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The human brain is the | F__ 2. Analogy to the mechanical
most highly organized and : i devices built by man that
complex structure in the [ ] \1 attempt to duplicate some
known universe. What do [ of the brain’s functional
we really know about this  [] f N abilities
remarkable organ and /[ 1\ \ We will review some of the

where does this knowledge come from?
Our understanding of the human
brain is based on:

1. Physiological and psychological inves-
tigations, going back at least 2500
years® to the work of Hippocrates,
that attempt to catalog and relate
brain structure and function by ex-
periment and direct observation

SKnowledge of the neurological symptoms resulting
from specific brain injuries existed as early as 3000
B.C. For example, the Edward Smith Papyrus, a
surgical treatise, describes the location of certain
sensory and motor control areas in the brain.

anatomical knowledge about the brain’s
architecture, but there is little hope that
the structures we can currently observe
and describe will shed much light on how
the brain really functions. In a device as
complex as the brain, function is too
deeply encoded in structure to be deci-
phered without already knowing the rela-
tionships for which we are searching. We
can trace some of the sensory and motor
pathways for a short distance into the
brain, but once we pass beyond the point
of direct sensor signal transmission, con-
ditioning, and reflex behavior, we have
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little understanding of what the brain is
actually doing.

At present, our best hope for under-
standing the brain and the nature of hu-
man intelligence appears to be through
analogy with the computer and the associ-
ated mathematical theory of computation.
This may be a false hope, both with re-
spect to understanding and to man’s at-
tempts to build an intelligent device in his
own image. Historically, attempts have
been made to explain the brain’s behavior
in terms of the most advanced artifacts of
the time: in terms of clockwork mecha-
nisms, telephone switchboard analogies,
and now the digital computer.

One of our main goals in this chapter
is to address the question of whether
there are essential differences between the
brain and the computer that will prevent
machine intelligence from reaching hu-
man levels of achievement. In particular,
we examine the ultimate capacity of the
computer as an intelligence engine:

(@) To what extent is the computer an
adequate model for explaining the
functioning and competence of the
brain?

(b) Are there problems that cannot be
solved (in practice or in theory) by
a logical device?

(c) Is there a limit to the complexity of a
physical device beyond which unreli-
ability renders it successively less
(rather than more) competent?

THE HUMAN BRAIN

The human brain is constructed out of
more than 10 billion individual compo-
nents (nerve cells). Can we really hope to

understand how something so complex
operates, or even determine what it is
doing or trying to accomplish? Our cur-
rent view, that the brain controls the
body and is the seat of consciousness,
and our understanding of the nature of
intelligence and intelligent behavior,

is still developing.

In this section we first discuss the
evolution of the brain and present a
model of its organization based on an
evolutionary perspective, the so-called
triune brain of MacLean. Next, we de-
scribe the architecture of the brain and
present two functionally oriented models,
one due to Luria, and the second, with
more of a philosophical flavor, due to
Penfield.

Evolution of the Brain

How did the brain evolve? Is there a con-
tinuous spectrum of elaboration reaching
from the simplest organisms to man, or is
there a sequence of distinct “inventions”
that sharply partitions the competence of
the organisms with brains incorporating
these inventions?

Living organisms have evolved two
distinct strategies for obtaining the food
and energy necessary to sustain life.
Plants are stationary factories that exploit
the largely renewable nonliving resources
in their environment. Animals eat other
living things and must be capable of both
finding and catching their prey—i.e., of
perception and motion. The physiological
correlates of purposive movement through
the environment are sensors, muscles,
and an effective apparatus for interpre-
tation, coordination, and control.

The essential invention that allowed
higher-level animal life to evolve was the
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nerve cell (Appendix 2-1), and indeed,
one of the most important distinctions
between animal and plant life (once we
pass beyond the most primitive organisms)
is that animals possess nervous tissue and
plants do not. The nerve cell provides a
way of rapidly transmitting sensed infor-
mation and muscular control commands
using a unique combination of electrical
and chemical signals, while in plant life,
coordination of activity is accomplished
exclusively by much slower chemical mes-
sages. In addition to a speed advantage,
nervous tissue possesses an unusual de-
gree of “plasticity” (modification of func-
tion due to environmental influences) that
seems to provide the basis for learning.
The first simple animals, like plants,

were passive organisms, either stationary
or drifters—moved mostly by wind or tide.
It is believed that one of man’s most dis-
tant ancestors was a miniscule wormlike
creature that floated in the surface layers
of the warm Cambrian seas some 500
million years ago, and that a strip of light-
sensing cells and associated neurons
developed on its dorsal (back) surface to
improve its ability to properly orient and
position itself relative to the surface illu-
mination. This strip of nerve cells, by
creasing and folding inward (invaginating),
first formed a tubular nerve cord and
eventually evolved into the spinal cord
that distinguishes the vertebrates, includ-
ing the higher forms of animal life, and
ultimately man. (See Table 2-1, Fig. 2-1

TABLE 2-1 ® The Evolution of Animal Life
Years
Era Period Epoch Before Present Life Forms
(millions)
Quaternary Holocene 3 Modern man
Pleistocene Early man
. Tertiary Pliocene Large carnivores
Cenozoic Miocene Grazing mammals
Oligocene 70 Large mammals
Eocene Modern mammals
Paleocene Early mammals, modern birds
Cretaceous 130 Climax of reptiles, conifers,
Mesozoic first flowering plants
Jurassic 165 First true mammals, first birds
Triassic 200 First dinosaurs, amphibians
Permian 230 Abundant insect life
Pennsylvanian 300 First reptiles
Mississippian 320 Sharks
Paleozoic Devonian 360 First amphibians
Silurian 400 First land plants
Ordovician 480 First fishes
Cambrian 550 Abundant marine life
Pr i 600 Ver)j primitive organisms (Few
fossils found)
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the overall data transmission require-
ments and time delays, a process called
“neurobiotaxis.”

It appears that the aboriginal verte-
brate brain (the somewhat enlarged ante-
rior end of the spinal cord) underwent a
series of three evolutionary expansions to
permit the development of the three main
distance receptors (See Fig. 2-1): the
hindbrain for vibration and sound, the
midbrain for vision, and the forebrain for
olfaction (smell). In the higher vertebrates,
and especially man with his elaborated
cortex, the sensory interpretation func-
tions migrated from the lower centers
where they originally evolved, and now
mainly reside in the cortex itself. Never-
theless, in the growth of the individual,
the vastly more complex modern chordate
brain still develops from these three
bulges in the embryonic neural tube (Fig.
2-I and 2-2). The hindbrain gives rise to

FIGURE 2-1
Evolution of the Vertebrate Brain.

(a) Diagrammatic depiction of the three primary swell-
ings of the neural tube as it is believed to exist in ab-
original chordates, and as it appears in embryonic
development of the human brain. (b) Evolutionary
developments believed to have occurred in the roof of
the primitive neural tube. (After C. M. U. Smith. The
Brain, Towards an Understanding. Capricorn Books,
New York, 1972.) (c) Elaboration of the neural tube in
embryonic development of the human brain.

the cerebellum, the main center for mus-
cular coordination; the midbrain enlarges
into the optic tectum, which still serves as
the main visual center in birds and fish;
and the forebrain, which grows into the
large multifunction cerebrum in man, is
an inconspicuous swelling in many lower
vertebrates that is employed to analyze
the inputs from their olfactory organs
(Color Plate 1). It should be noted that

and 2-2, and Box 2-1). In the course of
evolutionary development, sense organs
tended to develop on the forward (ante-
rior) end of the organisms, for that is
the end that first penetrates new envi-
ronments. Nerve centers concerned
with analysis of data from these sensory
organs also moved forward to minimize

olfaction is the dominant sense in most
mammals. Food selection, hunting, social-
izing, mating, and navigation can all be
effectively based on a keen sense of smell.
Almost alone among mammals, vision
dominates smell in the primates. This is
undoubtedly due to the fact that the pri-
mates evolved in the trees where three-
dimensional vision is critical to survival,
and scents quickly fade.
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FIGURE 2-2
Part I: Embryonic Development of the
Nervous System.

(a) Ectodermal cells form a neural plate in the midline,
and proliferate to form a multicellular layer. (b) As cells
at each side of the neural plate proliferate, the sides
are elevated (arrows) to form neural folds enclosing a
groove. (c) The neural groove deepens and the neural
folds come together in the midline (arrows), fuse, and
form the neural tube. (d) The neural tube forms the
primitive central nervous system. The overlying neural
crest will form the peripheral nervous system and related
cells. (From E. L. Weinreb. Anatomy and Physiology.
Addison-Wesley, Reading, Mass., 1984, p.158, with
permission.)
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Part II: Embryonic Development of the
Human Brain.

The three main parts of the brain (the forebrain, the
midbrain and the hindbrain) originate as prominent
swellings at the head end of the early neural tube. The
cerebral hemispheres eventually overgrow the midbrain
and the hind brain and also partly obscure the cerebel-
lum. The characteristic convolutions and invaginations
of the brain’s surface do not begin to appear until about
the middle of pregnancy. (From Scientific American,
1979. Reprinted by permission.)
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BOX 2-1

Animal Evolution

The human brain developed in the
context of animal evolution. The
story of this evolution can be told
in terms of a series of “inventions”
involving not only sensory and
integrative systems (based on the
original invention of the nerve cell),
but also inventions with respect to:

L

Heredity and reproduction—
e.g., DNA, sex

Skeletal, effector, and locomo-
tion systems—e.g., bones,
muscles, skin, hair, spinal
column and vertebrae, legs,
arms, fingers, opposing thumb

. Energy acquisition and utiliza-

tion via internal transport
systems—e.g., ATP, lungs,
blood, digestive enzymes,
alimentary tract

. Systems for internal regulation

and body maintenance—e.g.,
the immune system, control of
temperature, breathing, heart
rate and blood flow, thirst,
hunger, emotions

While no one invention stands

by itself, a system of classification
based on some of the more obvious
and easily observable inventions has

been devised to distinguish the tion of man is shown in the Table
various life forms and their evolu-

tionary progression. The classifica- in Wasserman [Wasserman 73).

2-2. Further discussion can be found

TABLE 2-2 m Classification of Man

ORGANISM: Man

KINGDOM: Animal (Other kingdoms are plant, Protista, Monera.)

PHYLUM: Chordata (Distinguished by a backbone or notochord, a longi-
tudinal stiffening rod which lies between the central nervous system and
the alimentary canal; a hollow, dorsal nerve cord; and embryonic gill slits.
The chordates include over 70,000 species distributed over four sub-
phyla. Other major phyla include the Arthropoda, Mollusca, and Echino-
dermata.

SUBPHYLUM: Vertebrata (The embryonic notochord is replaced by a
backbone of vertebrae as the central axis of the endoskeleton.)

CLASS: Mammalia (Warm-blooded; air-breathing; milk-producing; four-
chambered heart; possesses hair; young born alive. Other classes include
fish, amphibians, reptiles, and birds.)

ORDER: Primates (Enlarged cranium with eyes located on front of head;
stands erect; thumbs opposing the fingers; fingers have nails instead of
claws. Other orders include rodents and carnivores.)

FAMILY: Hominidae (Large cerebral hemispheres overhanging the cere-
bellum and medulla. Apes belong to the family Pongidae which consists
of the gorilla, chimpanzee, orangutan, and gibbon. There are two sepa-
rate families of monkeys that also include the baboons.)

SPECIES: Homo sapiens (Man is the only living species of the family
Hominidae.)

One of the more interesting accounts
of the present structure of the human
brain, based on evolutionary develop-
ment, is due to MacLean [MacLean 73].
He hypothesizes that the brain consists of
three interconnected biological computers
(the “triune brain,” Fig. 2-3), each with its
own type of intelligence, subjectivity,

sense of time and space, memory, motor,
and other functions. Each of these three
brains (known to be distinct anatomically,
chemically, and functionally) corresponds
to a separate evolutionary step. The com-
bination of spinal cord, hindbrain, and
midbrain (collectively called the “neural
chassis”) contains the neural machinzzy
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FIGURE 2-3 The Triune Brain.

General schematic of the three major components of the
triune brain. (After P. D. MacLean. A Triune Concept

of Brain and Behavior. University of Toronto Press,
Toronto, 1973.)

necessary for reproduction and self-
preservation, including control of temper-
ature, muscle tone, sleep rhythm, blood
circulation, and respiratory functions. In a
fish or amphibian, this is almost all the
brain there is; however, more highly
evolved organisms are animated by “supe-
rior” brain structures, and are reduced to
a vegetative state when these higher brain
structures are rendered inoperative. Mac-
Lean distinguishes three separate drivers
of the neural chassis:

1. The reptilian or R-complex, which
probably evolved 200 to 300 mil-
lion years ago, consists of the struc-
tures immediately surrounding the

midbrain (corpus striatum, globus
pallidus). We share this complex with
other mammals and reptiles. It plays
a major role in aggressive behavior,
territoriality, ritual, and the establish-
ment of social hierarchies. It is sur-
prising how much of modern human
conduct can be ascribed to these
primitive behavior patterns.

. The limbic system (thalamus, hypo-
thalamus, hippocampus, amygdala,
pituitary), which evolved more than
150 million years ago, is located on
top of the R-complex. We share the
limbic system with other mammals,
but some of its structures are not
possessed by reptiles. The limbic
system appears to be the site of
emotional response (fear, love, hate,
pleasure and especially sexual plea-
sure, pain, altruism, sentiment) and
is a major center for memory storage
and recall. The oldest part of the
limbic system, the olfactory cortex,
which originally evolved to analyze
scents and smells, still serves in this
capacity. The role of smell in sexual
behavior, and its involvement in
memory, is not accidental.

. The neocortex, sitting like a cap on
the rest of the brain, evolved in the
last 50 million years, but the rate of
its evolutionary growth increased
dramatically in the last few million
years in the primates and especially
in man.

MacLean has based his theory on
years of careful study of the behavior of
animals, ranging from lizards to squirrel
monkeys, in which he determined which
parts of the brain control what types of
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behavior. Further, his theory of evolu-
tion by addition and preservation of pre-
existing structure is also justified, in part,
by the argument that it is very difficult to
evolve by randomly altering a complex
system—any such change is likely to be
lethal. However, fundamental change can
be accomplished by the addition of new
systems to the old ones.

Architecture of the Brain

The human brain (See Box 2-2, Table 2-3,
and Color Plate 1) is dominated by a
massive cortex, which is bilaterally sym-
metrical in structure. Each cortical hemi-
sphere is composed of four major regions
or lobes. These are named the frontal,
parietal, temporal, and occipital lobes.

While it is clear that these lobes do not
act as independent functional units, (most
higher level functions are known to be
distributed across more than one region
of the cortex), it is still the case that many
human attributes and functions appear to
be strongly associated with a single lobe.

The frontal lobes appear to be associ-
ated with initiative, anticipation, caution,
and the general regulation and planning
of action; the temporal lobes with the
integration of perceptual information,
especially speech and vision; the parietal
lobes with symbolic processes (reading,
writing, arithmetic), spatial perception,
and motor control; and the occipital lobes
with vision, the dominant sense in hu-
mans and other primates.

Man has convolutions in his cerebral

TABLE 2-3 m Physical Attributes of the Human Brain

Transmission and switching
speed

Interconnection complexity
per computing element

Reliability

Information coding

Neuron: up to 100 distinct classes; functional differences not

Neuron (cell) body diameter = 0.004 in.

Attribute The Brain
Types of processing elements
known
Number of elements 10" to 10" neurons
Sizelvolume Brain volume (man)= 1500 cc
Axon length: up to a few feet
Weight 331
Power 10 watts

Transmission speed: function of axon diameter and insula-
tion, ranges from 30 to 360 ft/sec
Maximum switching speed 0.5 x 10 sec

Up to 200,000 connections (for Purkinje cell)

Component reliability: low, neurons dying continuously
System reliability: high, design life 70+ yr

Digital: frequency modulation
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‘The neocortex is remarkably similar
in the brains of all mammals, includ-
| ing man. The same cell types are

found and the same stratified struc- depth.
ture with six parallel layers* is ob-

the surface inward, layer 1 contains
mostly fibers from neurons in other

f layers; layers 2, 3, and the upper
portion of layer 5 deal with inter-
nal processing; layer 4 is largely

| involved in receiving sensory infor-
mation; and the lower portion of

| layer 5 and all of layer 6 are con-

| cerned with muscle control. The

*From a functional standpoint, the
vertical organization of the cortex is

as important as the layered horizontal
organization: the entire neocortex seems
to consist of a mosaic of overlapping
functional columns. The vertical organi-
zation is described in Chapter 8 for the
visual system.

\

\

| BOX 2-2 Structural Organization of the Mammalian Neocortex
\

thickness of the neocortex varies
somewhat in different brain regions
ranging between 50 to 100 cells in

The number of cells lying
served. beneath a fixed-size patch of surface
Numbered from one to six from  area is essentially constant for all
areas of the neocortex: 140,000
neurons per square millimeter of
surface with the exception of the
visual area where primates have
2.5 times as many cells as in other
areas. The human neocortex has a
surface area of about 2200 cm?* and
is estimated to contain 30 billion
neurons. The corresponding num-
bers for the chimp and gorilla are
500 cm? and 7.5 billion cortical
neurons; the cat has 4 to 5 cm? of
cortex containing 65 million neu-
rons. The average thickness of the
neocortex increases by a factor of
three in the evolutionary progression crease relative to the total brain
from rat to man, reflecting an in-

crease in the amount of “wiring”
needed to interconnect the larger
number of neurons; however, the
density of synapses seems to have
remained unchanged.

Thus, the human brain is not
visibly distinguished in either gross
structural formation, cell type, cell
distribution, cell density, or density
of synapses, as we ascend the evolu-
tionary scale from the lower mam-
mals. The major visible evolutionary
change is the continuous quantita-
tive increase in neocortex surface
area, thickness, total number of
neurons, and the total number of
connections between neurons. From
fish to man, the brain assumes an
increasingly greater fraction of body
weight. In mammals, the neocortex
size (or equivalent surface area)
shows a similar evolutionary in-

size [Changeux 85, Smith 72].

| of evolution, and not committed to motor

\ or sensory functions. These areas, which
are “programmed” to function after birth,
are primarily in the prefrontal and tempo-
ral lobes. During childhood, some of this
uncommitted area on one side or the

\ other (but usually the left side) of the

temporal lobes will be programmed for

‘ speech. The remaining area, called the

| interpretation cortex, is apparently re-
served for the interpretation of present
events in the light of past experience.

A theory that attempts to character-

cortex that are new from the point of view

ize the functional organization of the
brain is due to Luria [Luria 73]. He
describes three main functional units.
The first unit, centered mainly in the
upper brain stem (especially the reticu-
lar formation) and in the limbic region,
is concerned with the maintenance and
regulation of the general “tone” or level
of activity in the brain, and more gener-
ally, with consciousness and emotion.
The second unit is concerned with
modeling the relation of the organism to
the external world, and thus with the
interpretation and storage of sensory
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information. This second unit is com-
posed of independent subsystems for each
of the different sensory modalities (e.g.,
visual, auditory, cutaneous, and kines-
thetic senses). However, each of these
subsystems is organized along similar
architectural lines: each sensory modality
has a primary reception area that orga-
nizes information received directly from
the sensory organs. A secondary region,
also specific to each sensory modality,
appears to interpret the primary sensory
output in the light of stored knowledge
and past experience, and is responsible
for the symbolic encoding of the sensory
signals. Finally, a tertiary area, shared
among the different senses, integrates
symbolic information from the different
sensory modalities in creating a composite
model of the world. Luria asserts that this
tertiary area is a unique human brain
structure that converts concrete percep-
tion into abstract verbal thinking employ-
ing some of the same machinery
associated with the speech function.

Luria’s third unit, centered largely in
the frontal lobes, is concerned with the
formation of intentions, the creation of
plans, and the monitoring of performance.
The third unit controls the actions and
thus the motor systems of the organism.
Again, Luria asserts that the frontal (pre-
frontal) lobes, much more highly devel-
oped in man than in any other animal
(occupying up to one quarter of the total
mass of the human brain), are organized
to employ symbols and speech processes
in their functioning.

Rather than continuing to catalog
our admittedly limited knowledge of the
relationships between brain structure
and function, in the remainder of this
subsection we will give a brief specula-

tive account of what is known about the
highest and most fascinating brain func-
tions: mind, consciousness, personality,
pleasure and pain, learning and memory,
and reasoning. Perception is discussed
extensively in a later chapter.

Mind, Personality, Consciousness, and the
Soul. Each human brain appears to house
a single individual, although there are rare
pathological cases of multiple personalities
alternately manifesting their presence in a
single body. How do 10 billion nerve cells
interact to produce a single conscious-
ness? Where is the site of the “I, ”” con-
scious awareness, or even the mind or soul
should one or the other exist independent
of the physical structures of the brain?

In a view contrary to that of the
“triune brain” as hypothesized by Mac-
Lean, and also distinct from that of Luria,
Wilder Penfield [Penfield 78] believes that
the brain is a tightly integrated whole, and
that conscious awareness resides not in
the new brain (neocortex) but rather in
the old (the brain stem). In Penfield’s
theory, the brain consists of two major
systems, (1) the mechanisms associated
with the existence and maintenance of
conscious awareness, the mind, and
(2) the mechanisms involved in sensory-
motor coordination, called the central
integrating system.

Penfield, one of the world’s foremost
neurologists/neurosurgeons at the time of
his death in 1976, formulated his views
after a lifetime of studying how the brain
functions and malfunctions, especially in
the presence of epilepsy. He observed that
epileptic fits, abnormal and uncontrolled
electrical discharges in the brain that
disable the affected areas, generally limit
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themselves to one functional system. One
such type of epileptic fit, called a petit
mal,” converts the individual into an au-
tomaton. The patient becomes uncon-
scious, but may wander about in an aim-
less manner or he may continue to carry
out whatever task he had started before
the attack, following a stereotyped pattern
of behavior. He can make few, if any, deci-
sions for which there has been no prece-
dent, and makes no record of a stream of
consciousness—he will have complete am-
nesia for the period of epileptic discharge.
The regions of the brain affected by petit
mal are the prefrontal and temporal

lobes and the gray matter in the higher
brain stem. When an epileptic discharge
occurs in the cerebral cortex in any of
the sensory or motor areas (e.g., in the
parietal or occipital lobes), and spreads to
the higher brain stem, the result is always
a major convulsive attack (grand mal),
never an attack of “automatism.”

We note that both the central inte-
grating system (essentially a computer)
and the mechanisms responsible for mind
(consciousness, awareness) have primary,
but distinct, centers in the gray matter
of the higher brain stem (diencephalon)
where they engage in a close functional
relationship. With the exception of pain
and possibly smell sensations, which make
no detour to the cerebral cortex, all sen-
sory signals come first to the higher brain
stem, and then continue on to an appro-
priate region of the cerebral cortex; from
there, they return to specific areas of
the diencephalon. Thus, according to

"We use Penfield’s terminology, even though it is
now considered obsolete.

Penfield, the cerebral cortex, instead of
being the highest level of integration, is
an elaboration layer, partitioned into
distinct functional areas.

The indispensable machinery that
supports consciousness lies outside of the
cerebral cortex: removal of large portions
of the cerebral cortex does not cause loss
of consciousness, but injury or interfer-
ence with function in the higher brain
stem, even in small areas, abolishes con-
sciousness completely.

In summary, Penfield views the sen-
sory interpretation and motor control
areas of the cerebrum as a “computer”
that operates in the service of the “mind.
The structures that support the highest
function of the brain, conscious aware-
ness, are thought to be located primarily
in the higher brain stem and in the “un-
committed areas” of the cerebrum (espe-
cially the prefrontal and temporal lobes).
Even if Penfield is correct, we still under-
stand very little about the nature of con-
scious awareness, nor do we have any
definitive way of answering questions such
as: At what point in evolutionary develop-
ment did conscious awareness first arise,
and at what point in the debilitation of the
human brain does it finally depart? Specu-
lative discussion pertaining to these mat-
ters is presented in Box 2-3.

”

Pleasure, Pain, and the Emotions. The
emotions of pleasure and pain appear to
be such deep integral parts of the human
experience that it is difficult to believe
that all that is happening within the brain
is the firing of a few specific neurons. Yet,
it can be demonstrated that in some sense
this is indeed the case.

In experiments performed in 1939
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BOX 2-3 The Origins and Machinery of Consciousness

When and how did consciousness
evolve, and where does it reside in
the human brain? Three books
addressing these questions all sug-
gest that consciousness is a recent
biological invention, closely linked
to linguistic competence.

Julian Jaynes [Jaynes 77] offers
the strange and somewhat unbeliev-
able thesis that consciousness was
first “invented” in Mesopotamia
around 1300 B.C. He associates
consciousness with the ability to
think, plan, desire, hope, and de-
ceive, and asserts that these attrib-
utes were lacking in early man and
lower animals who were only capable
of a stimulus-response pattern of
behavior. He believes that the brain
was originally organized into two
functional components, an executive
part called a “god” and a follower
part called a “man,” neither of
which were conscious in the sense
given above. Jaynes’s main argument
in support of his theory is that early
man ascribed his actions to the
inner voice of the god telling him
what to do (e.g., Odysseus in the
Iliad). Consciousness, according to
Jaynes, was invented by man coming
to the explicit realization that it is
he, and not the gods, who directs his
actions. With a different view of his
thought processes, man’s behavior
itself changed from reflexive to
introspective awareness.

Curtis Smith [Smith 85] argues
that biological mechanisms created a
linguistic capability before human
language was invented, and that
both language and consciousness
are related evolutionary conse-

quences of purely neurological
developments. These critical biologi-
cal inventions, specifically the devel-
opment of a mental capacity for
manipulation of information in the
form of a general symbolic code,
were required to integrate informa-
tion from different sensory modali~
ties* each describing the perceived
world in a different “language.” The
evolutionary changes supposedly
occurred with the emergence of Cro-
Magnon man as a replacement for
the prelinguistic preconscious Nean-
derthal man on the order of 50,000
to 100,000 years ago. (Neanderthal
man, the first representative of our
species, appeared approximately
150,000 years ago, but non-ape
hominoids who made tools and used
fire had already existed for more
than 2/ million years.) Language
allowed Cro-Magnon man to rise
above the limitations of sensory
experience, enabling him to possess
an internal conscious world with the
capacity to dream, imagine, remem-
ber,T and create.

Michael Gazzaniga [Gazzaniga
85], a key scientist in the split-brain
experiments described in Box 1-3,
offers a unique and extremely pro-
vocative theory of consciousness.
Like C.G. Smith, he believes that

*Such an integrative ability is completely
lacking in lower animals.

tMemory and consciousness are inti-
mately related; in a sense, memory
retrieval is consciousness. It follow that
memory retrieval in lower animals that
lack language must be a simpler and
more sensory-oriented phenomena.

consciousness is only possible in
man, and only developed after the
evolution of both language and
reasoning ability. However, he as-
serts that the brain is composed of
multiple independent nonverbal
modules and a single verbal module.
The verbal module, which is the seat
of consciousness, “observes” and
attempts to explain the actions of
the other modules:

It has been commonplace to
think that our conscious cogni-
tive self is organized and exists
in such a way that our language
system is always in complete
touch with all our thoughts. It
knows where in our brains to
find all information we have
stored there, and it assists in
all computations or problem-
solving activities we engage in.
Indeed, the strong subjective
sense we all possess of our-
selves is that we are a single,
unified, conscious agent con-
trolling life’s events with a
singular integrated purpose. . . .
And it is not true. . .. There
are a vast number of relatively
independent systems in the
brain that compute data from
the outside world. These inde-
pendent systems can deliver the
results of these computations to
the conscious verbal system, or
they can express their reactions
by actually controlling the body
and affecting real behaviors.
Thus, according to Gazzaniga,
conscious beliefs are explanations
(devised by the verbal module) of the
behavior of the independent entities
constituting the brain viewed as a
social system.
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COLOR PLATE 1(a)
Comparative Anatomy of the Vertebrate Brain

As indicated by the diagrams on this page, the evolution of the
human brain has been a process of rearranging and augmenting
the basic parts of the brains of lower vertebrate animals. Each
of the brains that has developed has been appropriate to the
survival of its particular species. For example, the shark, which
hunts with its nose, has a brain devoted predominantly to the
sense of smell. As perception becomes more versatile in higher
animals, the smell brain (green) shrinks in relative size. Patterns
of instinctive behavior involved in fleeing, fighting, feeding, and
mating are controlled by the hypothalmus (magenta) and associ-
ated nerve centers; these man has inherited virtually intact from
lower mammals. The thalamus (orange), which serves as a final
staging area for messages to the cerebrum (yellow), has grown
roughly in parallel with the growth of the cerebrum. A relatively
late evolutionary development has been the growth of the
cerebral cortex (deep yellow), which plays a major role in rea-
soned behavior. In fact, the most striking difference between
man’s brain and those of other mammals is the extent of his
cortex. If spread out flat, this thin covering of the brain would
be the size of a newspaper page. It fits into the human skull only
by being crumpled and wrapped around the rest of the brain
like an umbrella. (Max Geschwind in G. Boehm article, Fortune,
Feb. 1986, with permission.)
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4COLOR PLATE 1(b)
comparative Anatomy of the Vertebrate Brain (confinued)

As indicated by the diagrams on this page, the evolution of the Brain and spinal chord of human beings and
other mammals can be subdivided into smaller regions according to gross appearance, embyology, or cellular
organization. At the top a human brain has been drawn so that its internal structures are visible through
wransparent” outer layers of the cerebrum. At the bottom, a generalized mammalian brain is shown in a
highly schematic view. Corresponding structures in the realistic and schematic models are the same color. The
most general way of dividing the brain is into hindbrain, midbrain, and forebrain. The hindbrain includes the
cerebellum. The midbrain includes the two elevations known as the inferior and superior colliculi. The fore-
prain is more complex. Its outer part is the cerebral hemisphere, the surface of which is the convoluted sheet
of the cerebral cortex, which incorporates the hippocampus, the neocortex, and the olfactory fields. Within
the hemisphere are the amygdala and corpus striatum, which includes the globus pallidus and striatum. The
rest of the forebrain is the diencephalon: the upper two thirds comprises the thalamus (which has numerous
subdivisions) and the lower third the hypothalamus (which connects to pituitary complex). (From W. Nanta
and M. Feirtag, Scientific American, Sept. 1979, with permission.)

COLOR PLATE 2
A Synthetic Scene Generated using Fractal Textures.

(Fractal landscape rendering by R.F. Voss. From B. Mandelbrot. The Fractal Geometry of Nature. W. H.
Freeman, San Francisco, © 1982 with permission.)



COLOR PLATE 3

Histogram Analysis for Automatic
Threshold Setting.

Top right: Color image of a road scene.

Middle right: Blue component of color image.

Bottom right: Partitioned image, showing road,
vegetation, and sky.

Above left. Histogram of blue component of color
image, showing threshold settings.

(Photos courtesy of SRI International,
Menlo Park, Calif.)
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by Kliiver and Bucy at the University of
Chicago, it was discovered that when

the region of the brain lying between the
outer cortex and the center of the brain
was damaged, monkeys behaved as if their
emotional and motivational machinery
was destroyed: they ate nuts and bolts as
happily as raisins and randomly and inap-
propriately intermixed pleasure and fear
responses to test situations.

More recent attempts to locate the
emotional centers of the brain have nar-
rowed the search to the hypothalamus,
known (in addition to other functions) to
control feeding, drinking, and sexual
behavior. In 1953, James Olds discovered
a region near the anterior hypothalamus
of the rat that, when stimulated with an
electrical current introduced through a
“brain probe,” provided such a high level
of gratification that to get this reward rats
would cross an electrified grid that previ-
ously had stopped rats starved for 24
hours from running for food.

While the positive response® to elec-
trical stimulation of the hypothalamus has
been demonstrated in rats, fish, birds,
cats, dogs, monkeys, porpoises, and man,
the interpretation of what is actually hap-
pening is not completely clear. In some
cases it appears that the stimulation pre-
vents termination or enhances the cur-
rently ongoing activity, rather than provid-
ing the subject with a pleasure reward.
However, human subjects experiencing
the positive effect, generally report that
the stimulation caused reduction of anxi-
ety or pain, or pleasurable feelings related
to sex. One implication of these findings
is that in spite of the complexity of human
behavior, simple switches in the brain

8Regions of negative response have also been found.

can turn on or off some of our strong-
est drives and motivating mechanisms.

Memory. Memory, nominally the ability
to store and recall past events, is a critical
component of human intelligence; after
all, most of our reasoning deals with our
previously stored knowledge of the world
rather than exclusively with currently
sensed data—defective memory is one of
the most frequently observed symptoms
of impaired brain function. What kinds
of memory are there? How long can differ-
ent kinds of things (a picture, a sound, a
word, a story) be remembered? Does the
human memory span exceed that of most
other organisms? Is indeed memory sim-
ply a matter of storage and recall? Or is it
a more complex function? What do mem-
ory defects tell us about the nature of
normal human memory?

The first significant modern study of
the psychology of memory was published
by Hermann Ebbinghaus in 1885. He
addressed such issues as the rate of for-
getting (memory loss occurs quickly at
first, then more slowly); “overmemoriz-
ing” and relearning (“each repetition
engraved the material more and more
deeply on the nervous system”); the
amount of material that can be memo-
rized (the learning time for n nonsense
syllables is proportional to nlogn for lists
shorter than the immediate memory
span); the effect of how the learning time
is distributed (it is better to have several
short learning sessions spaced out at
intervals than to have one unbroken per-
iod of work), and a host of similar items.

Since memory was known to be
strongly influenced by the meaning and
novelty that the material has for the mem-
orizer, the Ebbinghaus and most subse-
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quent formal memory experiments at-
tempted to achjeve generality by employ-
ing nonsense syllables as data to be mem-
orized. This approach masks the fact that,
except in rare cases, the symbolic infor-
mation memorized is an abstraction of the
originally sensed data, rather than an
exact copy. Thus, in normal situations
memory is not simply a matter of storage
and recall, but rather a complex process
involving a considerable amount of cogni-
tive processing,

The portions of the human brain
thought to be involved with memory are
the association areas of the frontal, pari-
etal, occipital, and temporal lobes, and
parts of the limbic system, especially the
hippocampus. Little is known about the
actual storage mechanisms and even less
is known about the following ability which
has no counterpart in computer memory
systems: A person knows when something
is stored in his memory, and when it is
not. Thus, we will exert much effort to
recall something that we “know we know,”
while we will make no effort to recall
something that we know we do not know.
For example, given the question, “What
was Benjamin Franklin’s telephone num-
ber?,” we will not try to recall all of the
telephone numbers that we know, but
immediately conclude that no such num-
ber is stored in our memory.

Human memory is not a monolithic
function—many different kinds of pro-
cesses are involved and there are at least
three® different types of memory: memory

*There may be additional types of memory, e.g.,
Gazzaniga [Gazzaniga 85] describes evidence for the
existence of memory mechanisms for storing proce-
dural knowledge (such as motor skills) as distinct
from mechanisms for storing declarative knowledge
(facts or events).

for sensed data, short-term memory, and
long-term memory. The designation
“short-term memory” is used to denote
the ability to recall information presented
a short time previously—short-term mem-
ory leaves no permanent imprint on the
brain. One theory of short-term memory
is based on the idea of “reverberation”

of neuronal circuits in which an impulse
travels through a closed circuit of neurons
again and again. In this view, an incoming
thought can be recalled while the rever-
beration continues. ‘“Long-term memory,”
the indefinite retention of a memory
trace, cannot be explained by reverbera-
tion. Rather, the concept of “facilitation”
at synapses is used: when incoming infor-
mation enters a neuronal circuit, the
synapses in the circuit become “facili-
tated” for the passage of a similar signal
later (triggered by some portion of the
new signal which duplicates the original
stimulus). Another theory suggests that
long-term memory is related to protein
synthesis by RNA: memory results from
the production by RNA of specific pro-
teins for each recorded event.

Each sensory modality (e.g., vision or
speech) appears to incorporate a means of
storing the complete incoming signal for
on the order of 0.10 to 1.0 second. For
example, we have all had the experience
of not immediately understanding a spo-
ken phrase, but by “replaying it” in our
“mind’s ear,” we can recover the intended
meaning. There are also visual “after-
images” which occur in a very short inter-
val after the withdrawal of the stimulus,
and are distinguished from other forms of
visual memory in that these afterimages
are not under voluntary control. We can
inspect afterimages with our “mind’s eye”
and “see” things we did not observe
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when the visual stimulus was physically
present.

In addition to very short-term sensory
memory, there appears to be another
form of short-term memory which lasts
anywhere from 30 seconds to a few hours.
Retaining a telephone number “in our
heads” until we can complete the dialing
—the number is typically forgotten almost
immediately afterward—is an example of
this type of memory.

Important information that is re-
tained over long periods of time appears
to be stored by a completely different
mechanism from that used for the various
types of short-term memory. But even
here, more than one facility is involved.
For example, there are memory disabili-
ties in human patients that affect their
ability to store and recall verbal material,
while leaving intact their memory ability
for nonverbal material.

Many other types of memory disor-
ders are known that shed light on the
multifaceted nature of human memory.
For example, traumatic amnesia can be
experienced by a person who has been
knocked out by a blow on the head. In
a confusional state lasting from days to
weeks, the individual is unable to store
new memories, and on recovery reports
total amnesia for that period. Anterograde
amnesia is the impaired ability to store
memories of new experiences. (It is inter-
esting to note that short term memory is
typically intact among most amnesia suf-
ferers. Some experimental psychologists
believe that the primary factor in amnesia
is the inability to transfer information
from short-term to long-term storage.)
Korsakoff's syndrome is a gross defect of
short-term memory in which the sufferer
may have access to memories of events

occuring prior to the onset of the syn-
drome, but now immediately forgets each
new experience; he lives only in the imme-
diate present with no continuity between
one experience and the next.

To summarize our main observation,
except for very short-term sensory stor-
age, the memory function is a complex
activity that involves distinct modes of
information partitioning, selection, and
abstraction. It has all of the attributes of
perception, and in fact, memory recall
can be viewed as a form of internal per-
ception. We do not generally retrieve a
unique “token” in the exact form in which
it was stored, but rather synthesize a
“mental construct” (possibly from many
different brain storage modalities) that is
relevant to some purpose or ongoing
process. The designation of perception,
learning, and memory as distinct brain
functions is a simplification which masks
the true nature and interrelations of these
activities.

Reasoning. Man has the ability to use
current and past events to foresee possi-
ble futures, to plan and judge alternative
courses of action, to deduce new facts
from stored knowledge, and to recon-
struct his environment from sensory data.
Where and how does the human brain
perform these functions which we ascribe
to the general faculty called reasoning? It
is in this particular matter that we least
understand the machinery of the brain.
From a functional standpoint, we
have already seen that reasoning is not a
monolithic activity, but rather that there
are at least two distinct paradigms the
brain employs to solve the problems
posed to it. The left hemisphere appears
to be especially adept at solving problems




38
THE BRAIN AND THE COMPUTER

Longitudinal cerebral fissure
Precentral gyrus

Central
sulcus

= N
FRONTAL \\ Postcentral
LOBE A TN gyrus
" PARIETAL
LOBE
/ T\
I "
! Parieto-
\\ ; occipital
\ ¥ sulcus
Middle - , v
frontal g ~" OCCIPITAL

gyrus \ e LOBE

gy TEMPORAL
Lateral | OBE
sulcus
€)]
Central Postcentral gyrus ress:
Precentral gyrus sulecus '3 1 2 1, 2, 3: Primary sensory (somesthetic)

3
4: Primary motor
6: Premotor
7: Somesthetic association
8: Voluntary eye movements
17: Primary visual
18, 19: Visual association
22: Auditory association
(Wernicke’s area)
41, 42: Primary auditory
43: Primary gustatory
44, 45: Motor (Broca’s) speech center

Parietal 5,
lobe

(b)

FIGURE 2-4 Functional Localization in the Human Cerebral Cortex.

(a) External anatomy of the cerebral hemisphere. Lobes, gyri, fissure, and sulci of the left cerebral hemisphere. The insula
(indicated by broken lines) is hidden by the overlying lobes. (b) Functional areas of the cerebral cortex. The general area is
shaded black. (From E. L. Weinreb. Aratomy and Physiology. Addison-Wesley, Reading, Mass., 1984, pp. 166,167, with
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having a sequential/logical character,
while the right hemisphere is superior in
dealing with problems having a spatial/
gestalt character. Other than the centers
specialized to deal with data from specific
motor and sensory systems (Fig. 2-4), no
additional localization of the reasoning
machinery is known. The computer anal-
ogy suggests that assemblies of neurons,
individually capable of acting as both the
logical switches and memory cells of a
digital computer, indeed act as compo-
nents in a distributed general-purpose
computational engine executing relocat-
able algorithms recalled from memory

as the need arises. There is no way at
present to either verify or falsify this con-
jecture. In our current state of knowledge,
we know as much (or as little) about rea-
soning in the brain as we do about the
location and functioning of the human
soul.

The Brain and the Computer. Before we
move on to the computer portion of this
chapter, let us examine where we have
been and where we want to go. We stud-
ied the brain with the goal of learning
more about intelligence. We discussed the
physical structure of the brain, what the
effects of damage are, and what we can
introspect about human intelligence.
Although these topics are of great intel-
lectual interest, they do not provide the
insights about intelligence that we origi-
nally hoped to attain.

We therefore turn to the computer
with the expectation that, because we can
analyze its structure and functioning in a
way we cannot hope to do with the brain,
we may be able to resolve some of our
still-unanswered questions about intelli-
gence.

THE COMPUTER

In its most basic sense, the computer is a
machine that operates on information; it
takes in information (or data) and trans-
forms it in some specific way. As a physi-
cal device, the computer acts on physical
quantities, and the assertion that it actu-
ally transforms information is an interpre-
tation we impose on its behavior. Thus
any physical system (the human brain, a
dust cloud, a pocket calculator) is capable
of being viewed as a computer.

To understand the behavior of a
physical system viewed as a computer,
and to determine what it is actually or
ultimately capable of, a number of ab-
stractions have been created that attempt
to capture the essence of the concepts
“computer ” and “computation.” It
should be realized that the conclusions
we draw by analyzing these abstractions—
for example, conclusions about limits of
performance—are valid assertions about
the physical system only when viewed in
the context of the abstraction; i.e., the
limits are those of the abstraction. The
most useful and powerful abstractions we
have devised for formalizing the concepts
of information, computer, and computa-
tion are based on the following two ideas:

1. The computer is an instruction fol-
lower.

The most complex set of instructions
can be rewritten in a very simple
language; i.e., a language which has
an alphabet of only two letters (0,1)
and a vocabulary of less than twenty
distinct operations for altering strings
of I's and 0’s.

2.

The Turing machine, an abstraction
based on these concepts, is described
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later in this chapter. It will be seen that
while the Turing machine does not lead
to practical ideas about how to construct
useful computers, it allows us to under-
stand the limitations of all computer
systems viewed as symbolic informa-

tion processors (instruction followers
that transform strings of symbols).

The Nature of Computer Programs
and Algorithms

The digital computer (Appendix 2-2), the
most widely used form of the computer,
can be considered to be an instruction-
following device, with the instructions
presented in the form of a program. In
most current computer systems, the hard-
ware is controlled by a special internal
program known as the operating system,
which keeps track of how the computer
resources are being used, and how the
work is progressing. The user-provided
programs to be processed are known as
the applications programs. However, from
the standpoint of the user, the separation
between the hardware and the operating
system is unimportant and often invis-
ible; the combination forms the com-
puter which “understands” instructions
presented in one or more specialized
languages.

Procedures must be described to
an instruction follower in terms that are
understandable to it. The instruction
follower must be physically able to carry
out the procedures, want to, or be made
to, carry out the instructions in a practical
amount of time, and be able to monitor
progress and have a way of determining
when the task has been completed. These
requirements, assumed to be satisfied

when we communicate with a person,
must be explicitly met when communi-
cating with a robot or computer.

Natural vs. Formal (Computer) Lan-
guages. Procedures are described

to computers by means of programming
languages, which have very precise rules
of syntax and use. Such formal languages
differ from natural languages such as
English or French in the following ways:

o Ambiguity. A programming language is
designed so as to avoid ambiguity; a
single meaning can be found for each
expression. On the other hand, natural
language is often ambiguous: “I saw the
orange truck.”

Context dependency. The meaning of a
programming language expression is
minimally dependent on its context; its
meaning is almost always the same
regardless of what its surrounding ex-
pressions are. In natural language, a
sentence such as “I disapprove of your
drinking” is changed in meaning when
we add “so much milk.”
Well-formedness. In writing a program-
ming language expression, one must
follow the syntax rules exactly, otherwise
the instructions will not be accepted by
the system. In natural language, espe-
cially the spoken form, violations of
syntax generally do not affect a person’s
comprehension of the expression.

Procedural vs. Nonprocedural Instruc-
tions. When presenting instructions to
an instruction follower, we often specify
both what we want done and specifically
how we want the task carried out. This is
known as providing procedural instruc-
tions. If, on the other hand, we indicate
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what we want done, but do not specify
“how,” this is called a nonprocedural or
declarative instruction. An example of a
nonprocedural instruction is, “Buy a loaf
of bread on your way home”’; the desired
end-effect is specified, but no specific
instructions as to how to attain the goal
are given. It is quite difficult to devise
nonprocedural language systems, because
the interpretation system within the com-
puter must supply the ‘how’ by itself. The
interpretive system must know about the
“world” it is dealing with, and the effects
of actions on this world. It must also un-
derstand the nature of the problem being
solved. Using this knowledge, the system
must devise a plan, a sequence of steps
that must be performed to attain the goal.
Because of these difficulties, only a few
languages have been developed that have
nonprocedural capabilities and these are
generally limited to some specific domain.

Representation of Data in a Computer.
A computer can be based on two distinct
types of data representation: isomorphic
or symbolic. In the “isomorphic” repre-
sentation, data is modeled by a quantity
which has a “natural” functional and pos-
sibly physical resemblance to the original
data itself. For example, beads are used
in the abacus to represent numbers, and
the beads are physically moved to per-
form the computations. In the “symbolic
representation, the nature of the symbols
used to represent the data is completely
independent of the characteristics of the
data being represented; the desired
correspondence is established by a sub-
sidiary set of rules. Thus, if we represent
a number by its binary form, there is no

’

natural relationship between the num-
ber and the form of its representation.

In current computer technology, the
isomorphic representation is employed in
the analog computer, which is fast and
useful for dealing with certain physical
problems, but has limited accuracy and
flexibility. The symbolic representation is
employed in the digital computer, which
is extremely flexible and has unlimited
numerical accuracy, but is comparatively
slow and presents significant practical
problems in accurately modeling many
physical situations. For example, since the
relationship between the physical situation
and the computer representation is com-
pletely arbitrary, only those aspects
of the physical situation that are both
understood and can be described in a
formal manner are capable of being mod-
eled. Thus, a complete representa-
tion of an outdoor scene in a symbolic
language would be an almost impossible
task.

The Turing Machine

In order to prove formally what tasks can
and cannot be performed by a computing
device, Alan Turing, a British mathemati-
cian (1912-1954), postulated an abstrac-
tion, now called a “Turing machine,” that
is functionally equivalent to any computer.
Turing’s thesis was that any process that
can be called an ‘effective procedure’ can
be realized by his machine.

An effective procedure is a set of
formal rules that tell a device from mo-
ment to moment precisely what opera-
tions to perform. (A computer program is
an example of an effective procedure.)
Turing’s thesis cannot be established by
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proof—it is actually a definition of the
intuitive concept of a computable func-
tion, i.e., a function that can be evaluated
by some finite algorithm. All attempts to
define computability in some reasonable
way have been shown to be equivalent to
Turing computability.

In the Turing machine, the reduction
of a process to elementary operations is
carried to its limit. Even a simple opera-
tion such as addition is broken down into
a chain of far simpler operations. This
increases the number of steps in the
computations carried out by the machine,
but simplifies the logical structure for
theoretical investigations.

As shown in Fig. 2-5, the Turing
machine consists of a linear tape, assumed
to be infinite in both directions, which is
ruled into a sequence of boxes, or cells.
The machine has a read/write head that
can move from cell to cell of the tape,
and can read or write symbols. At each
moment of time, the machine is assumed

Control

Head

movement

Read/write head

~—Tape

Symbol
marked on tape
(e.g.,%)

FIGURE 2-5 The Turing Machine.

to be in one of a finite number of inter-
nal “states” that are identified by the
numbers 0, 1, 2, . .. The machine opera-
tion is controlled by a “state table” stored
within the machine that specifies (1) the
symbol to be “overprinted” at the current
tape location (i.e., the old symbol is
erased and a new symbol written), (2) the
direction of head movement, and (3) the
next state of the machine. The symbol
printed, head movement direction, and
the next state are determined by the cur-
rent state of the machine, and the symbol
that is on the cell of the tape currently
being scanned.

The various operations that the ma-
chine can carry out are: the machine can
halt; the previous symbol in a cell can be
replaced by a new symbol; the read/write
head can move one unit to the right or
left; and the state number of the machine
can be changed.

The state table ‘instructions’ are in
the form of rows, each of which contains
five elements: (1) old state, (2) symbol now
being read, (3) symbol to be overprinted,
(4) direction of head movement, and
(5) new state. Thus, a state table entry
[3,#,*,R,7] asserts, “If the old state is
state 3, and the symbol being read is #,
then the symbol * should be overprinted,
the head should be moved one cell to the
right, and the machine should go to
the new state 7.” Note that the first two
symbols of a row cannot be the same as
another row, since that would mean that
there would be more than one opera-
tion specified for a given state and input
symbol.

Turing showed that a state table
could be prepared for each of the com-
mon operators such as addition, multipli-
cation, and division, that more complex
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operations could be composed from sim-
ple ones in a formal manner, and that his
simple machine could carry out effective
procedures equivalent to that possible on
any computing device. Thus, anything
proved about the ultimate capability of a
Turing machine will hold for all com-
puters. Box 2-4 shows a complete state
table and how the corresponding Turing
machine operates on a tape.

The Universal Turing Machine

It is possible to convert the entire state
table of a Turing machine into a single
number such that the original table can
be recovered by decoding this number.

A technique for performing this coding
and decoding is shown in Box 2-5. We
can thus say that the complete description
of a Turing machine is given by its code
number.

A “universal Turing machine” is a
Turing machine that can take such a code
number, decode it to obtain the state
table of the original machine, and then
execute that table. Thus, the universal
Turing machine can simulate the opera-
tion of any Turing machine, given the
code number of the machine.

LIMITATIONS ON THE
COMPUTATIONAL ABILITY
OF A LOGICAL DEVICE

A machine that operates on the basis of
formal logical rules can be shown to have
theoretical limits on its problem solving
ability: there are certain well-posed prob-
lems for which no algorithm is possible,
using the formal rules. In other words,
we can prove that it is impossible for the
machine to solve such problems!

The Godel Incompleteness Theorem

At the beginning of this century, it was
expected that mathematics would soon
be mechanical in nature. Given a set of
axioms and deduction rules, new mathe-
matics would be produced by “blindly”
applying the deduction rules to the ever-
increasing set of mathematical truths.
This mathematics would be consistent
(no two statements produced would con-
tradict each other), and it would be com-
plete (every truth would be producible).
Thus, one could eventually produce all
true statements and never produce a
falsehood.

This expectation was destroyed in
1931 by Kurt Godel who showed that
there are true statements in mathematics
that a consistent formal system will not
produce, i.e., that it is impossible to alter
the foundations of mathematics to exclude
unprovable propositions. Godel showed
how to produce a true statement, S, that
could not be proved by a consistent sys-
tem, F, using a set of axioms and a proof
procedure. He did this by showing that if
S could be proved, then a contradiction
would arise. F is therefore “incomplete”
since it does not produce all true state-
ments. The approach is a formal treat-
ment of the “liar’s paradox”:

Given the statement S: This stafe-
ment is a lie. Then if S is true, S is false,
while if S is false, then S is true. Godel’s
approach used the form:

S: This statement is not provable.
Then if S is provable, S is not true, and
our formal system has produced a false-
hood. If S is not provable, then we have a
statement that is true, but not provable in
the system, and the system is incomplete.

Godel’s approach to proving the
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BOX 2-4 Programming a Turing Machine: The Parity Problem

Programming a Turing machine with
“alphabet” [0,1] consists of prepar-
ing a control table that will cause it
to operate on a binary input tape in
a desired manner. Numbers on the
tape can be represented as strings
of “1” marks (the number 5 =
“11111"), and if we have two num-
bers we can separate them by a cell
that has a zero in it, e.g. 2,5 would
be represented as
“ ..001101111100. . .”. Adding two
numbers consists of preparing a
control table that removes the zero
between the strings; subtraction
consists of shuttling back and forth
between the two strings, stripping off
1’s alternately for each until no 1’s
remain in the smaller string. Multi-
plication of a string m 1’s long by
one 7 1's long consists of replacing
each 1 of nbym 1’s.

We will assume that the ma-
chine must shift left or right after
performing an overprint and prior to

entering its next state. The machine
is always started at a specific posi-
tion on the tape in control state 1. If
the machine enters the zero state, it
halts without performing any further
operations.

The parity problem discussed
below requires the machine to deter-
mine whether there is an even or
odd number of 1’s on a tape. Con-
ceptually, a control table could be
set up so as to toggle between the
two states as the head moves along
the tape. When a zero cell is en-
countered, the machine reports in
some specified manner and halts.
We will examine several forms of the
problem.

Parity Problem (P1)

1. Input consists of string of
consecutive 1’s with start posi-
tion at the rightmost 1 of
string. The machine starts in
state 1.

FIGURE 2-6 Turing Machine for Solving the Parity Problem.

2. For odd parity (odd number of
1’s in input string) we require
the machine to stop at the
leftmost 1 of the input string as
shown in the example below:

input string ...0011100...
t
output string . . . 0011100. ..
1

3. For even parity (even number
of 1’s in input string) we re-
quire the machine to stop
under the second 0 to the left
of the input string as in the
example below:

input string ... 001100...
T
output string . .. 001100. ..
t

A control table to solve the
above parity problem is shown in
Fig. 2-6. It is obvious that the P1
parity problem cannot be solved by a

Control Present

state symbol Overprint Move New state
1 0 0 0 (left) 0 (halt)
1 1 1 0 (left) 2
Z 0 0 1 (right) 0 (halt)
2 1 1 0 (left) 1

Present / Overprint /Move)
symbol

0/0/L 0/0/R

Even

0dd

iVAV/R

(@

®)




45

COMPUTATIONAL ABILITY OF A LOGICAL DEVICE

BOX 2-4 (continued)

machine with a single control state.
Thus, the above machine is optimal
since it solves the parity problem
with the minimum possible number
of control states.

Now consider an apparently
trivial variation of the parity problem
in which we merely change the
reporting requirements:

Parity Problem (P2)

1. For odd parity, print a 1 on the
second square to the left of the
input string and stop at this

location:
input string ...0011100. ..
t
output string ...001011100...
T

2. For even parity, print 1’s in the
second and third squares to the
left of the input string and stop
at the second square:

input string ...001100...
1
output string ...001101100...
)

Try to find a machine that will
solve the P2 problem. It should be
easy to find a six-state machine; if
you are very clever and are willing to
spend a lot of time, you may even
find a four-state machine [Rado 62].

Nobody has yet found a three-
state solution to P2, nor do we know
if one exists. It might seem feasible
to resolve the issue of the existence
of a three-state machine by writing a

conventional computer program to
exhaustively try out all possibilities.
We note that there are more than 16
million three-state machines, and for
each such machine we would have
to determine if it will report parity
correctly, and halt, for every possible
input string. As discussed earlier in
this chapter, and in Box 2-6, even
deciding whether a machine will
halt, given an all-zero input tape, is
a generally undecidable problem.
Thus, while intuitive or heuristic
search techniques could conceivably
produce a three-state solution to the
P2 problem, failure to find such a
solution does not imply that one
does not exist, nor do we have a
formal method, at present, to re-
solve this issue.

general existence of unsolvable problems
has subsequently been used to show that
specific problems are unsolvable. For
example, Hilbert’s tenth problem, one of
the famous problems of mathematics, has
been shown to be unsolvable. (This prob-
lem is to find a general algorithm that
could determine in a finite number of
steps whether or not a given Diophantine
equation has an integer solution.) This
has been shown to be unsolvable by using
a proof that involves Godel numbering of
a statement related to Diophantine equa-
tions, and demonstrating the Godel con-
tradiction.

Unsolvability by Machine

The Godel concepts carry over into ma-
chine unsolvability, since once we have

the idea of a single number representing
an entire machine (see “The Turing
Machine” above), we can prove theorems
about unsolvability. For example, Box 2-6
presents an informal proof for the halting
problem: there cannot be a machine X
that when given the state table of an arbi-
trary machine Y and its starting tape, is
able to tell whether machine Y will ever
stop. Box 2-7 discusses the busy beaver
problem, which demonstrates noncom-
putability. Other examples of unsolvable
problems for a Turing machine (thus any
computer) are:

« Machine equivalence. 1t is impossible
to have a machine that, given the state
tables of any two Turing machines, S
and T, always can tell whether S is
equivalent to T.
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BOX 2-5 Godel Coding: Coding a State Table into a Single Number

There are many ways of coding a sequence of numbers
into a single number so that the number can be uniquely
decoded back into the original sequence. The one used
by the mathematician Kurt Gédel in his original work on
undecidability is based on prime factors. If we have a
sequence of non-zero integers S = a, b, c, ... n,, we
can form the product, N=(23)(3"(5°) . . . (p,™), where
2,3,5, . .. pi are all prime numbers, and p, is the k*
prime number. N is then the code number of the original
sequence, and since N was formed from the product of
primes raised to a power, we can uniquely determine the
power of each prime and hence can recover the original
sequence of numbers.

Given a control table of a Turing machine, we first
convert all the entries to numbers and eliminate any
zeros in the table:

« Right, left, and halt are denoted by some numbers,
say 1,2,3, respectively

¢ Any symbols to be printed are represented by a
number

« If any state is labeled as 0, add 1 to all states

We now have a set of five numbers in each row of

the control table, and we can concatenate rows to form
a long sequence of numbers. The sequence can be
converted into a single number using the prime number
encoding approach described above. We can then talk
about the Turing machine N, meaning the control table
of the machine coded into the number N using Godel
coding.* As an example of this, consider the control
table used in Box 2-4. We first eliminate the 0 values by
adding one to all numbers. We then obtain a Godel
number for each row:

10000 - 21111
11102 - 22213

—=22x3X5X7x9 = A
—-22x3Px5°x7x9* = B
20010 = 31121 -»22x3x5x7”x9=C
21101 = 32212 —-23x3Px52Xx7x9% =D

If we call the row Gédel numbers A, B, C, and D, then
we can code the entire table into the number
N=24x3*x 5% 7°. Since N encodes the original control
table, we can then use the designation “machine N.”

*Note that this coding approach is conceptual, rather than
practical, since the product of the primes raised to a power is
an impractically large number.

« Symbol prediction. 1t is impossible to
have a machine that can determine
whether an arbitrary machine A will
ever write the symbol S when started
on tape B.

Implications of Gdel’s Theorem

Godel’s theorem, showing that in any
formal system there are true statements
that are unprovable in the system, has
had a profound effect on the philosophy
of mind. Some see the theorem as indicat-
ing a basic limitation on both human and
machine intelligence, while others see the

human as somehow escaping the G6delian
limitation. There is also the view that
Godel’s theorem has little relevance to the
issue of achieving intelligent behavior.
The arguments are as follows:

Man and machine limitation. Both people
and machines consist of “hardware”
that operates according to strict
mechanical laws. In the case of com-
puters, the electronic mechanism
constitutes the formal system, while
for the human, the formal system is
the neural structure. Therefore, there
will be truths unknowable by both
man and machine.
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Only machine limitation. People are
not machines—they exceed strictly
mechanical limits by their ability
to introspect and to interpret expe-
rience. The powers of mind exceed
those of a logical inference machine.

Neither man nor machine. The impor-
tance of proof techniques in consis-
tent systems has been overrated.
Most of our knowledge about the
world comes from inductive methods
that operate in inconsistent systems.
Godel’s incompleteness theorem
simply places a limit on one mode of
obtaining new knowledge.

Computational Complexity—the
Existence of Solvable but Intrinsically
Difficult Problems

We have already observed that there are
some well-posed problems in mathematics
and logic for which no algorithm can ever
be written (e.g., the halting problem)—
thus there exists a set of theoretically
unsolvable problems. However, even for
problems that have solutions, there is a
subclass of intrinsically difficult problems
—problems for which there cannot exist
an efficient algorithm. Intrinsically diffi-
cult problems are characterized by the
fact that their solution time grows (at
least) exponentially with some parame-
ter indicative of problem size (e.g., the
number of Turing machine control states
in the case of the busy beaver problem
discussed in Box 2-7). Such intractable
problems often arise from the need to
exhaustively search a solution space which
grows exponentially with problem size;
many optimization problems for which

no solution space gradient exists (and

can only be solved by the equivalent of

a “backtrack” search algorithm) have

this characteristic. Thus in addition to
theoretically unsolvable problems, we also
have a class of computationally unsolvable
problems.

Between those problems for which we
have efficient (polynomial time') solu-
tions, and those problems known to be
intractable, there exists a large class of
problems with the following interesting set
of characteristics:

(@) There is no currently known poly-
nomial time sequential algorithm
for any of these problems; we sus-
pect that they are all intractable,
but cannot prove it.

(b) They are all equivalent to the satis-
fiability problem (Does a given Bool-
ean or logical expression have an
assignment of its variables that makes
it “true?” See Chapter 4). If a polyno-
mial time algorithm could be found
for any one of these problems, then
they could all be solved with polyno-
mial time algorithms.

(c) While the size of their solution space
grows exponentially, the number of
operations needed to find a solution
to any of these problems is polyno-
mial if we choose all the correct
alternatives. Thus, with enough
computers running in parallel, each
checking a different alternative at
each decision point, we can achieve
polynomial time solutions with an
exponentially large amount of hard-

“The number of computational steps needed to
assure a solution is expressible as a polynomial in
one or more of the main variables in which the
problem is posed.
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BOX 2-6 The Halting Problem

J

The following dialogue is an informal proof of the impos-
sibility of having a machine that can tell in general
whether another machine will ever halt.

John: T've written a program called TESTER that tells
when another program has an endless loop in it.

Mary: How does it work?

John: Thave a way of uniquely assigning a number that
represents an entire program. For example, if you
give me a program, I first compute the number of
the program. Then you give me the number that
you would input to that program. Suppose I am
given a program whose number I find to be 397 and
you want to know whether it will halt if you feed in
the number 14 to it. I feed these two numbers into
TESTER, and if program 397 would halt given an
input 14, then TESTER will output a 1, otherwise it
will output a 0. TESTER has the form (see Fig.
2-Ta):

TESTER(N,D) :

If Program N would halt on input D,
RETURN 1;

else return 0

Mary: Isit O.K. for me to write the following program?
(see Fig. 2-7b):

TRYOUT(X) :

Label L: If TESTER(X,X) = 1
then go to Label L;
else RETURN X

John: TRYOUT seems to be O.K. It says that if
TESTER using the program numbered X and in-
put data X causes TESTER to output a 1, then
TRYOUT will loop endlessly to L, otherwise
TRYOUT returns X.

Mary: Does TRYOUT have a number?

John: Of course, every program has a number. Let’s
see, it comes out to 4,396. So TRYOUT(4,396)
would say that if TESTER(4,396, 4,396) = 1 then
go to L; else RETURN (4,396).

Mary: 1 think that something is wrong. If the output of
TESTER is 1, then the program being tested is a
program that would halt.

John: Right.

ware. Further, for all of these prob-
lems, if we could somehow guess the
correct answer, we could check the
validity of the answer in polynomial
time.

This class of problems, called the
NP-complete class, includes such well-
known problems as the “traveling sales-
man problem” (find the shortest closed
route over a given set of roads that passes
exactly once through each of a given set
of cities) and the “Steiner minimal tree
problem” (design the shortest network of

roads that connects a given set of cities).

The existence of intrinsically difficult
problems indicates the need to employ
representations and algorithms that can
find approximate solutions, i.e., repre-
sentations that embody the concept of
distance to a solution. We note that some
of our most powerful “exact” techniques
(such as the logical formalism, Chapter 4)
do not have a natural way of representing
solution space distance.

An important question left unan-
swered in this subsection is whether the



49

COMPUTATIONAL ABILITY OF A PHYSICAL DEVICE

BOX 2-6 (continued)

Mary: But if TESTER outputs a 1 when using my

program TRYOUT having a number 4,396, that
means that TESTER thinks that my program
should halt.

John: Right.
Mary: But look at my program. With a 1 output from

@

(b)

©

N —> 1esTeR
D —s D)

X —>1 1EsTER

X

4396 —>~
4396 —-| (4396,4396)

TESTER, my program loops! What's more, if
TESTER outputs a 0, that means my program
doesn’t halt, but if you look at my program you see

» 1
0

XX

TESTER Bl

that with a 0 output from TESTER my program
halts (see Fig. 2-7¢).

John: That seems a lot like the paradox, “This state-
ment is a lie.” If the statement is true, then it's
false, and if it's false, it’s true.

Mary: That’s right, this proof of the halting problem
uses that general approach.

A rigorous treatment of the above Turing machine
proof can be found in Minsky [Minsky 67].

= Program N, using data D, will halt
= Program N, using data D, will loop endlessly

If output of TESTER = 1, then TRYOUT loops endlessly

TRYOUT > If output of TESTER = 0, then TRYOUT returns X

and halts

If TESTER outputs a 1, it means that program

TRYOUT (— 4396 will halt, but a 1 causes TRYOUT, which

is program 4396, to loop endlessly

FIGURE 2-7 Programs for Illustrating the Unsolvability of the Halting Problem.
(a) Program TESTER. (b) Program TRYOUT. (c) The paradox.

classification of a problem as tractable or
intractable! is a function of the represen-
tation employed. This question can be
answered for the case of Turing machine
equivalent computers—any reasonable
problem encoding does not alter tracta-
bility—but what happens if we employ

an analog device that is not equivalent

to a Turing machine (see Box 2-8)? While
we do not yet know the answer, it is

""Whether the problem has a polynomial time solu-
tion or not.

interesting to observe that no analog
solutions have been found for intractable
problems.

LIMITATIONS ON THE
COMPUTATIONAL ABILITY
OF A PHYSICAL DEVICE

From the day of birth, and probably be-
fore, but certainly every day afterward,
upward of 1000 neurons die in the human
brain and are not replaced. How can the
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BOX 2-7 Nonsolvability, Noncomputability, and the Busy Beaver Problem

It has been known for some time
that unsolvable problems exist
within specific mathematical sys-
tems. For example, it can be shown
to be impossible to trisect an arbi-
trary angle using only a straightedge
and compass. There are also unde-
cidable questions: for example,
Lobachevsky proved that the parallel
postulate in geometry is independent
of Euclid’s axioms, and thus, neither
it, nor its negation, can be proved
within a Euclidean system. While the
above specific examples are easily
dealt with by extending the axiom
systems in which these problems are
embedded,* there are also problems
that are absolutely unsolvable in
the sense that there is no finite
algorithm for dealing with them.
Such problems, first introduced by
Church, Godel, and Turing, are
called “recursively unsolvable.”
There is a close relationship
between the incompleteness theo-
rems of Godel and the noncomputa-
bility results of Turing. Both rely on
a form of Godel coding to make self-
referring statements in a modified
version of the “liar’s paradox”; the
proofs are then established by con-
tradiction. While mathematically
sound, these methods do not pro-
vide an intuitive explanation as to
why, for example, there should be
well-defined numerical values that
cannot be computed, or the relation-

*Though, as G6del showed, such exten-
sions introduce new undecidable prob-
lems

State Table for the Two-State State Diagram for the Two-State
Busy Beaver Problem Busy Beaver Problem
Control | Present | Qverprint | Move | New
state | symbol state 0/1/R
1 0 1 R |2 1/1/HALT
1
! : kL2 HALT
2 0 1 L 1
0/1/L
2 1 1 Halt | —
Present ;
@ ( symbol / Overprint / Move)
State
1 30f0[@o0 0 < Blank tape
232001 |@ 05
1 +0]|0|@]|! 0
Successive
tape configurations
2 20|@ 11 0y
Indicates
1 @ 111(1 0y head position
2@ 1|11 0 { Halt Y
(b)

FIGURE 2-8
Turing Machine Solution for the Two-State Busy Beaver Problem.

(a) State table and state diagram. (b) Starting with a blank tape, the machine writes
four 1’s and then halts. (After A. K. Dewdney. Scientific American 251:19-23, 1984.)
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BOX 2-7 (continued)

ship between noncomputability and
intrinsically difficult problems. The
busy beaver problem discussed
below will clarify some of these
issues.

Consider the problem of deter-
mining the maximum number of 1’s
that can be written on an initially
blank tape by a Turing machine (Box
2-4) having an n-state control table.
We will call this the busy beaver-n
problem, and will let b(n) designate a
solution machine and g(r) the cor-
responding number of 1’s. We will
only consider as valid solutions
machines that halt after writing their
tape. Figure 2-8 shows a two-state
busy beaver machine that begins
with a blank tape, writes four 1’s,
and then stops.

It can be shown that there are
m(n) = [4(n+1)]* machines hav-
ing n states, and since we must

examine each machine to determine

b(n) and g(n), then the busy beaver

problem is intrinsically hard since

m(n) grows exponentially with n.
For example, we have:

m(l) = 64

m(2) = 21(10%)
m(3) = 17(109
m(4) = 26(10°)
m(5) = 63(10%)

Thus, m(n) is of astronomical
size, even for low values of n. The
number of 1’s, g(n), ultimately grows
at a much faster rate—in fact, it can
be proved that for any computable
function f(rn) there is a value of n
beyond which the value of g exceeds
that of f. Since g grows faster than
every computable function, g(n)
cannot be computed; i.e., a finite
algorithm cannot be formulated that
will produce correct values for g(n).

For small values of n we can explic-
itly evaluate g as shown below:

g)=1 g6 <17
g2) =4 g6) < 36
g8)=6 g7 < 23,000
gh) <14 g8 < 107

Intuitively, it appears that we
can ascribe noncomputability (at
least in the above case) to the inabil-
ity of finite algorithms, based on
primitive arithmetic operations, to
express all possible functions, espe-
cially those with a sufficiently fast
rate of growth. However, we cannot
ignore the fact that the busy beaver
problem includes the halting prob-
lem (i.e., we must examine both the
number of 1’s produced by every
potential solution machine and also
assure ourselves that it stops), and
the halting problem again implies
the presence of the Godelian para-
dox [Jones 74].

brain continue to function under such
conditions, since the loss of even a single
component in a modern digital computer
will typically render it inoperative? Even
more to the point, some biological mecha-
nisms appear to be deliberately designed
to take advantage of failure and error in
their physical components—one such
example is the paradigm for evolution
employed by DNA (mutation and natural
selection). It is believed that DNA actually
adjusts its error rate to produce a percent-
age of mutations appropriate for current
environmental conditions. Under less
favorable conditions, a higher rate of
mutation has an improved survival value
for the species.

Reliable Computation with
Unreliable Components

Below a certain level of complexity, things
tend to break down—to become more

‘random in their organization. This obser-

vation is important enough to have been
elevated to a basic law of physics (the
second law of thermodynamics). However,
very complex systems can be organized so
that in spite of the breakdown of their
individual components, they continue to
function; most living organisms have this
characteristic.

In 1952, John von Neumann showed
that if the neurons of the brain could be
considered to behave as logical switches,
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BOX 2-8 Avoiding the Apparent Bounds on Computational Complexity

The Turing machine is more than an
abstraction of the digital computer,
it is actually a formalization of the
sequential logical paradigm—in a
sense, it can be taken as an abstrac-
tion of the conscious mode of hu-
man thinking. Thus it comes as a
surprise that complexity bounds,
derived for sequential algorithmic
computation, can be violated by
using a different underlying repre-
sentation.

For example, consider the
problem of sorting a set of numbers.
In order to put the numbers into
sequential order, the basic operation
to be performed is that of compari-
son, and it has been proved that
at least “on the order of” nlogn
comparisons are required to sort n
numbers; i.e., that computation time
must grow faster than a linear func-
tion of n. Now consider performing
the same sorting task on the “spa-
ghetti computer” [Dewdney 84].

We first cut n pieces of uncooked
spaghetti so that each piece has

a length proportional to one of the
numbers to be sorted; this requires a
time proportional to n. Next, loosely
holding all the cut pieces of spa-

ghetti in one hand, bring the bundle
sharply down on a flat horizontal
surface, thus aligning the ends of all
the pieces of spaghetti—a single
operation. Finally, obtain the desired
sorted sequence by first removing
the tallest (most protruding) piece;
then the tallest of the remaining
pieces, and so on until the bundle is
exhausted. As each piece is removed
from the bundle, it is measured and
the resulting number is recorded;
this set of operations is linear in n.
Thus, the entire sorting operation
done on the spaghetti computer
requires a series of linear time oper-
ations and can be accomplished in
linear time—violating the nlogn
computational bound on sorting
derived for sequential machines.
Two additional examples of how
computation in an appropriately
chosen analog (isomorphic) repre-
sentation can violate a bound on
sequential computation are:

(@) The “convex hull” of n points
is the smallest convex region
containing all n points. The
convex hull is a polygon, each
of whose vertices corresponds

to one of the extreme points of
the set of points. While there is
a nlogn bound on finding a
planar convex hull, this sequen-
tial machine bound can be
violated by using the “rubber
band computer” (Fig. 2-9).
When stretched to fit over all
the pins and then released, the
rubber band will form the
convex hull of the points.

(b) The problem of finding the
shortest path joining two se-
lected vertices of a graph has a
sequential machine complexity
of order n®. We can violate the

FIGURE 2-9
The Rubber Band Computer.

This computer determines the convex
hull of a planar set of points. (After A. K.
Dewdney. Scientific American 250:19-26,
1984.)

as in a computer, then an arbitrary degree
of failure tolerant operation could be
achieved at a cost of massive redundancy
or repetition; i.e., by employing switches/
neurons wired in parallel and performing
the same function (see Box 2-9). In 1948,
Claude Shannon proposed a more sophis-
ticated scheme for using redundancy in

the context of achieving reliable transmis-
sion or storage of information. He showed
that rather than just repeating the mes-
sage many times, it was more efficient to
encode the message so that each valid
message had no close “neighbors” in
“message space.” Thus, if a message was
slightly altered by noise or transmission
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BOX 2-8 (continued)

n? bound on finding a short-
est path in a graph using the
“string computer” (Fig. 2-10).
Each vertex is represented by

FIGURE 2-10
The String Computer.

This computer finds the shortest path

between two specified vertices in a graph.

(a) String analog of a given network. We
are required to find the shortest path
between the two darkened vertices. (b)
The solution path found by grasping the
selected vertices, and pulling in opposite
directions.

a ring or knot, and if two verti-
ces are joined by an edge, the
corresponding rings are con-
nected by a piece of string cut
to the correct length and tied
to the rings. To find the short-
est path between vertices @ and
b, pick up the network by the
rings a and b and pull the net-
work taut. The shortest path is
the sequence of taut strings.
(As an interesting aside, if we
pull hard enough to break the
strings, the last set of strings
that retains the connectivity
between rings a and b is usually
the longest path between these
rings. It can also be shown that
the longest path between any
two vertexes can be found by
first picking up the tree by any
ring, and then holding the tree
by the lowest dangling ring; the
longest path runs from the ring
being held to the one that now
hangs lowest [Dewdney 85].)

While no examples of analog
computation are known to provide a
complete effective solution to intrin-
sically difficult problems, the “soap
film computer” (Fig. 2-11) can find
individual potentially optimal solu-

tions to the VP-complete Steiner
minimal tree problem in linear time.
The Steiner-tree problem asks that n
points in the plane be connected by
a graph of minimum overall length.
One is allowed to take as vertices of
the graph not only the original n
points, but additional ones as well.
The soap film computer consists of
two sheets of rigid plastic with pins
between the sheets to represent the
points to be spanned. When this
device is dipped into a soap solution,
the soap film connects the n pins in
a Steiner-tree network.

FIGURE 2-11
The Soap Film Computer.

This computer finds the solution for the
shortest path connecting a planar set of
points (the minimum Steiner-tree prob-
lem). (After R. Courant and H. Robbins.
What is Mathematics? Oxford University
Press, London, 1941.)

error, the resulting message would likely
correspond to a point in message space
that was near the original message but
which itself did not correspond to another
valid message. The original message could
then be recovered from a received errone-
ous message by finding the nearest valid
message in message space. Figure 2-13

shows the “space” of all conceivable mes-
sages, and the legal messages are indi-
cated as distinguished points in that
space. A message containing an error will
not coincide with any of the distinguished
points, but if it lies within the shaded
sphere surrounding a legal message, then
it is assigned to that legal message.
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BOX 2-9 The Use of Redundancy to Achieve Fault Tolerant Computing

We are so used to the idea that the
transcription of symbolic informa-
tion and the operations performed
in mathematics and logic can and
must be error free, that it is easy to
lose sight of the fact that perfection
is almost never present in the physi-
cal artifacts that man constructs.*
Yet, machines capable of formal
symbolic computation must be
perfect in the way they represent
and transform information. As we
will see in our discussion of logical
reasoning in Chapter 4, such perfec-
tion is the essence of a strategy for
dealing with complexity. The ma-
chines we build must employ some
other strategy to attain perfection
with imperfect components.

1t is possible to obtain a relia-
ble computing system using compo-
nents that are subject to failure by
using redundancy, i.e., more com-
ponents than are necessary to ac-
complish the task. In addition to
redundancy, it is also necessary to
employ a connection or control
scheme that takes into account the
nature of the computation and the
failure modes of the components.
Redundancy can be utilized at
various levels in the design hierar-
chy: at the level of the single compo-
nent, at the subsystem level, and at

*Haugeland [Haugeland 85] in a rele-
vant discussion contrasts the fate of
Rembrandt’s paintings, which are slowly
deteriorating, with Shakespeare’s sonnets
which, as symbolic constructs, can be
preserved exactly the way the author
wrote them.

the level of completely functioning
systems. Two of the many different
approaches to fault-tolerant comput-
ing are described below.

Component Replication

Suppose we have a simple compo-
nent, designated as »|, that permits
electrical current to flow in one
direction, but not in the other. Thus
a circuit, A— P |—B would permit
current to flow from A to B but not
from B to A. The »| component
can fail “open” and not permit any
current flow, or fail “shorted” and
allow the current to flow in either
direction. We want to design a
circuit that operates properly despite
these types of failure. Note that
placing two or more P> | in parallel
will not solve the problem, because a
short in any P> | will cause the cir-
cuit to fail. Instead, we must use the
“series-parallel” circuit shown in Fig.
2-12, which can operate properly
even though a short has occurred in
a single P| in all of the N parallel
paths. It can also operate properly
even if (N—1) of the paths contain
open P> | elements.

In the 1950s, the mathemati-
cian John von Neumann showed
how reliable organisms could be
synthesized from unreliable compo-
nents. Since in a complicated net-
work the probability of errors in the
basic processors could make the
response of the final output unrelia-
ble, he sought some control mecha-
nism to prevent the accumulation of
these errors. The approach that he

FIGURE 2-12
Redundancy Achieved by
Component Replication.

developed, similar in concept to that
shown in Figure 2-12, uses N redun-
dant paths for all operations. Thus,
each input line is replicated N times
and fed into N identical computing
elements; this replication continues
throughout the entire system. At the
output of the system we have N
output lines, and the final result will
be accepted if a certain percentage
of the output lines agree. For exam-
ple, in a biological system, the N
parallel outputs could be N distinct
muscle strands comprising a single
muscle. The muscle will flex if a
certain percentage of strands agree.
Duplicative redundancy is
innately inefficient. For example,
suppose we have unreliable comput-
ing elements with failure rates of one
failure every 200 operations. Using
the von Neumann approach, a
computing machine with 2500 such
elements being actuated every five
microseconds would require replica-
tion by a factor of 20,000 to obtain
eight hours of error-free operation!

Cooperating Redundant Systems
If a set of processors has sufficient
freedom to communicate, then we
can develop a reliable system whose
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BOX 2-9 (continued)

operation corresponds to a group of
people working jointly on a problem.
Certain controls must be incorpo-
rated into the system so that there is
an effective way of partitioning the
work, and so that a deviant proces-
sor does not write into the memory

of another processor, does not tie up
the communications channels, and
does not seize the output mecha-
nism. Processors can report to one
another concerning their opinion on
the “health” of any of the proces-
sors, and processors can ignore and

redistribute the work of a processor
that a consensus of the processors
believes is unreliable. The type of
“software implemented” fault toler-
ance has been used as the basis for
computer systems that are required
to have high degrees of reliability.

An example of message error detec-
tion and correction is presented in Fig.
2-14. Figure 2-14(a) uses a Venn diagram
to show how three parity bits can provide

Transmitted
message

Locus of received message

FIGURE 2-13
Message-Space Representation of
a Fault-Tolerant Coding Technique.

Any received message falling into a shaded
sphere is assigned to the single legal message
located at the center of the sphere (dot).
Messages falling into the unshaded regions
cannot be corrected.

single error detection and correction of a
four-bit message. Figure 2-14(b) shows a
code based on this concept.

The above (and later) schemes devel-
oped to enhance computer and communi-
cation reliability do not really provide an
adequate explanation of how the brain
operates in the presence of failure, and
they certainly do not explain the ultra-
reliable “operation” of whole species or
societies of intelligent organisms. In a
sense, these “fault tolerant” schemes slow
the effects of degeneration; they do not
provide a mechanism for compensation,
regeneration, or evolutionary improve-
ment.

It has been suggested ([H. Crane, in
press] and Box 2-3) that the brain is liter-
ally a collection of intelligent agents oper-
ating as a tightly knit social system, and
that the same dynamics that allows for the
malfunction or even death of individuals
in society underlies the ability of the brain
to function in the presence of cell death
and local processing errors.

DISCUSSION

The brain is a mystery we may never
succeed in penetrating—in addition to
the obvious difficulties of discovering
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VA Z
Data bits are placed Parity bits are placed in circles Error in data bit-
at intersection of circles so that number of 1’s in any circle is even
X Y X Y X Y

— R
z z
U
Parity in these circles Locating source of emor Corrected data
is now incorrect
Source of error This is correct
since circle Y
parity is correct
@
0001011 1000000
0001100 1000111
0010010 1011001
0010101 1011110
0100001 1101010
0100110 1101101
0111000 1110011
0111111 1110100
(b)

FIGURE 2-14 Using Parity for Single Error Detection and Correction of a Message.

(a) Venn diagram explanation of a message coding scheme. (b) A set of messages for four data bits and three parity bits. The
set of 16 messages shown can be correctly decoded even if a single binary symbol is incorrectly received in any transmitted
message. If instead, we use simple replication of a four-bit code for each of the 16 possible messages, then three replications
requiring 12 bits must be employed to achieve the same level of error recovery.




DISCUSSION

the nature of such an amazingly com-
plex system, mathematics teaches us that
fallacies and paradoxes are introduced
into any analytical framework that is ca-
pable of discussing or examining itself. As
Hofstadter has said [Hofstadter 79]:

All the limitative theorems of metamathe-
matics and the theory of computation
suggest that once the ability to represent
your own structure has reached a certain
critical point, that is the kiss of death; it
guarantees that you can never represent
yourself totally. Godel’s Incompleteness
Theorem, Church’s Undecidability Theo-
rem, Turing’s Halting Theorem, Tarski’s
Truth Theorem—all have the flavor of
some ancient fairy tale which warns you
that, 70 seek self-knowledge is to embark
on a journey which . . . will always be
incomplete, cannot be charted on any
map, will never halt, cannot be de-
scribed. [p.697)

We might then ask how human intel-
ligence can seemingly bypass the barriers
imposed by logical proofs of unsolvability
and noncomputability—or even those of
intrinsically difficult (though solvable)
problems. We note that it is often easier
to prove the correctness of a result than
to find the correct answer in the first
place. If an “illogical” system, employing
induction and analogy (see Chapter 4),
can make a sufficiently high percentage
of good guesses and pass them on to a
logically correct checking device, the
combination may be capable of effective
operation even in situations where a logi-
cally consistent mechanical system will
fail. The parity problem (Box 2-4) is an
example where human intuition can easily
find an answer, while no mechanical pro-
cedure has yet been devised to solve this
particular formulation of the problem.

However, both logical and nonlogical
mechanisms must generally contend with
the nonsymmetry of solution versus no-
solution; if we can obtain a solution (e.g.,
by guessing), and demonstrate or prove
it, we have solved our problem; but if we
cannot find an answer, we can almost
never be sure that a solution does rot
exist.

Finally, an interesting and important
question is, “What does it mean to know
something?” The scientific viewpoint,
grounded in the concept of operational-
ism, is that to know or understand some-
thing is to be able to predict its behavior.
We usually express our knowledge of
things by building mechanical or symbolic
models, and relating the behavior of the
model to the situation we wish to under-
stand. It may be obvious that some very
complex things (e.g., the universe) may
not be understandable by any system less
complex than the thing itself (or even
have a description of lower complexity).
However, it is not intuitively obvious that
the specific way we attempt to express
a problem, or the way we choose to de-
scribe the answer, should radically affect
the difficulty of finding a solution. This
assumes that we have not altered the com-
petence of the system to deal with the
problem, or the amount of information
available to the system, but that we merely
select a logically equivalent but different
“phrasing.” A dramatic example of this
situation was presented in Box 2-4, in
which a change in the way we are permit-
ted to present (represent) the answer to
the “parity problem” changes it from an
unsolved problem to a trivial one. Finding
effective representations appears to be at
the heart of intelligent behavior; this is an
issue we come back to repeatedly in the
remainder of this book.
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2-1

The Nerve Cell and Nervous System Organization

Plants do not have specialized cells
(nerve cells) to transmit sensory and
control information. While some
very simple organisms'? have spe-
cialized structures® that respond

to external stimuli and coordinate
movement of cell structures such as
cilia, the specialized nerve cell is one
of the main distinguishing attributes
of members of the animal kingdom.
All major groups of multicellular
animals except the sponges have
definite nerve cells (the sponges
employ chemical means for internal
coordination).

The nerve net, the most primi-
tive system of organization of nerve
cells, is found in the hydra (Fig.
2-15b). When any part of the hydra
is stimulated, activity spreads out
along the nerve net in all possible
directions, eventually involving the
entire organism. In addition to the
more highly organized “nervous
systems” based on one or more
nerve cords and nerve cell concen-
trations called “ganglia,” nerve nets
are found in the blood vessels and
intestinal walls of all vertebrates
(including man).

"“For example, the single cell Parame-
cium (kingdom Protista).

“For example, nerve fibrils as shown in
Fig. 2-15a.

Nerve
fibrils

Paramecium

(a

FIGURE 2-15 Nervous Systems of Various Primitive Organisms.

(a) Paramecium. (b) Hydra. (c) Planaria. (From Biological Science: Molecules to Man,
BSCS Blue Version, 2nd edition, Houghton Mifflin, Boston, 1968, with permission.)

The planarian is one of the
simplest organisms with a nervous
system in addition to a nerve net
(see Fig. 2-15¢). A separate nerve
cord runs along each side of its body
terminating in a ganglion at the
head end of the organism. It is quite
possible that the nervous systems
found in all higher organisms are
merely size and complexity elabora-
tions of the basic structure of the
nervous system of the planarian.

Ganglion

Cross
connective

Nerve

cord

Planaria
(b) ©

The Nerve Cell

A nervous system is an organized
network of nerve cells or neurons. ‘
Between seven and 100 different i
classes of neurons* have been iden-
tified in the human nervous system,
three of which are shown in Fig.
2-16. Some of these cells are as long

“Different definitions, based on some-
what arbitrary criteria, have been em-
ployed for classifying neurons.
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FIGURE 2-16 The Neuron.
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Three different types of neurons. Myelin sheaths are shown in black. (a) Bipolar neuron (as found in the retina of the eye).
(b) Pseudo-unipolar neuron (myelinated sensory neuron). (c) Multipolar neuron (myelinated somatic motor neuron). (From E.L.
Weinreb. Anatomy and Physiology. Addison-Wesley, Reading, Mass., 1984, p. 135, with permission.)

as 3 meters, and depending on cell
characteristics, nerve impulses travel
at rates varying from 10 to 120
meters per second. As shown in
Figure 2-16a, the typical nerve cell
consists of three parts, the den-
drites, the cell body, and the axon
(also called the nerve fiber). The
dendrites carry nerve signals toward
the cell body, while the axon carries
signals away. The nucleus of the
neuron, located in the cell body,
varies in form in different animals,
and even within different parts of the

nervous system of the same animal.

Nerve structures are formed
from bundles of neurons, arranged
with the end branches of the axon
of one neuron lying close to the
dendrites of another neuron (Fig.
2-17). Each nerve cell can directly
interact with up to 200,000 other
neurons, although a more typical
number of interacting neurons is
somewhere between 1000 and
10,000. The point of contact be-
tween the components of two neu-
rons is called a synapse. A small

microscopic gap between the two
cells exists at the synapse, and it is
known that the ease of nerve signal
transmission across the synapse is
altered by activity in the nervous
system—a possible mechanism for
learning.

If the end of a nerve fiber is
sufficiently stimulated (i.e., there is a
“threshold” below which the nerve
cell does not respond) , the stimulus
starts chemical and electrical
changes that travel over the length
of the fiber. These changes are
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FIGURE 2-17 Nerve Structures.

(a) A chemical synapse. When a nerve impulse arrives at an axon terminal, chemical neurotransmitter molecules are released. The
molecules diffuse across the synaptic cleft and attach to receptors on the membrane of the postsynaptic neuron. This attachment
alters the three-dimensional shapes of the receptors and initiates a series of events that influence the activity of the postsynaptic
neuron. (b) Many neuronal processes converge on a single cell. (c) Neuronal processes of a single cell diverge to a number of other
cells. (From A. P. Spence and E. B. Mason. Human Anatomy and Physiology, Benjamin Cummings Publishing Co., Menlo Park,

California, 1983, with permission.)

called the nerve impulse. After the
impulse passes a segment of the
nerve fiber, the segment recovers to
its original state and is then ready
for a new impulse.

Information Coding

One of the primary purposes of the
neuron is to convey information.
However, the brain uses stereotyped
electrical signals for this purpose.
These signals are virtually identical
in all the nerve cells of all animals;
i.e., they are symbols that do not in
any way resemble the objects or
concepts they represent. Thus, the
origins and destinations of the nerve
fibers must determine much of the
content of the information they
transmit. For example, signals
reaching the brain from the optic
nerve are known to contain visual as

opposed to auditory information. In
addition to the implicit source infor-
mation, it is generally assumed that
the only other piece of information a
neuron can transmit is the equiva-
lent of a single number (e.g., a
magnitude representing the strength
of a stimulus). Since the neuron
nominally has an all-or-none re-
sponse, it cannot use signal ampli-
tude to encode magnitude
information, but instead must use
rate of firing or frequency. Neurons
have a maximum firing rate of 1000
pulses per second.

Computation

1t is generally assumed that the role
the neuron plays in the brain’s
reasoning processes is equivalent to
that of a logical switching element in
a digital computer. While this is

almost certainly too simple an anal-
ogy, we note that the neuron can
compute a class of logical functions,
called “threshold functions,” since it
has a sensitivity threshold, adjusta-
ble (adaptive) signal attenuation at
each synapse, and an internal struc-
ture which allows the energy of
incoming nerve signals to be inte-
grated over both space and time.
Thus, signals coming into different
synapses at the same time, or even
into the same synapse at different
times, are “weighted” by the syn-
apses and the resulting quantities
summed. If this sum exceeds the
sensitivity threshold, the neuron
fires. The threshold functions in-
clude all the logical functions
needed to construct a general pur-
pose digital computer.

Further discussions can be
found in Kuffler [Kuffler 76].
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2-2

The Digital Computer

The first mechanical calculating
devices were developed at least as
early as the second century B.C. In
more recent times, Pascal built a
calculating machine in the seven-
teenth century. In the early 1800s,
Joseph Marie Jacquard of France
developed the idea of using a
punched hole in a card to represent
a number and control the operation
of a loom. Charles Babbage used the
Jacquard concept for his analytical
engine in 1833, a machine he
worked on until his death in 1871.
This machine was quite close in
concept to the ideas of the Harvard
Mark I, developed almost a century
later. Babbage’s engine consists of
two parts, a “store” to hold all the
variables to be operated upon and
for preserving previous results, and a
“mill” into which the quantities to
be operated upon are brought. Two

sets of cards are used, one to direct

the operations, and the other to
hold the values of the variables that
are to be operated upon. Augusta
Ada Byron, the mathematically
trained daughter of Lord Byron,
wrote about the analytical engine:
““We may say most aptly that the
analytical engine weaves algebraic
patterns just as the Jacquard loom
weaves flowers and leaves.” The
mechanical complexities of the
device and lack of financial support
prevented Babbage from completing
his engine.

Toward the end of the century
(1886) Herman Hollerith realized
that punched holes could be sensed
by a machine to sort and manipulate

the numbers represented by the
holes. Hollerith cards and the asso-
ciated machines were used for tabu-
lation and statistical analysis by the
U.S. Census Bureau. The first digital
computer was the Harvard Mark I
(automatic sequence controlled
calculator, 1939). The operation of
the machine was controlled by a
plugboard that was wired to obtain a
desired computation sequence; the
arithmetic operations were carried
out using relays. By 1946, the
ENIAC, an all-electronic computer
using vacuum tubes, replaced the
electromechanical computer. It was
a thousand times faster than the
electromechanical devices, but still
used a plugboard for control.

An important conceptual ad-
vance came at about the same time,
when John von Neumann, Arthur
Burks, and Herman Goldstine wrote
an influential report, “Preliminary
Discussion of an Electronic Comput-
ing Instrument.” The report pro-
posed a “stored program” concept
to replace plugboards and program-
ming switches. The control of the
machine was to be carried out by
means of a sequence of instruction
codes stored as numerals in the
memory of the computer. This so-
called von Neumann architecture is
the basis for the modern computer.

As discussed earlier, a comput-
ing device must have some way of
storing its instructions and data, a
means of manipulating the data, and
some way of communicating with the
user or the outside world. The
memory of the computer stores the

data and the instructions (the pro-
gram) prepared by the user. The
arithmetic operations (e.g., addition
or subtraction) or logic operations
(compare two quantities) are carried
out in the arithmetic/logic unit.
Communication with the outside
world is carried out using an input
device, such as a keyboard or a
visual sensor, and the output can be
printed, displayed on a screen, or
used to activate a mechanical effec-
tor. The operation of the computer
is “orchestrated” by the control
portion of the system.

A binary coding scheme is
often used to represent numbers and
symbols in the computer. The rea-
son for this representation is that
there are electrical and magnetic
circuits and devices that can be
reliably switched into one of two
stable states. Thus, a decimal num-
ber such as seven, represented in
binary notation as 111, would ap-
pear in the computer as a sequence
of three storage devices in the “1”
or “on” state. The arithmetic unit is
designed so that when it is given two
numbers in binary form, it will carry
out the required arithmetic opera-
tion and return the result in binary
form.

It should be kept in mind that
the term “memory” as used in the
computer is not meant to indicate
the type of capabilities possessed by
the human memory. The computer
memory can be thought of as con-
sisting of ordered slots, each with an
“address” in which data are stored.
Data is retrieved by accessing the
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contents of the memory at a particu-
lar memory address, not by auto-
matically linking data items by
meaning. The programmer must
devise specific accessing schemes to
attain some desired form of data
association. Much of the effort in
artificial intelligence consists of
devising representations that can
overcome the address-based organi-
zation of the computer memory.

The operation of the computer
is controlled by a “‘program,” a set
of instructions stored in the com-
puter memory. The program speci-
fies the data to be used and the
operations to be carried out on the
data. Conceptually, the program will
eventually be converted into a set of
instructions in which (for each
instruction) one or more operands
are extracted from computer mem-
ory, some simple arithmetic or
logical operation performed, and the
result returned to some new location
in memory. All of the final program
specifications are given in the form
of binary operation codes that can
be interpreted by the machine.
Some of the instructions are “condi-
tional ” in nature, i.e., the next step
to be carried out depends on the

results of the computation. For
example, a conditional instruction -
might be: “If the result of the cur-
rent operation is positive, go to step
31, otherwise go to step 240.” (This
instruction is, of course, binary-
coded and not in English.) The use
of conditional instructions gives the
programmer the ability to write
programs that can react to the
intermediate results of the computa-
tion; otherwise a program would
merely carry out the same fixed
sequence of operations regardless of
the nature of the data.

The control unit examines the
next instruction of the program,
determines which of the other com-
puter units will be needed, and
sends the necessary control codes to
each such unit, The timing of the
computer operations is accom-
plished through the use of a “clock,”
a circuit that produces a continual
sequence of timing pulses that
synchronize the operation of the
various computer elements.

Because it is very tedious to
write programs using the primitive
binary code required by the com-
puter, programming languages (e.g.,
BASIC, Pascal, LISP) have been

developed that allow the user to
specify the desired operations at a
higher conceptual level. These high-
level language operations are con-
verted by a “compiler” program into
more primitive instructions, and
then further translated into the low-
level binary code required by the
computer using an “assembler”
program.’s

For example, a high-level
command such as Add A to B and
assign the result to C will be con-
verted to operations such as Assign
memory locations to numerical
quantities A, B, and C. Retrieve A
from memory and place it in register
1, retrieve B from memory and
place it in register 2, add register 1
to register 2 and place the results in
register 3. then store the contents of
register 3 in memory location C.
These detailed instructions are
finally converted to the computer’s
binary code.

'5The compiler can be independent of the
specific computer on which the program
is to be run, but the assembler is usually
specific to a particular type of computer.
The compiler and assembler are often
combined into a single program for more
efficient operation.




