics and logic can and
must be error free, that it is easyto
lose sight of the fact that perfection
is almost neverpresent in the physi­
cal artifacts that man constructs."
Yet, machines capable of formal
symbolic computation must be
perfect in the way they represent
and transforminformation. Aswe
will see in our discussion of logical
reasoningin Chapter 4, such perfec­
tion is the essence of a strategyfor
dealing with complexity. The ma­
chineswebuildmust employsome
other strategyto attain perfection
with imperfect components.

It is possible to obtain a relia­
ble computing system using compo­
nents that are subject to failure by
usingredundancy, i.e., more com­
ponents than are necessary to ac­
complish the task. In addition to
redundancy, it is also necessary to
employ a connection or control
schemethat takes into account the
nature of the computationand the
failure modesof the components.
Redundancycan be utilizedat
variouslevels in the design hierar­
chy: at the level of the singlecompo­
nent, at the subsystem level, and at

"Haugeland [Haugeland 851 in a rele­
vantdiscussioncontrasts the fate of
Rembrandt's paintings, which are slowly
deteriorating, with Shakespeare's sonnets
which, as symbolic constructs, can be
preservedexactly the waythe author
wrote them.

the level of completely functioning
systems. Two of the many different
approaches to fault-tolerant comput­
ing are described below.

Component Replication

Suppose we have a simple compo­
nent, designated as ~ I, that permits
electrical current to flow in one
direction, but not in the other. Thus
a circuit, A- ~ I- Bwould permit
current to flow from A to B but not
from B to A. The ~ I component
can fail "open" and not permit any
current flow, or fail "shorted" and
allow the current to flow in either
direction.We want to design a
circuit that operates properly despite
these types of failure. Note that
placing two or more ~ I in parallel
will not solve the problem, because a
short in any ~ I will cause the cir­
cuit to fail. Instead, we must use the
"series-parallel" circuitshown in Fig.
2-12, which can operate properly
even though a short has occurred in
a single ~ I in all of the N parallel
paths. It can also operate properly
even if (N-1) of the paths contain
open ~ I elements.

In the 1950s, the mathemati­
cian John von Neumann showed
how reliable organisms could be
synthesized from unreliable compo­
nents. Since in a complicated net­
workthe probability of errors in the
basic processors could make the
response of the final output unrelia­
ble, he sought some control mecha­
nism to prevent the accumulation of
these errors. The approach that he

fiGURE 2-12
Redundancy Achieved by
Component Replication.

developed, similar in concept to that
shown in Figure2-12, usesN redun­
dant paths for all operations. Thus,
each input line is replicated N times
and fed into N identical computing
elements; this replication continues
throughout the entire system. At the
output of the system wehaveN
output lines, and the final result will
be acceptedifa certain percentage
of the output linesagree. For exam­
ple, in a biological system, the N
parallel outputs couldbe N distinct
muscle strands comprising a single
muscle. The musclewill flexif a
certain percentageofstrands agree.

Duplicative redundancy is
innately inefficient. For example,
supposewe haveunreliable comput­
ing elementswithfailure rates of one
failure every200 operations. Using
the von Neumann approach, a
computing machinewith 2500 such
elementsbeing actuatedevery five
microseconds would require replica­
tion by a factor of 20,000 to obtain
eight hours of error-free operation!

Cooperating Redundant Systems

Ha set of processorshas sufficient
freedom to communicate, then we
can develop a reliable system whose

'I
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BOX 2-9 (continued)

operation corresponds to a groupof
people working jointly on a problem.
Certain controls mustbe incorpo­
ratedintothe system so that there is
an effective way of partitioning the
work, and so that a deviant proces­
sor does not write into the memory

ofanotherprocessor, does not tie up
the communications channels, and
does not seize the output mecha­
nism. Processors can report to one
another concerning their opinion on
the "health" of anyof the proces­
sors, and processors can ignore and

redistribute the work of a processor
that a consensus of the processors
believes is unreliable. The type of
"software implemented" fault toler­
ancehas been used as the basis for
computer systems that are required
to have high degrees of reliability.

fiGURE 2-13
Message-Space Representation of
a Fault-Tolerant Coding Technique.

An example of message error detec­
tion and correction ispresented in Fig.
2-14. Figure 2-14(a) uses a Venn diagram
to show how three parity bitscan provide

Locus of received message Transmitted
message

singleerror detection and correctionof a
four-bit message. Figure2-14(b) shows a
code basedon this concept.

The above (and later)schemes devel­
oped to enhancecomputerand communi­
cation reliability do not really provide an
adequate explanation of how the brain
operates in the presenceof failure, and
they certainly do not explain the ultra­
reliable "operation" of whole speciesor
societies of intelligent organisms. In a
sense, these "faulttolerant" schemesslow
the effects ofdegeneration; they do not
provide a mechanism for compensation,
regeneration, or evolutionary improve­
ment.

It has been suggested ([H. Crane, in
press] and Box2-3) that the brain is liter­
ally a collection of intelligent agents oper­
ating as a tightly knit social system, and
that the samedynamics that allows for the
malfunction or even death of individuals
in society underlies the ability of the brain
to function in the presence of cell death
and local processing errors.

Any received message falling into a shaded
sphere is assigned to the single legal message
located at the centerof the sphere (dot).
Messages falling into the unshadedregions
cannotbe corrected.

DISCUSSION

The brain is a mystery we may never
succeed in penetrating-in addition to
the obvious difficulties of discovering
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x y x y x y

Data bits are placed
at intersection of circles

Parity bits are placed in circles
so that number of 1 '5 in any circle iseven

Error in data bit

I I

j ., :. ,

x y x y x y

Parity in these circles
is now incorrect

Corrected data

Source of error

0001011
0001100
0010010
0010101
0100001
0100110
0111000
0111111

(a)

(b)

This is correct
since circle Y
parity iscorrect

1000000
1000111
1011001
1011110
1101010
1101101
1110011
1110100

fiGURE 2-14 Using Parity for Single Error Detection and Correction of a Message.

(a)Venn diagram explanation of a message coding scheme. (b) A set of messages for four data bitsand threeparity bits. The
set of 16 messages shown can be correctlydecoded evenifa singlebinarysymbol is incorrectly received in anytransmitted
message. If instead,we usesimple replication of a four-bit codefor each ofthe 16 possible messages, then threereplications
requiring 12 bits mustbe employed to achieve the same level of error recovery.
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the nature of such an amazingly com­
plexsystem, mathematics teaches us that
fallacies and paradoxes are introduced
into any analytical framework that is ca­
pable of discussing or examining itself. As
Hofstadter has said [Hofstadter 79]:

All the limitative theorems ofmetamathe­
matics and the theoryof computation
suggestthat once the ability to represent
your own structurehas reached a certain
critical point, that is the kiss ofdeath; it
guaranteesthat you can never represent
yourself totally. Codel's Incompleteness
Theorem, Church'5 Undecidability Theo­
rem, Turing's Halting Theorem, Tarski's
Truth Theorem-all have the flavor of
some ancientfairy talewhich warnsyou
that, To seek self-knowledge is to embark
on a journey which . . . willalways be
incomplete, cannot be charted on any
map, willnever halt, cannot be de­
scribed. [p.697]

We might then ask how human intel­
ligence can seemingly bypass the barriers
imposed by logical proofs of unsolvability
and noncomputability-or even those of
intrinsically difficult (though solvable)
problems. We note that it is ofteneasier
to provethe correctness of a result than
to find the correct answer in the first
place. Ifan "illogical" system, employing
induction and analogy (see 'Chapter 4),
can make a sufficiently high percentage
of good guesses and pass themon to a
logically correct checking device, the
combination may be capable ofeffective
operation even in situations wherea logi­
cally consistentmechanical system will
fail. The parityproblem (Box 2-4) is an
example wherehumanintuition can easily
find an answer, while no mechanical pro­
cedure has yet been devised to solvethis
particularformulation of the problem.

However, both logical and nonlogical
mechanisms must generally contend with
the nonsymrnetry of solution versus no­
solution; ifwe can obtain a solution (e.g.,
by guessing), and demonstrate or prove
it, we have solved our problem; but ifwe
cannot find an answer, we can almost
never be sure that a solution does not
exist.

Finally, an interestingand important
question is, "What does it mean to know
something?" The scientific viewpoint,
grounded in the concept of operational­
ism, is that to know or understand some­
thing is to be able to predict its behavior.
Weusually express our knowledge of
things by building mechanical or symbolic
models, and relating the behavior of the
model to the situation we wish to under­
stand. It may be obvious that some very
complex things (e.g., the universe) may
not be understandable by any system less
complex than the thing itself(or even
have a description of lowercomplexity).
However, it is not intuitively obvious that
the specific way we attempt to express
a problem, or the way we choose to de­
scribe the answer, should radically affect
the difficulty offinding a solution. This
assumes that we havenot altered the com­
petence of the system to deal with the
problem, or the amount of information
available to the system, but that we merely
select a logically equivalent but different
"phrasing." A dramatic exampleof this
situation waspresented in Box 2-4, in
whicha change in the way we are permit­
ted to present (represent) the answer to
the "parity problem"changes it from an
unsolved problemto a trivial one. Finding
effective representationsappears to be at
the heart of intelligent behavior; this is an
issuewecorneback to repeatedly in the
remainder of this book.
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The Nerve Cell and Nervous System Organization

FIGURE 2-15 Nervous Systems ofVarious Primitive Organisms.

Planaria
(c)

Nerve
cord

Cross
connective

"Different definitions, based onsome­
what arbitrary criteria. have been ern­
ployed for classifying neurons.

Anervous system is an organized
network of nervecells or neurons.
Between seven and 100 different
classes of neurons" have been iden­
tified in the human nervous system,
three of which are shown in Fig.
2-16. Someof these cells are as long

The Nerve Cell

Hydra
(b)

Nerve
fibrils

The planarian is one of the
simplest organisms with a nervous
system in addition to a nerve net
(seeFig. 2-15c). A separate nerve
cord runs along each side of its body
terminating in a ganglionat the
head end of the organism. It is quite
possible that the nervoussystems
found in all higher organisms are
merely size and complexity elabora­
tions of the basic structure of the
nervous system of the planarian.

(a) Paramecium. (b) Hydra. (e) Planaria. (From Biological Science: Molecules to Man,
BSCS Blue Version, 2ndedition, Houghton Mifflin, Boston, 1968, with permission.)

Paramecium
(a)

"For example, the single cell Parame­
cium (kingdom Protista).

"Forexample, nerve fibrils asshown in
Fig.2-15a.

Plants do not havespecialized cells
(nerve cells) to transmitsensoryand
control information. Whilesome
very simple organisms"havespe­
cialized structures" that respond
to externalstimuliand coordinate
movement of cell structures such as
cilia, the specializednervecell is one
of the main distinguishing attributes
of members of the animal kingdom.
All majorgroups of multicellular
animals except the sponges have
definite nerve cells (the sponges
employ chemicalmeansfor internal
coordination).

The nerve net, the most primi­
tivesystem of organization of nerve
cells, is found in the hydra (Fig.
2-15b). When any part of the hydra
is stimulated, activity spreads out
alongthe nerve net in allpossible
directions, eventually involving the
entire organism. In additionto the
morehighly organized"nervous
systems" based on one or more
nervecords and nervecellconcen­
trations called "ganglia," nerve nets
are found in the bloodvessels and
intestinal walls of all vertebrates
(including man).
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Axon

Cell body
(perikaryon
and nucleus)

Temninal feet

(c)

Dendrites

Telodendria

Nonmyelinating -I.I~

Schwann cells

Myelinating
Schwann cells

(b)

,.

Central
branch
(axon)

Peripheral
branch
(dendrite)

Axon-- ---il

(a)

fiGURE 2-16 The Neuron.

Three different typesofneurons. Myelin sheathsare shown in black. (a)Bipolarneuron(asfound in the retina of the eye).
(b) Pseudo-unipolar neuron(myelinated sensory neuron). (c) Multipolar neuron(myelinated somaticmotor neuron). (FromE.L.
Weinreb. AnatomyandPhysiology. Addison-Wesley, Reading, Mass. , 1984, p, 135, with permission.)

as 3 meters, and depending on cell
characteristics, nerve impulses travel
at rates varying from 10 to 120
meters per second. Asshown in
Figure2-16a, the typical nerve cell
consists of three parts, the den­
drites, the cellbody, and the axon
(alsocalled the nervefiber) . The
dendrites carry nervesignals toward
the cellbody, while the axon carries
signalsaway. The nucleus of the
neuron, locatedin the cellbody,
varies in form in different animals,
and evenwithin different parts of the

nervous system of the same animal.
Nerve structures are formed

from bundles of neurons, arranged
with the end branches of the axon
ofoneneuron lying closeto the
dendrites of another neuron (Fig.
2-17). Each nerve cellcan directly
interact with up to 200,000 other
neurons, althougha more typical
number of interactingneurons is
somewhere between 1000 and
10,000. The point of contact be­
tween the components of two neu­
rons is called a synapse. Asmall

microscopic gap betweenthe two
cells existsat the synapse, and it is
known that the ease of nervesignal
transmission across the synapse is
alteredby activity in the nervous
system-a possiblemechanism for
learning.

If the end of a nerve fiberis
sufficiently stimulated(i.e., there is a
"threshold" below which the nerve
cell does not respond) , the stimulus
starts chemical and electrical
changesthat travel over the length
of the fiber. These changesare
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Direction of
conduction of
nerve impulse

Axon of
presynaptic
neuron

(a)

fiGURE 2-17 Nerve Structures.

(b) (c)

(a) Achemical synapse. Whena nerve impulsearrivesat an axon terminal, chemical neurotransmitter molecules are released. The
molecules diffuse acrossthe synaptic cleftand attach to receptors on the membrane ofthe postsynaptic neuron. Thisattachment
altersthe three-dimensional shapes ofthe receptorsand initiates a seriesof events that influence the activity ofthe postsynaptic
neuron. (b) Manyneuronal processes converge on a single cell. (c)Neuronal processes of a single celldiverge to a numberofother
cells. (From A. P. Spenceand E. B. Mason. HumanAnatomyand Physiology, Benjamin Cummings Publishing Co., Menlo Park,
California, 1983, with permission.)

called the nerve impulse. Afterthe
impulse passes a segmentof the
nerve fiber, the segmentrecovers to
its original state and is then ready
for a new impulse.

Information Coding

One of the primary purposes of the
neuron is to convey information.
However, the brain usesstereotyped
electrical signalsfor this purpose.
These signalsare virtually identical
in all the nerve cells of all animals;
i.e., theyare symbols that do not in
anyway resemble the objectsor
concepts they represent.Thus, the
origins and destinations of the nerve
fibers must determine much of the
contentof the information they
transmit. For example, signals
reaching the brain from the optic
nerve are known to contain visual as

opposed to auditoryinformation. In
addition to the implicit sourceinfor­
mation, it isgenerally assumed that
the onlyother piece of information a
neuron can transmit is the equiva­
lent of a single number (e.g., a
magnitude representingthe strength
of a stimulus). Since the neuron
nominally has an all-or-none re­
sponse, it cannot use signalampli­
tude to encode magnitude
information, but instead must use
rate of firing or frequency. Neurons
havea maximum firing rate of 1000
pulses per second.

Computation

It is generally assumed that the role
the neuron plays in the brain's
reasoningprocessesis equivalent to
that of a logical switching element in
a digital computer. While this is

almost certainly too simple an anal­
ogy, wenote that the neuron can
compute a classoflogical functions,
called "threshold functions," since it
has a sensitivity threshold, adjusta­
ble (adaptive) signal attenuationat
eachsynapse, and an internal struc­
ture which allows the energy of
incomingnervesignals to be inte­
gratedoverboth spaceand time.
Thus,signals coming into different
synapses at the sametime, or even
into the samesynapse at different
times, are "weighted" by the syn­
apsesand the resulting quantities
summed. If this sum exceeds the
sensitivity threshold, the neuron
fires. The threshold functions in­
clude all the logical functions
needed to constructa generalpur­
posedigital computer.

Further discussions can be
found in Kuffler [Kuffler 76).



The first mechanical calculating
devices were developed at leastas
early as the secondcenturyB.C. In
more recenttimes, Pascalbuilta
calculating machine in the seven­
teenth century. In the early 1800s,
JosephMarie Jacquard of France
developed the ideaof usinga
punched hole in a card to represent
a number and controlthe operation
of a loom. Charles Babbage used the
Jacquard concept for his analytical
engine in 1833, a machine he
worked on until his death in 187l.
Thismachine was quiteclose in
conceptto the ideasof the Harvard
Mark I, developed almosta century
later. Babbage's engineconsists of
twoparts, a "store" to holdall the
variables to be operatedupon and
for preserving previous results, and a
"mill" intowhich the quantities to
be operated upon are brought Two
sets of cards are used, one to direct
the operations, and the other to
hold the values of the variables that
are to be operatedupon. Augusta
AdaByron, the mathematically
traineddaughterof Lord Byron,
wroteaboutthe analytical engine:
"We may saymostaptly that the
analytical engine weaves algebraic
patternsjust as the Jacquard loom
weaves flowers and leaves." The
mechanical complexities of the
device and lackof financial support
prevented Babbage from completing
his engine.

Toward the end of the century
(1886) Herman Hollerith realized
that punched holes couldbe sensed
bya machine to sort and manipulate
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The Digital Computer

the numbers represented by the
holes. Hollerith cards and the asso­
ciated machines were used for tabu­
lation and statistical analysis by the
U.S. Census Bureau.The firstdigital
computer wasthe Harvard Mark I
(automatic sequence controlled
calculator, 1939).The operationof
the machine wascontrolled bya
plugboard that was wired to obtain a
desired computation sequence; the
arithmetic operationswerecarried
out using relays. By1946, the
ENIAC, an all-electronic computer
using vacuum tubes, replaced the
electromechanical computer. It was
a thousand timesfaster than the
electromechanical devices, but still
used a plugboard for control.

An important conceptual ad­
vance came at about the sametime,
when John vonNeumann, Arthur
Burks, and HermanGoldstine wrote
an influential report, "Preliminary
Discussion of an Electronic Comput­
ingInstrument" The report pro­
posed a "stored program" concept
to replace plugboards and program­
ming switches. The control of the
machine wasto be carried out by
means of a sequenceof instruction
codes stored as numerals in the
memory of the computer. Thisso­
called von Neumann architecture is
the basis for the modern computer.

Asdiscussed earlier, a comput­
ingdevice must havesome way of
storing its instructions and data, a
means of manipulating the data, and
some way of communicating with the
useror the outsideworld. The
memory of the computerstores the

dataand the instructions (the pro­
gram) prepared by the user. The
arithmetic operations (e.g., addition
or subtraction) or logic operations
(compare two quantities) are carried
out in the arithmetic/logic unit.
Communication with the outside
world is carriedout usingan input
device, such as a keyboard or a
visual sensor,and the output can be
printed, displayed on a screen,or
usedto activate a mechanical effec­
tor. The operationof the computer
is "orchestrated" by the control
portion of the system.

A binary codingschemeis
oftenused to represent numbers and
symbols in the computer. The rea­
son for this representation is that
there are electrical and magnetic
circuits and devices that can be
reliably switched into one of two
stablestates. Thus, a decimal num­
ber such as seven, representedin
binary notation as 111, would ap­
pear in the computeras a sequence
ofthree storage devices in the "1"
or "on" state. The arithmetic unit is
designed so that when it is given two
numbers in binaryform, it will carry
out the requiredarithmeticopera­
tion and return the result in binary
form.

It shouldbe kept in mindthat
the term "memory" as used in the
computeris not meant to indicate
the type of capabilities possessed by
the human memory. The computer
memory can be thought of as con­
sisting of ordered slots, each with an
"address" in which data are stored.
Data is retrieved by accessing the
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contents of the memory at a particu­
lar memory address, not by auto­
matically linking data items by
meaning. The programmer must
devise specific accessing schemes to
attain some desiredform of data
association. Much of the effort in
artificial intelligence consists of
devising representationsthat can
overcome the address-based organi­
zation of the computermemory.

The operation of the computer
is controlledby a "program," a set
of instructionsstored in the com­
puter memory. The program speci­
fiesthe .data to be used and the
operations to be carriedout on the
data. Conceptually, the program will
eventually be converted into a set of
instructionsin which (for each
instruction) one or moreoperands
are extractedfrom computer mem­
ory, some simplearithmetic or
logical operation performed, and the
result returned to some newlocation
in memory. All of the final program
specifications are given in the form
of binary operation codes that can
be interpreted bythe machine.
Some of the instructions are "condi­
tional " in nature, i.e., the next step
to be carried out depends on the

resultsof the computation. For
example, a conditional instruction
mightbe: "If the result of the cur­
rent operationis positive, go to step
31, otherwise go to step 240." (This
instruction is, of course, binary..
codedand not in English.) The use
of conditional instructionsgives the
programmer the ability to write
programs that can react to the
intermediate resultsof the computa­
tion; otherwise a program would
merely carry out the same fixed
sequence ofoperations regardless of
the nature of the data.

The controlunit examines the
next instruction of the program,
determines which of the other com..
puter unitswill be needed, and
sends the necessary control codes to
each such unit. The timingof the
computeroperations is accom­
plishedthrough the use of a "clock,"
a circuitthat produces a continual
sequenceof timing pulses that
synchronize the operation of the
various computer elements.

Because it is verytedious to
write programs usingthe primitive
binarycode requiredby the com­
puter, programming languages (e.g.,
BASIC, Pascal, LISP) have been

developed that allow the user to
specify the desiredoperationsat a
higherconceptual level. These high­
level language operationsare con­
verted by a "compiler" programinto
moreprimitive instructions, and
then further translated into the low­
level binary coderequiredbythe
computer usingan "assembler"
program.IS

For example, a high-level
command such as Add A to Band
assign the result to C will be con­
verted to operationssuch as Assign
memory locations to numerical
quantities A, B, and C. Retrieve A
from memory andplaceit in register
1, retrieve B from memoryand
place it in register 2, addregister 1
to register 2 andplacetheresults in
register 3. then storethe contents of
register 3 in memory location C.
Thesedetailed instructions are
finally converted to the computer's
binary code.

15The compiler can be independent ofthe
specific computer on which the program
is to be run, but the assembler is usually
specific to a particular typeofcomputer.
The compiler and assembler are often
combined intoa single program for more
efficient operation.


