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Computational vision (CV), _\: | | device should be capable of
a subfield of artificial intelli- ] simulating physical experiments,
gence, is concerned with B such as imagining the movement
developing an understand- [] |1 [ or rearrangement and distortion
ing of the principles under- 4 N of objects in the scene to solve a
lying visual competence in /Z [ 1\ N\ problem or compare the scene

natural and artificial systems, and with
providing a machine with some of the
capabilities of the human visual sys-
tem. Such capabilities include the ability
to describe a scene based on data pro-
vided by imaging sensors, and to produce
an understanding of the function, pur-
pose, and intent of recognized objects.
Table 9-1 summarizes the functional
requirements of a general purpose vision
system.

The challenge for computational
vision is twofold: (1) The computing

with reference scenes stored in memory,
and (2) the computer should have some
way of physically interacting with, and
sensing, the outside world to build up a
database of knowledge and experience.
Without physical interaction, there is no
reasonable way to capture and store in
computer memory a suitably complete
model that reflects all the complexity and
detail of a real-world scene.

In other areas of Al, we have already
observed the appropriateness of the say-
ing, “If you are a hammer, everything

239
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Table 9-1 ®m Functional Requirements for a General-Purpose Vision System

Geometric modeling. Determine the three-dimensional configuration of the surfaces

and objects in a scene, including the location of the viewer (sensor) with respect to the

scene being viewed.

Photometric modeling. Determine the location and nature of the illumination sources and the
corresponding shadowing and reflectance effects induced in an image of the scene.

Scene segmentation. Partition the scene into meaningful or coherent subunits which
can be independently analyzed and identified.

Naming and labeling. Identify the objects visible in a scene as either members of known object
classes, or as known individuals. Determine the physical attributes (size, material composition,

etc.) of recognized objects.

Relational description and reasoning. Determine the relationships among the objects
in a scene, e.g., the appearance of the scene just prior to the time an image was ac-
quired, and how the scene will appear immediately afterward. How can the objects in a
scene be rearranged to achieve some given purpose?

Semantic interpretation. Determine the function, purpose, intent, etc., of objects in a scene.

looks like a nail.” For computational
vision, this can be paraphrased as, “If you
are a digital computer, then everything
looks like a number or a symbol.” Thus,
for a digital computer to deal with the
visually perceived world, the signals ac-
quired by the imaging sensors must first
be converted into numbers and ultimately
into symbols. We are therefore led to the
signals-to-symbols paradigm described in
the next section. The rest of this chapter
discusses some of the techniques’ involved
in deriving symbolic descriptions from

the sensed signals. The sections are se-
quenced to reflect the increasing complex-
ity and abstraction of the corresponding
techniques, beginning with the low-level
representations and algorithms, and pro-
ceeding through the intermediate and
highest levels.

"We attempted to select techniques that are both
representative and can be understood without the
need for an involved mathematical presentation.

A noteworthy difference between
many computational vision representa-
tions and those of general Al is that in
vision we often use arrays of picture ele-
ments (pixels) or other iconic (picturelike)
representations that mirror the sensed
image and thus retain a more direct
correspondence to the real world. The
accuracy and adequacy of any of the rep-
resentations in the signals-to-symbols
hierarchy is judged by how faithfully it
portrays the real world scene that was
originally sensed — i.e., the primary con-
cern is with physical modeling of the
world. This is in contrast to conventional
Al systems which typically do not have a
perceptual component, and thus work
within a complete, consistent, and closed
model of reality. The basic questions we
address in this chapter are:

» What is the nature of the computer’s
symbolic description of the visual world,
and how is it obtained?
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FIGURE 9-1 The Signals-to-Symbols Paradigm for Computational Vision.
Raw sensed data are transformed into a description of the scene by a series of inductive steps.

« What are the representations used in
the signals-to-symbols paradigm?

« What algorithms exist for obtaining
these representations and extracting
information from them? How can we
build a machine that can recognize
objects and re-create scene geometry
from the data provided by two-
dimensional images?

« What are the few key ideas and major
assumptions that underlie most of
the current computational vision al-
gorithms?

We conclude the chapter with a criti-
cal look at the signals-to-symbols para-
digm, and indicate the requirements that
must be satisfied by a computer if it is to
achieve human-level competence in visual
perception.

SIGNALS-TO-SYMBOLS
PARADIGM

Computational vision (CV) is that body of
theory and techniques that represents our
present understanding of how competence
for visual perception can be implemented
in computing hardware. The dominant
paradigm, signals-to-symbols, is one in
which the raw sensed data is transformed
into a meaningful and explicit description
of the corresponding scene by a series of
inductive steps employing progressively
more abstract representations (Fig. 9-1).
These steps can be partitioned into three
categories, based on the nature of the
modeling required to carry out the analy-
sis: low-level scene analysis is based on
local image properties, intermediate-level
scene analysis uses generic geometric and
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photometric models, and high-level scene
analysis is based on goal-oriented seman-
tic models and relationships.

LOW-LEVEL SCENE
ANALYSIS (LLSA)

At the lowest levels of the processing
hierarchy, the representations and trans-
formation techniques tend to be indepen-
dent of any final purpose. Concern here is
with physical and statistical modeling of
the generic local properties of the visible
surfaces in the scene and their appear-
ance in the image. Low-level scene analy-
sis (LLSA) is also concerned with the
processes of transforming continuous
sensor-derived signals into discrete digital
representations, and the reduction of
noise and distortion introduced by the
sensing process. Inputs to this stage of
processing are the raw signals from one or
more sensors, and the output is typically a
set of registered arrays, with each array
corresponding to a particular scene attrib-
ute such as local surface orientation,
surface reflectance, edge point location,
etc. LLSA techniques have been devel-
oped to:

« Reduce imaging noise and unwanted
scene detail without seriously degrading
information needed for recovery of
higher-level scene description.

« Disambiguate, i.e., separate the contri-
butions of the illumination, surface
reflectance, and surface orientation to
the brightness of a point in the image
(in a sense, to invert the imaging
process).

« Detect local homogeneities and disconti-
nuities that can be used to partition the

image into regions corresponding to
coherent objects in the scene.

« Detect distinguished local image fea-
tures that are important markers and
delimiters of scene features.

« Deduce local surface geometry (three-
dimensional depth and orientation) from
shading, texture, stereo analysis, and
the analysis of a continuous sequence
of images (“optic flow”).

The analysis usually deals with local
phenomena, using models based on such
general concepts as continuity (or discon-
tinuity) of intensity, texture, or color.
While LLSA provides an interpretation of
real-world physical phenomena for use by
the integrative and reasoning mechanisms
comprising intermediate- and high-level
scene analysis, the LLSA techniques
themselves have few (if any) of the attrib-
utes characteristic of reasoning. LLSA
techniques are almost always based on
the general position and the continuity
assumptions: (1) that the image was taken
from an essentially random location in
space, and no deliberate attempts were
made to make separated and discontinu-
ous things look continuous in the image,
or to align shadow and occlusion bound-
aries, or to make a curved line look
straight, etc.; and (2) that because the
scene is largely composed of continuous
surfaces, the geometric, photometric, and
physical properties measured at any point
in the image are good predictors of the
values appearing in the neighborhood of
that point.

We first describe the image-acquisition
process, and the preprocessing operations
used to improve the quality and utility
of the image. We then describe the vari-
ous methods for detecting local discon-
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tinuity and homogeneity. Determination of

scene geometry from single and from
multiple images completes the discussion
of low-level analysis.

Image Acquisition (Scanning
and Quantizing)

The computational vision process begins
either with an existing image (e.g., a pic-
ture taken at some previous time), or a
scene currently being sensed by a televi-
sion camera-type of sensor. To translate
scene illuminance information into a form
suitable for computer processing, it must
first be converted into an array of num-
bers that represents the intensity of re-
flected light at each point in the scene.

If we start with an image, rather than
the actual scene, we can obtain the inten-
sity data by moving a small aperture or
window over the image so that the aver-
age light intensity level of the image
within the window is sensed by a photo-

sensitive device. This scanning process
can be carried out using a mechanical
device that physically moves a sensor over
the image in a regular and exhaustive
manner, or by using a flying spot scanner
that moves a beam of light sequentially
over the image and senses the reflected
(or transmitted) light from the image.
(Such exhaustive scanning is in contrast
to the selective scanning employed by the
human visual system, as illustrated in

Fig. 9-2.)

The continuous electrical signal that
results from the mechanical scanning
process must still be converted into an
array of numbers by sampling the signal at
regular time intervals (corresponding to
regular spatial intervals over the image),
and then approximating the measured
voltage by the closest integer in some
predefined range of numbers, as shown in
Fig. 9-3. With current technology for
storing, processing, and displaying picto-
rial data, a set of values for sampling and

Scientific American, June 1971, with permission.)

FIGURE 9-2 Adaptive Scanning of a Scene by the Human Eye.

(a) Original picture. (b) Picture with human eye scanning path shown. (From Norton and Stark,
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FIGURE 9-3

The Image Acquisition Process: Representing a Scene by an Electrical Signal and Then an Array

of Numbers.

(a) Obtaining an electrical signal corresponding to intensities from a scene. (b) Converting an analog signal to sampled and

quantized intensity values.

digitizing an image is typically a 256 x
256 grid with 256 possible intensity levels
at each such grid point.

An important issue is the fidelity with
which the actual scene appearance is
captured by the array of integers that is
extracted to describe it. In all of the digi-
tizing approaches, the scene intensity is
spatially sampled. The smallest image
distance that can be tolerated between
intensity samples depends on the charac-

teristics of the lens system, on the sensi-
tive surface of the sensor, and on the
system used to convert the signals from
spatially continuous to discrete quantities.
The sampled intensities are further quan-
tized into digital values to satisfy practical
constraints on the memory or register
word size of the computer. How much
information is lost in this digitization
process; i.e., how faithfully can we repro-
duce the original image from the derived
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finite array of numbers? Amazingly
enough, the continuous image can be
exactly re-created from its sampled (but
unquantized) representation if the sample
spacing is less than a value determined by
the maximum spatial rate of change of
intensities in the image. When the sam-
pled analog signal values are converted to

integer quantities, some amount of quanti-

zation noise is introduced in the analog-
to-digital conversion which generally
cannot be completely removed. However,
a sufficient number of levels of quantiza-
tion can be selected to insure that ampli-
tude noise already introduced by the
sensing process is not significantly in-
creased. Thus, we conclude that the proc-
ess of converting a continuous image into
an array of integers does not cause any
fundamental loss of information.

Image Preprocessing (Thresholding
and Smoothing)

Image preprocessing uses operations
that are relatively independent of scene
content to alter the stored values in the
digital array representing the scene. Pre-
processing operations are generally in-
tended to remove noise, enhance certain
aspects of the image (e.g., edges), and in-
duce other changes that will simplify the
higher-level processing steps. It is as-
sumed that image intensities are spatially
continuous over most of the image, and
that this continuity can be approximated,
for example, by a low-order polynomial.
An important goal in preprocessing is to
avoid eliminating existing edges or intro-
ducing false edges.

Typical preprocessing operations are
(1) thresholding, which reduces the digi-

tally quantized image containing one of
many possible integer intensity values at
each image location to a binary picture
containing one of only two possible values
at each location, and (2) smoothing, the
use of various filtering operations to en-
hance or suppress certain aspects of a
scene.

1. Thresholding. The thresholding
operation achieves image partitioning
at an early stage in the analysis, re-
duces noise in the image, and simpli-
fies later processing steps. The
concept of thresholding is a simple
one: we assume that pixels in a co-
herent region of the image all have
an intensity greater than (or less
than) a certain value. An intensity
threshold is chosen, and all pixels
whose intensity level is below this
threshold are assigned one value
(“black”), and all those above this
threshold are assigned another value
(“white”). Techniques for automatic
threshold selection are discussed in
Box 9-1.

2. Smoothing (filtering). Smoothing
operations (1) remove noise and
illumination artifacts that were intro-
duced into the image during the

. sensing and image-acquisition pro-
cess; (2) enhance edges and other
selected image features; and (3) de-
grade unwanted detail below the level
of resolution at which image interpre-
tation is to be carried out (see Fig.
9-5). Smoothing is usually accom-
plished by replacing the intensity
value of each pixel with a new value
based on the intensity values of pix-
els in the immediate neighborhood of
the given pixel. The problem that
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BOX 9-1

Image Thresholding

Thresholding transforms a gray-level
image, whose pixels can have any of
a continuous range of intensity
values, into a binary image in which
each pixel is either black or white.
Thresholding achieves a simple form
of image partitioning, reduces noise
in the image, enhances certain
image features, and simplifies later
processing steps. In some situations
different thresholds may be used in
different portions of the image to
compensate for some known or
deduced illumination variation or
change in local scene contrast. A
person interactively adjusting the
threshold and viewing the effect of
each such threshold setting can
choose a threshold value that best
achieves some desired effect. Auto-
matic threshold selection is usually
based on the following techniques:

« Effect on image. An iterative
procedure for threshold selection
can be based on the number, area,
and stability of the regions gener-
ated by different thresholds—a
good threshold setting should
produce mostly large well-
separated regions which retain

FIGURE 9-4
An Intensity Contour Map of an
Image.

(Photos courtesy of SRI International,
Menlo Park, Calif.)

their shape under small variations
of the selected threshold value. An
intensity contour map for an
image can make apparent the
effect of different thresholds on
the final partitioning of the image
(Fig. 9-4).

Histogram analysis. The inten-
sity histogram is a graph whose x
axis shows the range of possible
intensity values, and whose y axis
shows the number of pixels in the
image that have each of these
intensities. An image and its
associated histogram are shown in
Color Plate 3. Note that there are
several peaks in the histogram,
indicating the intensities that are
most common in the image. An
appropriate threshold setting for
an image can automatically be
determined by analyzing the
histogram shape, often under the
assumption that individual peaks
of the histogram correspond to
coherent (relatively constant
intensity) regions of the image,
and that the background is the
lightest or darkest of these re-
gions.

arises in the smoothing operation is
how to avoid throwing the baby out
with the bath water, i.e., how to avoid
.eliminating essential data in trying to
accomplish the goals stated above.
The basic issue is how to select the
appropriate image subsets to process

coherently without crossing bounda-
ries separating different scene enti-
ties. For example, since the smooth-
ing function usually consists of opera-
tions in a window centered around
the pixel being modified, how can
one keep from blurring edges when




247
LOW-LEVEL SCENE ANALYSIS

Te T TN, it

Wi

LR g i R W e g -t B Kl Pl G- B % i W)~ o
e R

LA AL A Lo T dd MR AW een e
';r;ﬁ-.;"’
' -, S e w % v
v 2 et &
ey el
b ] AT T
:.. X ...-:'.\_,

: A L
. WL te N

. L ey

; e

» :'-:_ .....

FIGURE 9-5
Need to Degrade Unwanted Detail.

Look at this picture from a distance. From far enough away, the texture elements disappear and this
looks like a normal photograph. Now look at this picture through a narrow tube from the same
distance at which the texture elements originally disappeared—the texture elements should become
visible again, showing that under appropriate conditions, the human visual system deliberately
degrades low-level detail. (Courtesy of SRI International, Menlo Park, Calif.)
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pixels interior and exterior to the
object fall in the same window?
There is no single best smoothing
algorithm. Some of the common
approaches to smoothing and the

Detection of Local Discontinuities
and Homogeneities (Edges, Texture,
Color)

No reasonable semantic description or
interpretation is possible if every point in
a scene is unrelated to its neighbors.

implicit assumptions made for each

are described in Box 9-2.

However, most of the scenes we encoun-

BOX 9-2 Image Smoothing

Image smoothing is employed to
reduce noise, to enhance selected
image features, and to degrade un-
wanted image detail. Most smooth-
ing techniques fall into three broad
categories: (1) local averaging,

(2) model-based smoothing, and (3)
geometric smoothing.

Smoothing via Local Averaging

Smoothing based on local averaging
operations assumes that the infensity
surface is continuous over most of
the image. This assumption is a
special case of the more general
assumption that most of the image
will depict continuous scene surfaces
at an image resolution suitable for
interpretation to be possible. In one
smoothing approach based on this
assumption, we replace the center
of a small region around a pixel
(typically a square window) by the
weighted average of the values found
within the window; this operation is
identical for each pixel of the image.
Another approach used to avoid the
effect of deviant pixels and to retain
edges is to use the median, rather

than the average, of the intensity
values in the window.

Smoothing Based On A Priori
Models

The following technique is typical of
a global approach to smoothing.
Suppose we have a model of how the
illumination varies in an image. For
example, if we know (or assume) that
the illumination can be modeled as a
quadratic function, we can fit a
quadratic surface to the intensity
values of the pixels in an extended

- portion of the image. The intensity

of each pixel is then subtracted from
the corresponding value of the fitted
surface, leaving only the higher-
order variations of the underlying
signal. We thus prevent a known
artifact from interfering with our
analysis of the intrinsic information
residing in the image.

Geometric Smoothing

Geometric smoothing of an image
can be carried out by assuming that
very small isolated regions consist of

noise and can be eliminated, and
that small gaps between regions are
imaging artifacts and can be filled in.
Such smoothing can be readily
accomplished in binary images using
sequences of shrink and grow opera-
tions. In the shrink/grow approach
to eliminating small noise regions,
we first use a shrinking operation in
which black pixels that are not
completely surrounded by black are
set to white. The shrinking opera-
tion can be iteratively applied several
times. A growing operation can now
be used in which all black pixels that
are not completely surrounded by
black pixels are provided with sur-
rounding black pixels. Any small
black noise regions will have been
eliminated by the shrinking opera-
tions, and the larger regions will be
left unaltered if the number of
shrink and grow operations are
equal. If the sequence of grow oper-
ations is applied first (followed by
the shrink operations) small gaps
in black objects or between adja-
cent objects will be filled, but the
shapes of the objects will generally
be unaltered.
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ter can be decomposed into coherent
objects or regions that are relatively ho-
mogeneous with respect to one or more of
the following attributes: intensity, color,
texture, distance, motion, material compo-
sition, physical cohesion, etc. Correspond-
ingly, there are places in an image where
there are sharp discontinuities in some of
the above attributes; e.g., across an edge
that occludes another part of the scene.
Identifying homogeneous regions and
discontinuities greatly simplifies the prob-
lem of analyzing the image in two impor-
tant ways: (1) discontinuities are typically
associated with the edges of objects, and
locating the edges makes object shape
explicit; and (2) identifying portions of an
image corresponding to coherent objects
allows us to analyze those portions in
isolation if desired.

Some methods for finding such dis-
continuities and homogeneities are given
below. Some of the techniques are inde-
pendent of the objects in the scene, while
others assume certain characteristics of
specific real-world objects.

Local Edge Detection. It has long been
recognized that the detection of the edges
of the objects appearing in an image is an
essential step in scene analysis, and for
this reason there has been considerable
effort devoted to developing effective edge
detection algorithms. One class of such
algorithms, local edge detectors (LEDs),
assigns an edge value to individual pixels,
but does not link pixels together to form
an extended edge segment. Therefore, an
additional association or linking step must
still be carried out in the computer to
obtain an internal representation of the
connected edge segment. Edge linking is
an intermediate level operation, and is

discussed later. LED algorithms can be
grouped into the following categories:

Local gradient operators: These
algorithms are based on characterizing an
edge as a local intensity discontinuity. The
intensities in a local region of the image
are examined and an edge value (and
sometimes an edge orientation) is as-
signed to a picture element based on
the change of intensity within that lo-
cal region.

The simplest and most commonly
employed gradient type LEDs have the
following characteristics (e.g., the Sobel
edge detector; see Fig. 9-6): They con-
volve a set of small digital operator arrays
(e.g., a3 x 3 pixel square) with the image
array.? Each such operator array evaluates
the intensity gradient in one particular
direction at the image location corre-
sponding to the center of the operator
array (Fig. 9-6b). An approximate gradient
can be computed by applying the operator
in two orthogonal directions and employ-
ing vector addition (Fig. 9-6¢). Better
results are obtained by running the opera-
tor at a large number of angular orienta-
tions and selecting the maximum value
obtained as the gradient magnitude at the
given location, and the corresponding
direction as the gradient direction. Edge
pixels are determined by thresholding the
gradient image.

The simple gradient-type LEDs, such
as described above, ignore a number of
considerations relevant to real imagery.
First, most real images have extended

¥In convolution the operator array is moved across
the image, and at each placement the elements of
the operator array are multiplied by the correspond-
ing image elements. All the products are summed,
and the result is assigned to the image location
beneath the current center of the operator array.
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FIGURE 9-6 The Sobel Edge Detector.

(a) Sobel windows. (b) Applying Sobel windows to an image. (c) Example of Sobel edge detector used to find direction
of edge through circled element in image array. (See Fig. 9-10 for example of application of Sobel detector to a real

photograph.)
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smooth gradients that are artifacts of the
illumination and imaging processes. There
is no reasonable way to set an absolute
threshold on the local gradient (e.g., as
required by the Sobel LED) to distinguish
intensity discontinuities (edges) from these
extended smooth gradient artifacts. We
are thus faced with the problem of how to
detect low contrast edges (using a fixed
threshold gradient operator) without be-
ing deluged by false alarms arising from
smooth gradients. There is also the prob-
lem that the intensity discontinuities cor-
responding to different edges in an image
can vary over a range of widths (resolu-
tions); a single size convolution mask
(even at multiple orientations) is not ade-
quate. Box 9-3 presents an approach to
local edge detection which is better able
to deal with these problems.

Generic model fitting: These algo-
rithms are based on modeling an edge as
a specific extended intensity profile.
Within some local search area, a single
best fit is selected to this specified inten-
sity profile . The generic model-fitting
approach is very specific about the type of
discontinuity it is searching for, in con-
trast to the local gradient approach which
is satisfied by a wide variety of intensity
discontinuity types.

It is often acceptable to describe an
edge as being a geometrically straight
intensity step discontinuity over some
local extent of the image. In such a case,
we can move a small window over the
image and find the best fit of the above
model to the intensity pattern viewed
through the window at each of its stop-
ping locations. The Hueckel edge detector
is the most commonly employed operator
of this type. It accepts the digitized light
intensities within a small disc-shaped

subarea (containing at least 32 pixels) and
yields a description of the most edgelike
(brightness discontinuity) occurrence
found within the disc.

Semantic model fitting: The algo-
rithms based on “semantic edge models”
use specific characteristics of the objects
of interest to detect the edges. For exam-
ple, various objects such as roads or rivers
in an aerial photograph, or ribs in a medi-
cal x-ray film, have edge properties that
are dependent on the nature of the ob-
jects themselves. The algorithms in this
category are therefore tailored to search
for the edges of a particular class of ob-
jects. For example, to detect roads in low
resolution aerial images, the Duda road
operator (Fig. 9-7) specifically requires

Region adjacent
to road

Region
adjacent
to road

FIGURE 9-7 The Duda Road Operator.

The general idea is (1) adjacent pixels along a road
should have similar intensities, and (2) adjacent on-road
and off-road pixels should have different intensities. If
these two conditions are satisfied, a high road score
results.

Score = f(r¥g(r;s). fir) is high if the differences between
n,1ors are small; grs) is low if (r,—s), (r, — 5, (r; =5,
differences are large. For a road, f{7) is high and g7;s) is
low, resulting in a high score.
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BOX 9-3 Local Edge Detection Based on Lateral Inhibition

Organic visual systems universally
employ a mechanism, called lateral
inhibition, that offers some relief
from the edge-finding problems
encountered by using the simple
gradient-type LED. Computationally,
lateral inhibition involves setting the
edge “signature” of a picture ele-
ment (pixel) to be the weighted
difference of the average intensities
of two differently sized masks cen-
tered on the pixel. In some simple
implementations, each mask is a
uniformly weighted rectangular box.
In more sophisticated versions, and
especially as found in biological
systems, the masks have a gaussian,
bell-shaped weighting, rather than a
uniform weight distribution (see Fig.
9-8). Applying such an operator to a
region of an image in which there is
a uniform gradient, no matter how
strong, will result in a zero response
everywhere (assuming that the sum
of the weights in the two masks are
equal). If there is a sharp intensity
discontinuity superimposed on the
uniform gradient, then as the opera-
tor is moved along a path normal to
the discontinuity, its value will be
zero until the larger (outer) mask of

Amplitude of
weighting function

i

Distance
—_—

(a)

FIGURE 9-8

(b)

Lateral Inhibition using “Zero-Crossing” Detector based on

Difference of Gaussians.

the operator crosses the discontinu-
ity. Then the value returned by the
operator will increase until the
smaller (center) mask intersects the
discontinuity. At this point the value
returned by the operator will rapidly
decrease, becoming zero when the
smaller mask is exactly centered on
the discontinuity. Continuing, we
now obtain a symmetrical response

to what we had approaching the
discontinuity, but with reversed sign.
The edge is detected by locating the
“zero-crossing” of the operator’s
response over some portion of the
image (not just a zero value). The
strength and direction of the edge
must be determined by analyzing the
response of the operator in the
vicinity of the zero-crossing.

that a road fragment have relatively con-
stant width and intensity values along a
line segment in addition to the generic
requirement of high intensity gradient
normal to the direction of the segment.

The results obtained by applying
several LED algorithms to the same scene
are presented in Fig. 9-10. The Duda

operator, specifically designed to detect
roads, produces a more intuitively obvious
result than the other more generic edge
operators.

Analysis of Local Homogeneity. The
identification of homogeneous regions is
generally accomplished by first labeling
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BOX 9-3 (continued)

To determine very sharp inten-
sity discontinuities in an essentially
noise-free image, the central mask
can be one pixel in diameter, and
the outer mask just slightly larger;
however, if the intensity discontinu-
ity is “blurred” over a number of
pixels, and if the image is noisy, then
the outer mask must have a diame-
ter larger than the width of the edge
transition region. In fact, the best
response in terms of the magnitude
and slope of the reversal on which
the zero-crossing occurs will be
obtained if the outer mask is made
as big as possible without making it
s0 large that it simultaneously covers
more than one edge. Increasing the
diameter of the central mask
smoothes the response of the opera-
tor, but also decreases the amplitude
and slope of the section on which we
are looking for the zero-crossing.
Choosing an optimal size for the
central mask is a complex issue, but
it probably should not be larger than
the diameter of the edge transition.
To deal with a complex scene, a set
of zero-crossing operators with
graded sizes of the central mask is
required to detect edges of varying
widths (Fig. 9-9).
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FIGURE 9-9 Use of Zero-Crossing Operators to Find Edges at
Different Scales of Resolution.

The diameter of the zero-crossing operator was varied to obtain these results.
(Courtesy of SRI International, Menlo Park, Calif.)

each pixel in the image with the values of ~ image into homogeneous regions. Since

attributes such as texture and color. the human visual system can easily recog-
Texture analysis. Although there are  nize different types of textures, it may
many fascinating biological and compu- come as a surprise to find that there is no
tational aspects of texture perception/ generally accepted definition of texture
detection, we are concerned here only and thus no agreement as to how it can

with the limited question of how analysis be measured. It is not easy to formally
of texture can be used to partition an characterize the basis of our perception
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(b)

(e)

FIGURE 9-10 Result of Various Edge Operators Applied to the Same Scene.

(Operator scores are thresholded to highlight the locations assigned the best scores.) (a) Original image; (b) Duda road
operator; (c) Roberts' cross gradient; (d) Sobel-type gradient; (e) Hueckel line operator; (f) Intensity. (Courtesy of SRI

International, Menlo Park, Calif.)

of texture described by terms such as
“fine,” “coarse,” “smooth,” “granular,”
“random,” “mottled,” etc. We know intui-
tively that texture involves a statistical or
structural relationship between the basic
elements, and for figurative (cellular,
macrostructure) textures such as a brick
wall or a tiled floor, our visual system can

” o«

detect the underlying patterns that make
up the texture design, and we can de-
scribe the relationship of the elements
(Fig. 9-11a). For microstructure texture,
such as the fields seen in aerial photo-
graphs, or the texture of cloth, the under-
lying patterns are no longer obvious and
it is difficult for the human to describe
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FIGURE 9-11 Texture Discrimination.

(a) Examples of macro- and microtextures. (Photos by O. Firschein.) (b) The human visual system has no trouble partitioning
images containing various types of texture patterns.
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(but not to recognize!) the texture (Fig. 9-
11b). Analysis of micro- and macrostruc-
tured textures is discussed in Box 9-4.
Color. A colored image is typically
represented in the computer as three
separate arrays of numbers, with each
array corresponding to a primary color,
and the value of a pixel representing the
intensity of the primary color component
at the corresponding location (see Fig.
9-12). Each element of the image is there-
fore represented by a triple of values.
Although all three images are usually

Blue filter

Color image

Red filter Green filter

Y f

(102) \D

O (22) O+ (64)

“Blue” image

“Red” image “Green”” image

ot (22,64,102)

Single array with each pixel
assigned three intensity values

FIGURE 9-12
Color Represented as a Triple of Values.

(Color Plate 3 shows a color photograph and the “blue”
image extracted from it.)

obtained simultaneously using a color
vidicon, the arrays can also be obtained
by sensing the scene three times, each
time through a different color filter. Some-
times the spectral (color) component of
an image is relatively constant over large
areas of the surface of a single object,
while total intensity may change more
erratically due to uneven direct illumina-
tion and local reflections. Thus color can
be used to help find homogeneous regions
in an image by grouping together neigh-
boring pixels with similar color attributes.
Errors may still occur due to the fact

that objects will be colored by reflections
from other colored objects, because of
shadows, and because the basic assump-
tion of homogeneity is not always valid.

Local Scene Geometry from a Single
Image (Shape from Shading and
Texture)

We know that the shading and texture
present in a single image can produce a
vivid impression of three-dimensional
structure (Fig. 9-13). What is the compu-
tational basis of this effect? A crucial
source of information about three-
dimensional structure is provided by

the spatial distribution of surface mark-
ings in an image. Since projection dis-
torts texture geometry in a manner that
depends systematically on surface shape
and orientation (see Fig. 9-14), isolating
and measuring this projective distortion in
the image allows recovery of the three-
dimensional structure of the textured
surface. This is not a straightforward task
because the projective distortions encod-
ing surface orientations are confounded in
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BOX 9-4 Analysis of Micro- and Macrostructured Texture

Texture analysis is a basic operation
in scene partitioning. It attempts to
formalize our intuitive notion of
surface appearance.

Microstructured Texture

Two general approaches can be
taken to the analysis of microstruc-
ture textures, (1) analysis on the
basis of microstructure regularity as
detected by statistical or power
spectrum techniques, and (2) the use
of techniques that model the original
surface that produced the texture
patterns.

Statistical features approach.
Because the basic units of micro-
structure are small, techniques that
detect regularity in short sequences
of pixels can be used to partition
microtextured scenes. The basic
strategy is to form a feature space
based on measurements in a neigh-
borhood about each pixel in the
image. Segmentation of the image
can be accomplished by assigning
pixels to one or another region on
the basis of the location of that pixel
in the feature space.

» Co-occurrence approach. The
spatial gray-level relationships can
be expressed as S(i,j|d,A), the
number of times a pixel of inten-
sity i appears within d pixels and
an angle A of a pixel of intensity j,
in some neighborhood of the pixel
to be classified. One can use
functions of S as the components
of a feature space. Typical of such

functions is energy, formed by
summing the square of S over all i
and j, for given values of angle A
and distance d.

Fourier analysis approach. Reg-
ularity in gray level pattern shows
up in the Fourier transform taken
in various directions around a
pixel. The set of Fourier mea-
sures, obtained by convolving a
set of weighted windows over the
image, then forms the components
of a feature space. Each pixel in
the image has an associated set of
Fourier energy measurements,
and can be represented in the
feature space.

Modeling approach. In a
process-modeling approach to tex-
ture analysis, one attempts to de-
scribe things in the world in terms of
how they arose, e.g., man-made,
growing, or wearing-down processes
(as in a canyon). Using this point of
view, it is possible to predict how
natural surfaces will produce the
texture patterns in an image. A
technique based on fractal functions
can model image textures arising
from physical processes that alter
the terrain via a sequence of small
changes; the corresponding image
turns out to have measurable statisti-
cal properties that are invariant over
linear transformations of intensity
and transformations of scale. The
fractal dimension, D, of a surface
corresponds roughly to our intuitive
notion of jaggedness. Thus if we

were to generate a series of scenes
with increasing fractal dimension D,
we would obtain what could be
described as (1) a flat plane for
D=2, rolling countryside for D=2.1,
a worn, old mountain range for
D=2.3, a young, rugged mountain
for D=2.5, and finally, a stalagmite-
covered plane at D=2.8 (see Color
Plate 2, a synthetic scene generated
using fractal textures.) It is possible
to measure the fractal dimension of
imaged data, and discover whether
the corresponding three-dimensional
surface is rough or smooth. This
information can be used to partition
the image into regions of homogene-
ous surface character, as follows.
The fractal dimension is computed
for each (say) 8 X8 block of pixels in
an image, and a histogram of the
fractal dimensions is computed for
the entire image. This histogram is
then broken at the valleys between
the modes of the histogram, and the
image is segmented into regions
belonging to one mode or another.

Macrostructured Textures

Techniques for dealing with macro-
structure textures have met with
only limited success. Macrostructure
texture analysis is quite difficult
because one must identify both the
primitive(s) and the spatial relation-
ship between them. Perspective
effects add to the difficulty by chang-
ing the size and shape of the primi-
tives depending on their position in
the two-dimensional image.
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natural assumption is that textures do not
“conspire” to mimic projective effects or
to cancel these effects. Thus it is reason-
able to assume that what looks like pro-
jective distortion really is such distortion.

FIGURE 9-13
Three-Dimensional Structure from Shading
and Texture.

(Study of a Female Nude by Pierre-Paul Prod‘hon.
Collection of Henry P. Mcllhenny.)

the image with the properties of the origi-
nal texture on which the distortion acted.

If the texture is simple and regular,
such as a square tile pattern, the change
in shape of the rectangles in the image |
can be measured to derive the surface I

rr 1 [ [ |
! [

shape. However, in most situations, there A
is not a simple, regular texture pattern. LT 1

An effective technique for recovering
surface orientations from general images
must rest on texture descriptors that can
actually be computed from such images. A

FIGURE 9-14
Effects of Projective Imaging on
Regular Texture Patterns.
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As much as possible of the observed varia-
tion is therefore attributed to projection—
the surface orientation that best explains
the data in an image is the best guess for
the actual orientation of the surface in the
scene.

The appearance of surface markings
in the image is subject to two simple geo-
metric distortions: (1) As a surface recedes
from the viewer, its markings appear
smaller (the railroad track effect); and
(2) as a surface is inclined off the frontal
plane, its markings appear foreshortened
or compressed in the direction of inclina-
tion (a tilted circle projects as an ellipse).
Thus, any method for recovering surface
orientation from texture must be ex-
pressed in terms of some concrete de-
scription of the image texture that is
sensitive to these two types of distortion.

When a plane texture is viewed at an
unknown orientation, the original texture
and the orientation of the plane with
respect to the observer cannot be unam-
biguously recovered from the image. How-
ever, it is possible to produce a set of
candidate reconstructions by applying an
inverse projective transform at all values
of tilt and slant angle, each associated
with a particular orientation of the planar
surface. The problem of recovering sur-
face orientation can therefore be recast
into that of choosing a “best” or most
likely member from a set of possible re-
constructions, by ordering the candidate
reconstructions by some criteria of likeli-
hood. For example, the ordering can be
based on the assumption that all edge
directions are equally likely in the scene.
First, the edge pixels and their orientation
in the image are found, and then one
finds the best combination of tilt and slant

angles of a plane on which these edges
project so as to satisfy the “randomness of
edge direction” assumption. The planar
technique is extended to curved surfaces
by finding a planar estimator to a circular
region surrounding each image point.
Repeated over the image, this method
provides estimates of local surface orienta-
tion, but its validity depends on a random-
ness assumption which is frequently
violated.

The human can perceive convoluted
three-dimensional surfaces on the basis of
the projective distortions imposed on
complex and subtle textures; computa-
tional vision is a long way from duplicat-
ing this ability.

Local Scene Geometry from Multiple
Images (Stereo and Optic Flow)

All of the previously described LLSA
techniques operate on a single image.
Below we discuss two techniques, stereo
and optic flow, that recover scene infor-
mation based on analyzing a sequence of
images.

« Stereo. Stereoscopic vision allows a
three-dimensional model of a scene to
be derived from two sensors that ob-
serve the scene from slightly different
viewpoints. The relative difference in the
position of objects in the two images is
called disparity, and is caused by the
slight difference in angle from any given
object to each sensor. In some conjec-
tured, but still unknown manner, our
brain measures this disparity and esti-
mates the absolute distances between
objects and the viewer (see Appendix 8-2).
From experiments employing synthetic
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BOX 9-5 Stereopsis

Our two eyes form slightly different images of the world
because their spatial separation causes them to be at
different spatial orientations with respect to objects in
the scene. The relative difference in the position of an
object on the two retinas is called “disparity,” and can be
used to estimate the distance of an object from the
viewer. “Stereopsis,” “binocular vision,” and “stereo
vision” are the terms used to describe the ability of a
vision system to carry out this analysis.

Figure 9-15 shows a simplified two-dimensional
example of a stereo system. Two lenses, separated by a
distance, d, project a point, P, to the respective retinas
at P, and P,. P is distance A from the line of the lenses.
The distance from the lens to the retina is £, the “focal
length.”

The disparity, the shift of the point’s position in one
image relative to the point’s position in the other image,
is (@+b). The distance A is given by 2 =(fd)/(a+b),
where the focal length f and the distance between lenses
d is a constant for a particular lens pair. If fd is unknown
but a constant, then if we can find the disparity between
points in the images, the relative distance of objects from
the image plane can be determined. Measuring disparity
requires that we first identify corresponding points in the
two images; people are able to solve this correspondence
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FIGURE 9-15 Stereo Geometry.

problem even when the points to be matched are ran-
domly scattered in the images and there is no edge or
other obvious structure. The major problem in computer
stereo analysis is the solution of the correspondence
problem.

images composed of random dots,
[Julesz 71], we know that the human
does not depend on detection of recog-
nizable features in each individual im-
age to fuse a stereo pair of images, i.e.,
to recover the depth information. In
computational vision, a stereo pair of
images is obtained by using two sepa-
rated cameras or by moving a single
camera to two locations (motion stereo).
The critical and difficult step is deter-
mining correspondences between points
in the two images so that the disparity

can be determined. Once this has been
accomplished, straightforward geometric
analysis can be used to compute the
three-dimensional location of points in
the scene (see Box 9-5). Figure 9-16
shows a stereo pair of images, and an
artificially constructed view of the cor-
responding scene obtained by deduc-
ing the scene geometry using stereo
analysis. The only scene information
employed in this reconstruction was
obtained from the stereo image pair
shown in Fig. 9-16(a).
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FIGURE 9-16 Three-Dimensional Scene Modeling using Stereo Analysis.

(a) Stereo pair of images. (b) An artificially constructed view of the scene depicted in (a), obtained by
stereo analysis. (Courtesy of SRI International, Menlo Park, Calif.)

« Optic flow. Suppose we have an imag-
ing sensor moving through a scene. As
the sensor moves forward, scene points
will move in the image plane along
curves known as optic flow curves. By
analyzing these flow curves it is possible
to determine the distance from points in
the scene to the sensor. These distances
can then be used to construct a three-
dimensional model of the scene just as
in the case of employing stereo analysis.
If the sensor is moving forward with
pure translational motion, the optic flow
curves will be straight lines that con-

verge at a point known as the focus of
expansion (FOE) (Fig. 9-17). (If the
sensor moves backward, the lines would
converge at a focus of contraction.) If
the FOE can be located in the image
plane, and the distance moved by the
sensor from frame to frame is known,
then the distance from a point in the
scene to the sensor can be found. If it is
known only that the motion of the sen-
sor was constant, but not how far the
sensor moved, then the relative depth
of points in the scene can be obtained
(see Box 9-6). This is often sufficient,
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View from driver’s seat

FIGURE 9-17 An Example of Optic Flow.

Seen from the driver's eyes, the hood of the speeding car is perceived as stationary, but the features
of the tree-lined road appear to be moving along straight lines radiating from the focus of expansion

(FOE).

for example, to partition the scene. If
the motion of the sensor is more gen-
eral, then the optic flow curves must
be decomposed into rotational and
translational components. Only the
translational component contributes to
the depth computation. One approach
used is to analyze small regions of the
image, using the disparities to obtain a
trial FOE for each region. For portions
of the image in which the rotational
effects are strong, the flow segments will
not converge to a FOE. If enough por-
tions of the scene do provide a consist-

ent FOE, then the translational portion
can be separated from the rotational
portion of the disparities. Optic flow is
an interesting alternative to stereo
because it offers a method for three-
dimensional scene modeling that is not
dependent on a solution to the match-
ing problem.

INTERMEDIATE-LEVEL SCENE
ANALYSIS (ILSA)

Intermediate-level scene analysis (ILSA) is
concerned with integrating local or point
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BOX9-6 The Computation of Depth from Optic Flow

Assume a camera with center of ¥
perspective at point F is moving with
constant velocity v along its princi-

pal axis, 2, relative to some point P

in three-dimensional space. Assume

a focal length of one unit with the

pl = [yl ,1]

P, is:
w=dy'ldt = —(ylz)v = ~y'vlz
and z = —-y'vlw

Thus d? = g2 + 2 = 2@} + 1],
and d is approximately equal to

image plane parallel to the y axis, as
shown in Fig. 9-18.
Let P! be the image of P. Then

Y =ylzand v = dzldt,
and w, the image plane velocity of

FIGURE 9-18

F
1 >« Image plane

Geometry of Optic Flow.

(@"Yv/w. This means that if the
camera velocity is known, and the
image velocity of a point can be
measured, then the distance from
the camera to the point in space can
be found.

features into global constructs, e.g., form-
ing edge points into continuous contours,
partitioning the image into coherent re-
gions, assigning semantic labels to de-
tected scene entities, evaluating sensor
parameters (e.g., determining the spatial
location of the sensor), deriving a model
of the illumination sources, etc. Distinct
representations and techniques are re-
quired for intermediate-level scene analy-
sis because it is not possible to extend
techniques employed in LLSA to the
more complex global phenomena required
to understand and interpret natural imag-
ery. ILSA is primarily involved with the
selection of models and the assignment of
values to these models (“instantiation”).
The models employed are of both a ge-
neric and scene- or domain-specific na-
ture; ILSA cannot be completely divorced
from final purpose.

As indicated in Chapter 8, vision in
organic systems involves reasoned intelli-
gent behavior. Where do these intellectual
functions appear in the CV paradigm?

Certainly not in the low-level analysis
which has a largely mechanical flavor.
Even though the achievements of CV are
still, at best, comparable to those of fairly
primitive organic systems, we will see that
many of the intermediate- and high-level
techniques described in this and the fol-
lowing sections satisfy the basic criteria
for reasoning presented in Chapter 4. In
particular, the representations used in
intermediate- and high-level analysis, e.g.,
graphs and relational nets, are similar to
those used in the cognitive areas of Al.
The techniques are typically designed to
perform an efficient search over poten-
tially infinite solution spaces, and many of
the methods have associated validation
procedures which determine when an
acceptable solution has been found. We
will describe the following ILSA integra-
tion tasks:

1. Image/scene partitioning—the prob-
lem of breaking the image into coher-
ent or meaningful units
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2. Edge linking and drawing a sketch—
organizing individual pixels that have
been identified as candidate line or
edge elements into contiguous seg-
ments; transforming primitive line
drawings into more abstract represen-
tations of shape

3. Recovering three-dimensional scene
geometry from line drawings—using
the constraints between edges and
surfaces to deduce three-dimensional
scene geometry from a two-dimen-
sional line drawing

4. Image matching—determining the
correspondences between two images

5. Object labeling—assigning labels or
class names to image structures

6. Model selection and instantiation—
selecting a model with generalized
parameters, and assigning values to
these parameters to fit a given set of
image data

Computational techniques currently
used for some of these integration tasks
are given in Appendixes 9-1 to 9-3.

Image/Scene Partitioning

A point-by-point description of a scene,
such as that obtainable using LLSA tech-
niques, is too complex and thus relatively
useless (in that form) for most purposes.
To produce a useful description, one of
reasonable complexity in which higher-
level scene attributes have been made
explicit, the scene must be partitioned
into meaningful or coherent components.
How can this be accomplished without
prior knowledge about the given scene?
It is conceivable that the human
visual system first makes global judgments
about the scene, and then decomposes

this gestalt into a structured description
using linguistic or visual primitives to
describe localized regions in the image or
scene. Except in the simplest cases, we
have no notion of how to duplicate this
approach in a practical manner with the
computational techniques currently at our
disposal.

Within the signals-to-symbols para-
digm, a common approach to image par-
titioning is image space clustering (Box
9.7), the grouping of pixels based on both
spatial contiguity, and homogeneity of
attributes that can be measured by LLSA
techniques. This approach is often imple-
mented by requiring that regions be com-
posed of adjacent pixels, where each pixel
has an intensity value that does not differ
from that of its neighbors by more than
some specified amount. Other partitioning
techniques, employing the same general
strategy, include: (1) feature space clus-
tering, grouping of pixels located any-
where in an image based on homogeneity
of locally measured attributes, and (2)
boundary analysis/contouring in which a
region of an image is considered to be
determined by its boundary; the partition-
ing algorithm links locally detected edge
points into closed contours.

An image such as Fig. 9-22 (where a
gestalt or overall impression is obtained
from the interplay of a myriad of small,
relatively meaningless intensity patches)
cannot be meaningfully partitioned into
regions by any of the above techniques.
Isolating the small patches does not help
in recovering the global aspect of the
image. Further, many images do not yield
a unique partitioning since the goal or
purpose of the subsequent analysis can
play an important role. A single image can
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BOX 9-7 Partitioning via Image Space Clustering

Pixels in an image can be grouped
into a common region if they have
the same local characteristics, e.g.,
gray level or color, and satisfy a
distance or connectivity criterion.
Techniques for region or cluster
finding can be based on the fact that
good criteria for cluster separation
can be defined in terms of connec-
tivity of a graph. The first step in
such approaches is to form a graph
by (1) connecting each point to its &
nearest neighbors (only pixels with
some distinguished set of attributes
are involved), or (2) by connecting
any pair of points whose distance is
less than a threshold distance. Each
edge of the graph can be labeled
with the distance between the two
points. A typical graph is shown in
Fig. 9-19.

One approach for partitioning a
graph into separate clusters is to
look for “cut points,” nodes whose
removal would disconnect the graph
(e.g., see Fig. 9-20), or “bridges,”

@
FIGURE 9-21

FIGURE 9-19
Typical Graph used to Cluster
Pixels.

Distances are actual image distances
between pixels. Each node is an image
point having a desired characteristic or
label.

edges whose removal would discon-
nect the graph. Another graph
approach to partitioning is based on
the concept of the minimum span-
ning tree (MST), the tree that con-
nects all the nodes and whose sum
of distances on edges is minimal.
The general approach to partition-

(b)

Minimum Spanning Tree.

ing data points represented by a
MST is to look for edges that are
long with respect to some average of
lengths on both sides of the edge.
For example, Fig. 9-21(a) shows a
set of points formed into a graph,
Fig. 9-21(b) shows one of the possi-
ble spanning trees of the graph, and
Fig. 9-21(c) shows the minimum
spanning tree. The long edges in the
tree correspond to the gaps between
the perceptually obvious clusters.

Cut node

FIGURE 9-20
Use of Cut Nodes to Obtain
Clusters.

Elimination of cut node (arrow) would
disconnect the graph, and define two
separate clusters.

(@]

(a) Original graph. (b) One of the spanning trees that connect all the nodes. (c) Minimum spanning tree of original graph; long edges
(arrows) indicate possible separation of clusters.
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FIGURE 9-22

with permission.)

The “Dalmatian,” an Image with a Myriad of Small, Meaningless Regions.

It is possible to find a dalmatian in the approximate center of this picture. (Photo © Ronald C. James

also be partitioned in more than one way
based on the level of detail desired, or on
the point of view of the observer. Figure
9-23 shows a satellite image and the dif-
ferent partitionings made by experts hav-
ing different disciplinary interests. Figure
9-24 shows an object that is partitioned
differently by most people, depending on
whether it is viewed right side up or
upside-down.

In an important sense, image/scene
partitioning is the creative step in visual
perception that makes the rest of the
descriptive process feasible. It not only
decomposes the analysis problem into
manageable units, but also provides the
necessary structuring needed to index

into a knowledge base of stored models.
The partitioning techniques described
above lack the competence for the type of
performance required. What other ap-
proaches are possible?

Two of the issues that must be ad-
dressed by any partitioning scheme are:

1. What is the nature of the primitive
vocabulary if it is not simply the set of
locally measurable point attributes?

2. Without using domain-specific knowl-
edge, how can we judge the merits of
a proposed partition, or compare two
alternative partitions?

There is significant evidence from
psychological experiments ([Julesz 83],



267

INTERMEDIATE-LEVEL SCENE ANALYSIS

FIGURE 9-23 Different Line Drawing Interpretations of a Single Satellite Photograph Made by
Experts in Different Disciplines (Geology, Forestry, and Hydrology).

(From Ecological Surveys from Space. NASA Office of Technological Utilization, NASA SP-230, 1970, with permission.)

FIGURE 9-24
Different Partitionings based on
Orientation of the Figure.

(After Hoffman and Richards, Cognition
18:65-96, 1985.) A cosine surface, which
observers almost uniformly see organized
into ringlike parts. A part stops and another
begins roughly where the dotted circular
contours are drawn. But if the figure is
turned upside down the organization changes
such that each dotted circular contour, which
before lay between parts, now lies in the
middle of a part.

[Treisman 85]) to indicate that groupings
of certain primitive features can be de-
tected almost instantaneously regardless
of where they occur in the human visual
field (e.g., see Fig. 9-11). Such features,
called textons by Julesz and Bergen, con-
sist of elongated blobs (especially line
segments) distinguished by such proper-
ties as angular orientation, width, length,
and color; ends of lines and crossings of
line segments are also textons. Julesz
hypothesizes the existence of a separate
“preattentive” human visual system that
can distinguish between different types of
textons, and different densities of textons,
but is unable to process information
about positional relationships between
different textons. Positional information
essential for form perception can be ex-
tracted by a time-consuming process,
called “focal attention,” which is only
available to the normal visual system.
There is still much debate about the
nature of the primitives that are first ex-
tracted from the raw sensed data. Beyond
lines or edges, and regions homogeneous
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in some local attribute, it is difficult to
defend any higher-level construct as hav-
ing sufficient utility to serve as a primitive
for a general purpose vision system. It is
certainly possible that most of the primi-
tives employed (in human vision) for parti-
tioning are not universal, but are derived
for each scene domain based on some
general set of principles. For example, if
some pattern of points, or particularly
shaped region or line segment appears
often enough in a given scene, then such
an entity would be a good candidate as a
primitive for describing that scene, assum-
ing it could be discovered in some reason-
ably efficient way.

How can we evaluate a proposed
partition, or compare two competing
decompositions of the same scene? If we
recognize the fact that scene partitioning
is an implied explanation of how the im-
age was constructed, then in the absence
of any absolute validity checking proce-
dure or criteria, we must use various
measures of believability as the basis for
evaluation or comparison. A believable
explanation should be complete, concise
(Occam’s razor), and stable:

o Completeness. One way of measuring
completeness is to require that devia-
tions of the data from the hypothesized
explanation (partition, model, etc.) have
the characteristics of random noise; i.e.,
that all of the correlations and detect-
able patterns in the data are explicitly
addressed in the explanation. For exam-
ple, suppose we must decide if a single
straight line is a good description of the
data points shown in Fig. 9-25(a), i.e., is
this data set coherent or should it be
partitioned? We would tend to reject the
straight-line explanation since succes-

FIGURE 9-25
Criteria Underlying Effective
Partitioning Decisions.

sive deviations of data points from the
hypothesized line are highly correlated.
On the other hand, even though the
deviations are larger in Fig. 9-25(b), a
straight line is a more believable expla-
nation here because of the random
nature of the deviations.

« Conciseness. Conciseness or simplicity
of explanation can be measured by the
“length” of the explanation assuming
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that the vocabulary is appropriate for
the given problem domain. For exam-
ple, if our vocabulary consisted only of
the terms “circular arc,” “straight line
segment,” and “image point,” and we
wished to construct a believable descrip-
tion of the object shown in Fig. 9-25(c),
then the single term “circle” is a sim-
pler explanation than a description
composed of a concatenation of points
or line segments. The object shown in
Fig. 9-25(d) is decomposed into the
shortest (simplest) description possible
in terms of our given primitives (assum-
ing a reasonable “cost” for each point,
straight line segment, and circular arc).
Stability. Believable explanations should
be stable under slight changes of view-
ing conditions or of decision procedure
parameters. For example, to protect
against interpretation mistakes due

to viewing an object from an unusual
perspective, the “story should remiain
unchanged” when the relationship be-
tween the viewer and the object is
slightly perturbed. (If you remember, the
story was indeed changed in the impos-
sible triangle of Fig. 8-12.)

A simple computational example of
how the stability criterion leads to correct
interpretations is illustrated in the prob-
lem of attempting to distinguish infensity
quantization boundaries from true bound-
aries denoting actual scene content. If we
shift the quantization thresholds slightly,
the intensity quantization boundaries will
typically shift spatially while the true
boundaries will remain stationary.

Edge Linking and Deriving a Line
Sketch

One of the main purposes of ILSA is to
take clues about the nature cf a scene,as
discovered by LLSA, and compile them
into more meaningful and abstract struc-
tures. The line sketch is one of the most
natural and effective abstractions available
for representing scene content. For exam-
ple, some of the earliest expressions of
human art are essentially line sketches
(Fig. 9-26). The ability to depict structure
with a few line strokes, however, is a crea-
tive ability only possessed by the most
talented artists (Fig. 9-27). What are the
computational approaches and problems
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FIGURE 9-26 Early Line Sketches.
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FIGURE 9-27
Sketch by Matisse that Captures the Nude
Form in a Few Line Strokes.

(© Spadem, Davis/Vaga, New York 1986, with per-
mission.)

to be dealt with in attempting to trans-
form a gray-level image into a line sketch
abstraction of the corresponding scene?
The human visual system is so good
at interpreting line sketches that it is easy
to overlook the fact that such sketches
employ the same iconic symbol (the line
symbol) to represent three completely
different types of information, objective
edges, subjective edges, and skeletons:

« Objective edges. These are the directly
visible edges of regions or objects, e.g.,
locations in the image at which there
are measurable discontinuities of inten-
sity, color, or texture. Even if we restrict
our attention to objective edges, there

are usually many distinct ways to link
the edge pixels found by low-level tech-
niques. It is therefore generally neces-
sary to appeal to some purpose or value
function to provide a criterion for select-
ing one interpretation over others. An
optimization technique for edge linking
is described in Appendix 9-1. A more
general solution, which is not a function
of purpose or semantic constraints, is
possible for simple scenes, i.e., those for
which almost any observer would pro-
duce the same line sketch. The general
idea is to find all the edge points in
some contiguous region of the image
and link these points using a minimum
Spanning tree algorithm (see Box 9-7).
Long continuous paths extracted from
the tree correspond to the perceptually
obvious line structures in the image.
This approach is illustrated in Fig. 9-28.
The process involves extracting linear
feature points based on local intensity
characteristics (Fig. 9-28b); separat-

ing the extracted points into coher-

ent clusters and linking the points in
each cluster into a minimum spanning
tree (Fig. 9-28c); pruning the tree of
spurious and insignificant branches
(Fig. 9-28d); and superimposing the ma-
jor linear segments, as obtained above,
on the original image (Fig. 9-28e).

« Subjective edges. These are edges
known or deduced to be present in the
scene, but not directly visible in the
image, i.e., edges not represented by
measurable local discontinuities (see
Fig. 9-29). Edge linking cannot be ex-
pected to produce a complete line
sketch. In many realistic situations,
points associated with a particular edge
will be too scattered (because of low
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FIGURE 9-28 A Technique for Finding Perceptually Obvious Line Structures in an Image.

(a) Original image. (b) Extracted linear feature points. (c) A single cluster of feature points. (d) Linear segment extracted. (e)
Line structures found in the image. (Photos courtesy of SRI International, Menlo Park, Calif.)

contrast, occlusions, and interference evidence. For example, in the picture
from adjacent but distinct edges) to be of the Dalmatian (Fig. 9-22), we must
correctly linked by a simple contiguity assume at some point in the analysis
criterion. Inferring the presence of process that the image contains a dog,
subjective edges seems to require de- and then deduce the presence of the
duction from an assumed model, rather edges that form its outline. When there

than inductive reasoning based on local are no contextual constraints on what
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FIGURE 9-29 Examples of Subjective
Edges.

(See also Fig. 8-13.)

can appear in a scene, it is difficult to
comprehend how the human visual
system is able to select appropriate
models from an infinity of possible
alternatives.

o Abstract lines or skeletons. These are
the centerline, or spine, of long, thin
objects; e.g., as in the use of stick fig-
ures to represent shapes (see Fig. 9-30).
There may be locally detectable image
structures corresponding to the abstract
lines, but often this will not be the case.
In simple scene domains, especially
where the image information is essen-
tially binary, the complete contours of
isolated objects can be extracted to
obtain a primitive line drawing represen-
tation of the image content. However, a
human-produced sketch of the same
image would almost certainly be a more
abstract representation. For example,
in the case of printed material, the
width of the characters would be sup-
pressed and only the skeleton would
be provided. Techniques are available
for extracting and using skeletons
as the basis for both two- and three-
dimensional shape representation.

— Boundary

All points on this line
are the same distance
from the boundary

Line of points farthest from
boundary is the skeleton

(®)

FIGURE 9-30
“Stick Figures” Automatically Produced by
a “Skeleton” Generating Technique.

(a) Example of stick figure derived from image of a dog.
(b) Method for obtaining a skeleton by generating a
nested sequence of contours. A “distance transform”
algorithm for this purpose is described in [Fischler and
Barrett 80].
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If it is desired to represent a natural
scene by a line sketch, it is generally
necessary to eliminate all but a small
subset of the detected and inferred
edges as the final abstraction. The ini-
tial linking, insertion of abstract edges,
and subsequent elimination process
must be based on purpose or semantic
knowledge of the scene domain and a
depth of reasoning well beyond the
capabilities of our current paradigm.

Recovering Three-Dimensional Scene
Geometry from a Line Drawing

A person looking at a two-dimensional
line sketch of a three-dimensional scene
can usually partition the sketch into its
coherent components and describe the
corresponding scene. Given that the
sketch is indeed two-dimensional, and
thus an ambiguous representation of the
three-dimensional world, what is the basis
for this rather remarkable ability? In this
subsection we will describe some compu-
tational techniques that attempt to
achieve similar performance for a limited
class of scenes.

It is possible to transform a gray-level
image of a three-dimensional scene into a
line drawing using edge analysis methods
of the type discussed in preceding sec-
tions. We will assume for the present that
unbroken lines representing actual edges
are obtained, i.e., a perfect line drawing.
We will further assume that the scene only
contains objects with planar surfaces and
that no more than three surfaces meet at
one point in space. Given these blocks-
world assumptions, it is possible to
achieve close to human-level partition-
ing of the scene with relatively simple
algorithms.

FIGURE 9-31

Three-Dimensional Shape from
Line Drawings: Obtaining Junction
Labels.

The simple but powerful idea is to
assign one of three labels to each line in
the image; these labels correspond to
three types of three-dimensional edges:
+ (for a convex edge), — (for a concave
edge), and — (for an occluding edge).
Further, only four label types are needed
to distinguish nodes based on the enter-
ing edge types, an ell, a fork, an arrow,
and a T, as shown in Fig. 9-31. A good
way to derive the complete set of physi-
cally realizable node (junction) labels is to
view a simple solid figure from various
viewpoints, as shown in the figure. If this
approach is repeated for all possible view-
ing angles, the complete set of eighteen
legal node labels shown in Fig. 9-32 is
obtained.

This labeling scheme can be used to
analyze a blocks-world line drawing. An
iterative procedure is used in which we
begin with all possible labels attached
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FIGURE 9-32
Three-Dimensional Shape from Line Drawings: Legal Junction Labels.

(From P. H. Winston. Artificial Intelligence. Addison-Wesley, Reading, Mass. 1984, with permission.)

to each edge, but by using the diction-
ary of legal junction types we can elim-
inate invalid labels. The key idea is that
since an edge must have the same label
at both of its end points, it imposes a
constraint on the two nodes it joins. A
globally consistent labeling will often pro-
duce a unique label for each edge. It is
possible to obtain several different label-
ings for a given line drawing, but this is
to be expected since, when we view

a line drawing, we can often see the three-
dimensional scene in more than one way,

e.g., the stait:way illu§ion (Fig. 9-33) that FIGURE 9-33  Stairway Illusion.
can be seen in two different ways.
The labeling approach does indeed Are these stairs being viewed from above or

below?

determine that the object shown in Fig.




275

INTERMEDIATE-LEVEL SCENE ANALYSIS

A

FIGURE 9-34 Impossible Figure.

An impossible object. The indicated ell
junction is not among the legal ones. (From
P. H. Winston. Artificial Intelligence.
Addison-Wesley, Reading, Mass., 1984, with
permission.)

9-34 is impossible. However, other cases
exist for which a depicted object cannot
exist in the real world, but we are still able
to find a legal set of labels. This failure
has caused researchers to look for repre-
sentations that can more adequately han-
dle impossible objects, and can deal with
more complex objects and imaging condi-
tions. In the case of the blocks world,
rather complex scenes—even scenes con-
taining cracks and shadows—can be cor-
rectly analyzed, (Fig. 9-35), and necessary
and sufficient conditions do exist to deter-
mine if a perfect line drawing corresponds
to a physically realizable object, but these
results have not yet been extended to
more realistic scene domains or imperfect
delineations.

FIGURE 9-35

A Scene Typical of the Type that can be Correctly Analyzed and Partitioned by

Existing Techniques.

(From D. [. Waltz. In P. H. Winston (editor), The Psychology of Computer Vision. McGraw-Hill, New

York, 1975, with permission.)
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Image Matching

It is difficult to conceive of a more basic
perceptual act than determining whether
two images depict the same scene con-
tent, and more precisely, the specific or
local correspondences. In the case of
human stereo vision, the correspondences
between the two almost identical images
provided by our two eyes allows the brain
to create a depth map of the scene, prob-
ably using a technique equivalent to
simple trigonometric triangulation (see
Box 9-5).

When the views to be matched are
almost identical (say, differing only in
translation and possibly scaled in inten-
sity), then a simple computational solution
to the matching/correspondence problem
is area correlation, in which small fixed-
size patches of the two images are com-
pared. More generally, we are often faced
with the problem of matching images that
represent significantly different views of
the scene. Such images may differ in three
respects: (1) the viewing conditions may
have changed—view angle, perspective
distortion, occluded surfaces, illumination,
shadows, highlights, and atmospheric
conditions may be significantly different;
(2) physical changes may have occurred in
the scene—new or altered features such
as roads, buildings, floods, or seasonal
changes may be present, or objects may
have moved, such as cars in a parking
lot; and (3) the image acquisition and pro-
cessing system may have changed—the
sensors may have different noise and
distortion characteristics, resolutions,
spectral response, and the representations
produced may be the result of different
nonreversible transformations (e.g., an
intensity array converted to a line sketch).

In registering one image to another,
we wish to find the transformation be-
tween either the images or the sensor
models, taking full advantage of the
known or deduced physical characteristics
of the scene and the viewing situation. If
the nature of the variation of such charac-
teristics cannot be quantified, then the
variable describing these characteristics
must be eliminated from the decision
process. The matching process is based
on the selection of the features to be
matched, the control strategy that speci-
fies how to search for potential matches,
and the criteria for evaluating the match
or selecting a best match.

Correlation approach. The traditional
approach to image matching is based on
signal processing and statistical decision
theory concepts. Each image is treated as
a (context-free) signal, with all known
distortions, viewing and illumination arti-
facts, etc., removed prior to the matching
step; the images (signals) to be matched
are assumed to have some common area
of overlap in which the only difference is
nominally describable as additive gaussian
noise. The matching technique is gener-
ally some form of area correlation in
which the features to be matched are
small fixed-size patches of the image.

We search for matches by “comparing”

a patch in the first image with all the
patches in the second image that are
potential match candidates, and we select
the match that produces the highest “cor-
relation coefficient.”

Feature matching approach. As our
ability to model the distortion and illumi-
nation differences between the two scenes
decreases, we are motivated to extract
descriptions that ignore the detailed
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(pixel-by-pixel) intensity variations in the
images, and concentrate instead on se-
lected measurable features (or attributes)
and relations that are relatively invariant
to viewing conditions and sensor varia-
tions. For example, intensity discontinui-
ties, or edges, are more likely to remain
invariant across two views of the same
scene than the absolute intensity values
whose differences produced the edges.

We often employ a signal-processing
approach in determining if two images
represent the same scene, by comparing
the values of a set of feature measure-
ments made on each of the images. Typi-
cal features might include area, perimeter
length, spectral energy distribution, etc.
The descriptions used for matching pur-
poses in this case are the feature vectors,
and the measure of similarity of the two
images is the distance between the feature
vectors in a Euclidean space defined by
the features (see Chapter 3 and Appen-
dix 9-1).

Relational matching approach. To
establish detailed correspondences be-
tween the images, and to increase the
reliability of the matching process beyond
that possible using feature measurements,
we must explicitly include geometric rela-
tionships between selected components of
the scene in both the image descriptions
and in the matching process. The image
descriptions now are conceptually equiva-
lent to a graph, where the nodes repre-
sent features or objects in the scene, and
the branches represent relations; the
matching process (called structural match-
ing) involves the comparison of two
graphs, or part of one graph with another.

The matching techniques discussed
above (correlation, feature, and relational

matching) form a natural ordering in two
respects. First, there is an ordering based
on the descriptive power of the represen-
tation. In area correlation the representa-
tion is the intensity array, and there is no
language for introducing semantic infor-
mation or for modeling view or sensor-
related factors that cause changes in
image appearance. The representation
for feature matching is the feature vector,
and there is no mechanism for introduc-
ing information about relations between
features. However, the semantic net rep-
resentation for structural matching poten-
tially offers the full descriptive' power of
natural language.

The second ordering characteristic is
that of modeling difficulty. As the descrip-
tive power of the matching techniques
increases, there is a corresponding re-
quirement to define an enlarged vocabu-
lary (names for additional features and
objects) and a set of relationships between
these vocabulary primitives. However, this
brings with it the difficult requirement of
detecting the presence or absence of
these primitive linguistic constructs in an
image to create the desired description.

The image-matching problem is fun-
damental to all of machine vision, and is
therefore typical of what appears to be a
pervasive difficulty facing us in all aspects
of machine vision under the current para-
digm: Our more powerful techniques are
based on a symbolic formulation in which
large amounts of low-level information are
successively integrated into more global
and abstract descriptions. Currently, we
are limited in our ability to obtain relevant
low-level information of suitable quality
because our analysis depends on weak
descriptive formalisms and a local per-
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spective that is too restrictive to avoid
ambiguity and error. If we attempt to use
more global primitives, the number of
such primitives necessary to provide de-
scriptive completeness grows exponen-
tially, and the level of modeling required
for each such primitive makes such an
endeavor impractical.

Object Labeling

This and the next section discuss the
problems of assigning names to objects.
Two forms of this problem are: (1) given a
specific reference object, find instances of
it in an image, and (2) label the objects in
an image according to the generic classes
to which they belong:

1. Labeling specific objects. In the sim-
plest form of specific object labeling
we assume that image shape does not
differ significantly from reference
shape; it is therefore easy to obtain a
description suitable for matching. An
example of this situation is the recog-
nition of alphabetic characters of a
given font, where the number of free
parameters is limited, and we can use
an attribute space in which the refer-
ence pattern and the unknown pat-
tern appear as points. An unknown
pattern is assigned to that reference
pattern whose representative point is
closest to it in the attribute space.
However, finding suitable descriptions
for complex objects becomes a signifi-
cant problem. An example here is
finding a specific person in a crowd.
Since a person can assume various
shapes when sitting, standing, or
bending, a simple description will not
suffice. The description must indicate

the relationship between parts, the
constraints in movement, the shape
of parts, and the ability of the parts
themselves to change shape (e.g., the
shape of the mouth); we are also
faced with the problem of how to
structure the descriptions so that the
reference objects can be compared to
the descriptions derived for the
sensed objects. The matching proce-
dure must be able to deal with occlu-
sion and flexibility of objects. Objects
are often occluded by their own
parts, by other objects, or by
shadows, so that the derived descrip-
tions will only partially match the
reference descriptions.

2. Labeling generic objects. An example

of generic labeling is finding all in-
stances of a road in an image. Note
that we are not looking for a known
road whose description is available.
Instead, a generic description of
“roadness” is required. In more diffi-
cult problems, one might want to
label objects with terms such as
“tree,” “bush,” “meadow,” etc. We
are not asked to find a specific tree
whose measurements are known. The
reference object is now much more
difficult to describe in terms that
permit simple matching. In addition,
there is a chicken and egg situation:
How can we be sure that the shape of
part of an unknown object corres-
ponds to a branch, if we are not sure
that the object we are attempting to
identify is a tree? Most of our tech-
niques depend on producing a de-
scription from image measurements,
retrieving relevant models from our
stored database (possibly) containing
an immense number of such models,
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and making the indicated compari-
son. If we do not know that we are
looking at a tree in the first place,
then the effort required to examine
all components of all models in the
database becomes exorbitant. Com-
plete generic labeling of arbitrary
scenes is well beyond the present
state of the art. Labeling procedures
now require that the number of ge-
neric classes be limited. One way of
accomplishing this is by specifying
the context of the image to the pro-
gram, e.g., “outdoor scene,” “ office
scene,” etc., so that the program can
select descriptions from its database
that are appropriate to this context.

Model Instantiation

Visual perception is based on selecting
models that are relevant to the analysis of
a sensed scene, and then determining the
values of the parameters of these models
based on scene content (instantiating the
model). In intermediate-level vision, typi-
cal models of interest are:

« Geometric models: e.g., lines, curves,
polygons, planes, and surfaces

« Illumination models: equations that
relate the light sources, surface reflec-
tances, and image intensities

« Sensor models: equations that define
the camera (sensor) orientation and
location parameters, for a given image,
in terms of a coordinate system tied to
the sensed scene

« Semantic models: descriptions of ob-
jects and events that might appear in an
image (e.g., person, building)

The model instantiation process works as
follows: Once it has been determined that

a particular model is appropriate for a
given image, e.g., a triangle, the system
could identify lines in the image that
might be the sides of a triangle, find their
lengths, and the angles between contigu-
ous lines. If the model is that of a person,
the appropriate instantiations could be
size of the person, or male or female. In
intermediate-level vision, model instantia-
tion often results in numerical values for
the model parameters.

There are three approaches to assign-
ing values to the parameters of a model
based on observed or experimental data.
The classical approach is to use an opti-
mization technique, such as least squares,
to solve an overconstrained set of equa-
tions in order to define an instantiated
model that best fits all the data, i.e., all
the data is used simultaneously to solve
for the parameters of the model. Prob-
lems arise when the data contain gross
errors or intermixed data from multiple
objects. For example, even a single mea-
surement error, if large enough, can cause
least squares to fail, and there is no gen-
eral method for reliably eliminating such
gross errors.

A second approach (e.g., the Hough
transform, see Appendix 9-1) takes one
data point at a time and finds all the pa-
rameters of the model consistent with this
data point; i.e., we solve an undercon-
strained set of equations to find all solu-
tions compatible with the given data
point. The set of solutions determined for
each data point is used to “vote” for all
the corresponding parameter values. After
all the data points have been processed,
those parameter values receiving the most
votes are taken as the desired solution.

The third approach (e.g., random
sample consensus [Fischler 83]) randomly
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selects just enough data points to solve
the model equations, and then attempts
to confirm this instantiated model by
testing it against the remaining data. If
such confirmation fails, the process is

repeated with another random selection of

data points. This approach is surprisingly
efficient, as well as robust, under a fairly
wide range of reasonable conditions.

The determination of the appropriate
model (discussed in the previous section),
as opposed to the instantiation of the
model, is a problem in detection or classi-

fication. One must utilize the evidence
accumulated as the result of low level
analysis to make this determination. Peo-
ple have a remarkable ability to select the
appropriate model from what amounts to
an almost infinite set of models. For ex-
ample, in Fig. 9-36, how do we know that
this is a picture of Paris when we have
never seen the city from this particular
viewpoint? In the case of computer vision,
the designer is currently forced to indicate
some small set of models to which the
system can direct its attention.

A&y
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(Drawing by Oscar Firschein.)

FIGURE 9-36  Recognizing a Scene: What City is Depicted Here?
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HIGH-LEVEL SCENE
ANALYSIS (HLSA)

High-level scene analysis (HLSA) invokes
the full body of Al techniques (e.g., sym-
bolic logic, expert systems theory) and
representations (e.g., relational nets) to
provide a description of an image, or the
corresponding scene, in terms of some
given set of semantic models and linguis-
tic relationships. Currently, there is little
direct coupling between the information
that can directly and automatically be
obtained from our LLSA and ILSA tech-
niques and the input needs of available
HLSA systems. The problem here is that
high-level scene analysis is strongly cou-
pled to semantic knowledge and final
purpose—a tremendous amount of knowl-
edge is needed to bridge the gap between
what is immediately visible in an image,
and what can be deduced about the cor-
responding scene.

In trying to derive a symbolic descrip-
tion of a scene, one realizes that the say-
ing, “A picture is worth a thousand
words,” may be too conservative. As a
striking example of HLSA consider the
political cartoon: The viewer is expected
to recognize the participants, the topic
under consideration, and the editorial
view of the cartoonist, all from a simple
line drawing. When we view a political
cartoon from the 1800s we may no longer
have the required world knowledge to
understand its message.

Image/Scene Description

Having a human produce a natural lan-
guage description of objects and their
relationships in a scene would seem to be

straightforward, and we might expect that
the meaning of the natural language ex-
pression should also be readily deter-
mined. For example, the meaning of “The
hat is in the box” should be derivable by
having a dictionary entry for “in” that
says “X is in Y if Y spatially includes most
of X.” It turns out, though, that the mean-
ing of the word “in” is more subtle than
that. Expressions such as those given
below indicate quite different spatial char-
acteristics, some of which are not cap-
tured by a simple definition of inclusion:

« The water in the vase (we mean the
contents of the vase and not water com-
posing the vase material)

« The crack in the vase (crack in the
surface of the vase) .

« The block in the circle (a block resting
on a surface on which a circle is drawn

« The bird in the tree (a bird on a branch
within the bounding region of the tree)

In addition, there are peculiarities of
use, such as being able to talk about the
table being in the garden, but not that the
table is in the lawn. It is acceptable to
draw a line in the margin, but not to draw
a line in the blackboard. Some locative
expressions are context dependent. Thus,
given the scene:

B
A

we would say that B is to the right of A.
But if the scene changes to:

B
A c

we would be hesitant to make the unquali-
fied assertion that B is to the right of A.
Natural language constructions such
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as these are not merely curiosities: if we
expect a robot to use descriptions pre-
pared by nontechnical people to navigate
in the real world or to carry out com-
mands, it is important that the robot be
able to decode these expressions to derive
the meaning intended by the person.
Thus, a person would be dismayed if the
command “Get the box under the bush”
resulted in the robot’s digging into the
ground to get under the bush, presumably
to find a second, not yet visible box!

Recent studies in the semantics and
pragmatics of expressions involving loca-
tion [Herskovits 85], have revealed re-
markable nuances of use, some of which
were illustrated above.

We can gain insight into the difficulty
of automatic preparation of a high-level

description of a gray-level image by exam-
ining descriptions prepared by human
subjects. Such descriptions depend on the
background of the person, the goal of the
description, and the complexity of the
photograph. The descriptions can be in
terms of natural language, or in the form
of line drawings that extract the essence
of the image. The importance of the back-
ground and point of view of the person
preparing the description was illustrated
in Fig. 9-23, where a satellite photograph
was described in terms of three com-
pletely different line drawings by a geolo-
gist, a hydrologist, and a forestry expert.
An example of a natural language
description of an aerial photograph,
Fig. 9-37, by a layman is as follows: “The
picture is an aerial photograph of a land

(Supplied by O. Firschein and M. A. Fischler.)

FIGURE 9-37 Aerial Photograph of an Industrial Area.
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area invaded by a three-pronged fork-
shaped waterway. Wharves line the sides
of the waterway. A bridge, probably for
auto traffic, but possibly for rail traffic,
crosses the handle of the waterway. The
land is used primarily for industry: many
large low buildings and fluid storage
tanks, such as those used to store oil or
water are on the land. The area depicted
has dimensions of perhaps one to two
miles; the photo exhibits a significant
parallax effect. The waterway, perhaps a
river or canal, is perpendicular to the line
of sight of the camera; its average width is
about a quarter mile.”

In examining this description, we
note (1) probabilistic terms, “seems,”
“perhaps”; (2) many objects and relations
between objects; (3) inferences, “probably
for auto traffic”’; and even (4) information
about the camera viewing location. In
addition to the sophisticated reasoning
needed to derive such descriptions, to
store them in a database for future re-
trieval purposes, we must represent infor-
mation in a way that captures all the
different aspects of entities being de-
scribed, i.e., the knowledge representa-
tion problem, as discussed below.

Knowledge Representation

If the description, A bridge crosses the
waterway, is in the database and the
question is asked, What spans the water-
way?, there must be some equivalence
established between crosses and spans for
a retrieval match to be made. In addition,
if we have stored A is part of B and B is
part of C, we need some mechanism for
deducing that A is part of C. Thus, in
representing knowledge about a scene, we

are faced with the classic representation
questions: (1) What formalism should be
used for relating facts and drawing deduc-
tions from a collection of facts?; and (2)
What basic relationship and descriptive
words should be used in the formalism? A
good image representation should have
the additional important characteristic of
capturing some of the implicit iconic
information, e.g., objects that are near in
the image should be near each other in
the representation. Of the two representa-
tions described below, frames and seman-
tic nets, only the semantic nets retain
some of the iconic aspects of the original
image.

Frame representations. In the chap-
ter on language we discussed frames,
scripts, and scenarios, an attempt to cap-
ture the components of typical situations
for use in understanding natural language.
Similarly, it is possible to develop frames
applicable to image analysis, with each
frame representing a stereotyped situation
or object that might be found in a scene.
The frames supply needed information
and indicate what image data is relevant.
For example, an office frame might spec-
ify what constitutes an office, e.g., desk,
telephone, etc., and this frame can be
used to provide the image analysis system
with an expectation as to what objects
might be in such a scene.

Semantic networks. The semantic
network, as described in Chapter 3, has
been used for HLSA. In image description
applications of semantic networks, objects
in the scene are represented by nodes,
and the arcs from node to node represent
the relations between the objects. A basic
set of primitives is chosen to describe
objects and relationships, and all descrip-
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The picture is a black and white aerial photograph of a land area invaded by a triton-shaped or three-prong-shaped waterway,
Wharves line the sides of the waterway. . . .

Concept kernels of the description fragment Concept classes
The picture is a black and white aerial photograph Picture property
Photograph is of a land area Attribute
Land area is invaded by a triton-shaped, i.e., a three-prong-shaped, waterway Operative
The waterway has sides Set membership
The sides are lined with wharves Attribute
PICTURE ATTRIBUTE
PROPERTY AN
most arresting \\\
feature is AN
Aerial N
photo \
|
ATTRIBUTE Land area

NN -
\*Q\\\
CLASSIFICATION SET MEM\BERSHIP A'ITRI\BLITE
\\ \
(DOUBT) has par\ts shapéd I\ike

\\\ El
CEHE

\ A
QUANTITY ATTRIBUTE ~ \  ne
( \ \ OPERATIVE

many ship </

Three-prong-
shaped

FIGURE 9-38 Semantic Network used for Image Description.

—————— Denotes description —— Denotes additional descriptive
fragment given above. information about scene.
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tions are converted into compositions of
these semantic primitives. The number
and type of primitives that form the basic
vocabulary is important because the
choice of primitives will determine the
expressive power of the representation.
A semantic network for a portion of

the description of the aerial photograph
(Fig. 9-37) is shown in Fig. 9-38.

Care must be taken to separate ge-
neric concepts, such as bridges from a
specific token such as the George Wash-
ington Bridge, otherwise errors in deduc-
tions can result. For example, if we have
the following network:

A—is part of =B
B—is part of > C,

then we can follow the links to deduce
that A is-part-of C. However, linking can
result in incorrect deductions if the ge-
neric and specific nodes are intermingled,
or if the inheritance characteristics are
not carefully isolated. For example, if we
have a generic description of a bridge as
something that spans a road or body of
water, then a specific highway bridge that is
in the state of construction must not inhe-
rit the characteristic “spanning,” if only
the abutments have been constructed.

The semantic network representation
is not a formal mathematical system with
unifying principles. Its use tends to be
rather ad hoc, with various researchers em-
ploying different net interpretation schemes
based on the same general concepts.

The Problem of High-Level Scene
Analysis

There is no program at the present time
that can automatically create a descrip-

tion of a scene at a human level of per-
formance. Further, existing programs

for converting from a natural language
description to a semantic network are of a
rudimentary nature, and work only in very
limited domains of discourse. The basic
difference between describing a document
and describing an image is that a textual
document is usually created in accordance
with some specific objective of the author.
While a potential user may be more inter-
ested in a tangential fact of the document,
the use cannot be too far removed from
the intended theme of the document.
Most images, on the other hand, have no
central or organizing theme, and a de-
scription of the same object from two
different points of view may be completely
unrelated.

Reasoning About a Simple Scene

Given the scene shown in Fig. 9-39, we
are able to reason about what has hap-
pened and what is likely to happen next:
we use our knowledge of how physical
objects behave in the world to deduce that
the young woman has pushed the man,
causing him to lose his balance, and we
predict that he will fall into the well.

Little work has been carried out in
obtaining programs that can reason about
scenes. Funt [Funt 80] developed a pro-
gram called WHISPER that reasons about
simple line drawings of objects to predict
the behavior of a structure constructed
from blocks. The program generates calls
to a low-level analysis program to deter-
mine what shapes are involved and how
the shapes make contact. Some of the
questions that the vision program must be
able to answer are: (1) Do shapes A and B
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FIGURE 9-39

New York, 1977.)

Example of Reasoning about a Scene: What Actions do we Expect will Follow?

(From S. Appelbaum. Advertising Woodcuts from the 19th Century Stage. Dover Publications,

touch? (2) Is shape C symmetrical around
a given axis? (3) Where is the center of
the area of shape D? (4) How far can
shape E rotate around a given point be-
fore it will intersect some other shape?
The high-level reasoner consists of
procedures which reason about the physi-
cal world in such common-sense terms
as, “If a block is hanging over too far, it
will topple.” To determine that a block
is hanging over too far, the high-level
reasoner must generate calls to the sen-
sor, and the reasoner then assigns
domain-dependent meanings to the an-
swers returned. In the case of Fig. 9-40,
WHISPER would find that the top rectan-

gular block will fall, and will collide with
the block balanced on the triangle, caus-
ing it to fall.

Note that in this program, rather
than employing a strictly data-driven
formalism, specific sensor-based observa-
tions are called for by the reasoner, and
the interpretation of these observations
depends on the goals and purposes of
the reasoner.

DISCUSSION

We began this chapter with a description
of the signals-to-symbols paradigm, and
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(@)

(a) Starting state.

ZAN

(b)

(b) Result of first predicted
event,

FIGURE 9-40 Reasoning about a Simple Scene.

then described the various assumptions
and techniques that represent the current
realization of this paradigm. We now take
a critical look at this entire approach.
The questions we want to address here
are: (1) Is signals-to-symbols an adequate
paradigm? In particular, what are its
weaknesses?, and (2) What are the attri-
butes required by a machine vision sys-
tem if it is to be capable of human-level
performance?

A Basic Concern About
Signals-to-Symbols

The signals-to-symbols paradigm was
presented in a hierarchical manner: from
low- through intermediate- to high-level
representation and analysis. In actual
practice, the processing will rarely follow
such a linear route; we really do not know
how to impose an effective control struc-
ture on a computational vision system that

must contend with images from uncon-
strained scene domains. For example,
very few of the low-level techniques we
described would be meaningful in helping
to extract the information needed to
perceive the Dalmatian shown in Fig.
9-22. On the other hand, if we tried to
guide our processing by guessing what
was present in the image, there would be
an effective infinity of possible guesses.
Finally, even knowing that we want to
look for a Dalmatian, it is not clear how
we bypass the lack of meaningful low-level
information to achieve the final perceptual
gestalt.

The signals-to-symbols paradigm is
the only game in town given today’s digi-
tal computers which can only process
numbers or symbols. However, by employ-
ing a representation without an iconic or
isomorphic component, we incur the
following penalties:

Limited vocabulary. We are forced to
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FIGURE 9-41

(Photo courtesy of Joseph Firschein.)

A Scene Difficult to Describe.

describe a scene as a network of relation-
ships among a relatively small number of
discrete named entities. Thus, we must
describe a perceptually continuous scene
with a description based on a limited
vocabulary—the result is often a weak and
inadequate description, or an unusably
complex one. The driftwood shown in Fig.
9-41 is an example of a scene that is diffi-
cult to describe adequately with even the
full power of natural language.

Loss of iconic representation. We lose
the constraints and innate spatial relation-
ships of the image when we go to a sym-
bolic representation that does not have a
corresponding innate spatial structuring.
We have gone from an iconic to a non-

isomorphic representation. In the iconic
representation relationships are innate;
in the nonisomorphic symbolic repre-
sentation we must explicitly express rela-
tionships such as “near,” “to the right
of,” etc.

Available iconic representations,
suitable for computer implementation, are
quite primitive. Typically, the image is
stored as an array of numbers represent-
ing a local attribute of a scene, such as
intensity. Implicit information about the
shapes, relative positions, and proximity
of objects is inherent in this pictorial
template representation. However, the
pictorial template and its currently known
generalizations fall considerably short of
what will probably be required for a gen-
eral solution to the problem of modeling
real-world vision.

There is a large volume of experimen-
tal evidence to indicate that humans use a
sophisticated iconic representation in at
least some of their visual tasks. For exam-
ple, Roger Shepard [Shepard 71] has
shown that when subjects are asked to
mentally transform the spatial orientation
of solid figures, they perform mental oper-
ations that are highly analogous to the
transformations used to reorient the cor-
responding physical objects in space.
Kosslyn [Kosslyn 80] has shown that the
stored mental images used by human
subjects appear to preserve distance:
operations such as scanning took longer
when the objects mentally searched for
were farther apart.

Necessary Attributes of a Machine
Vision System

Almost all computer vision research to
date has dealt with the problem of identi-
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fying objects and describing their geomet-
ric relationships based on their
appearance in an image. However, this
mode of analysis represents a small subset
of the reasoning employed by humans in
interpreting a scene. Equally important is
the ability to answer to such questions as:

Function. What are the objects in the
scene doing?

Purpose. What are the objects supposed
to be doing?

Competency. What are the objects able
to do?

Intent. What does each object intend
to do?

Anomaly. What is unusual or “wrong”
with the scene?

Event analysis. What has happened?

Prediction. What is going to happen?

Evaluation. Why did the event happen?

The size and sophistication of the
appropriate database, and the deductive
apparatus needed to carry out the above
type of analysis is far beyond what we are
currently capable of doing with available
techniques.

Summary

Key points that are implied in the above
discussion can be summarized as follows:

Iconic representation. Many vision
problems cannot be adequately described
in a purely abstract formalism; this implies
the need for employing some sort of
iconic representation, as well as a comput-
ing device capable of supporting such a
representation.

Learning. We cannot, in a practical
sense, make explicit all of the knowledge
needed to create a system capable of
general purpose vision; some learning
ability must be provided.

Need for experimentation. Because of
limited understanding of the visual world,
many vision problems will have to be
solved by a process resembling physical
experimentation; where the complexity of
the problem environment prevents us
from modeling it at a suitable level of
detail, the experimental space of a device
capable of general purpose vision may
have to be extended out to the real world.
Thus there must be an active interplay
between sensing and interpretation.

Appendixes

9-1

Mathematical Techniques for Information Integration

Intermediate-level scene analysis was  are integrated into global phenom-
ena. For example, edge points are
connected to form continuous con-

defined as the aggregate of opera-
tions in which local or point events

tours and semantic labels are as-
signed to detected scene entities.
This appendix describes some of the
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mathematical techniques used to

perform these integration opera-

tions:

o Relaxation. Local values or
labels are adjusted to be compati-
ble with neighborhood values or
labels. The adjustment process
continues until all values are
compatible with their neighbors.
The nature of the solution is
determined by specified consis-
tency and boundary conditions
which remain unaltered during
the computation.

.

Combinatorial optimization.

Given a set of objects, and a
“cost” associated with each subset
or configuration of these objects,
the problem is to select a subset
that satisfies a set of constraints,
and at the same time minimize or
maximize the value of a function
of the costs. An optimal solution is
selected by organizing the compu-
tation so that only the most prom-
ising alternative choices are
pursued.

Model instantiation. The free
parameters of a model are as-
signed those values that permit
the model to best describe a given
set of data.

Statistical classification. Objects
are to be assigned to N predesig-
nated classes. Each object is
represented by a vector whose
components correspond to mea-
surements made on the object.
Vectors corresponding to ideal
measurement sets are specified for
each of the N classes. Objects are
classified by some function of their
feature (measurement) space
distance to the ideal measure-
ment vectors.

Relaxation

The labeling or assignment process
is a basic one in scene analysis. For
example, assigning an edge strength
and edge direction to a pixel is a
form of labeling. On a higher level,
we might label a line in an image
with a code that indicates concavity
or convexity of the edge it repre-
sents in the three-dimensional world.
Intuitively, we know that if global
information is used we can obtain

a better assignment of labels than

if we only use local information.

A major problem is that of com-
putational cost, since the larger

the region used as the basis for
establishing the labeling, the more
time-consuming and complex the
computation.

Relaxation techniques for scene
analysis use iteration (repeated tries)
as a means of obtaining a global
interpretation by using only local
understanding and local operations.
Multiple passes are made through
the image, and the labeling results
are modified in each pass based on
constraints, or compatibility of the
current assignment of the labels at
each pixel and those of its neighbor-
ing pixels. The intent is to have the
local information propagate globally
by means of label modification.

Forms of Label Assignment. In
order to implement a relaxation
process, we must have some way
of making an initial assignment
of labels to each pixel. For exam-
ple, in edge analysis this can be
done by using multiple masks,
each representing a distinct edge
orientation. At every pixel, those
masks that produce a response
greater than a certain-threshold

value cause a corresponding label to
be assigned to that pixel. Labels can
appear in two forms: (1) discrete
labeling that does not involve
probability assignments, and (2)
probabilistic labeling in which a
strength or score is assigned to

the labels. An example of discrete
labeling is the set of labels verti-
cal, horizontal, diagonal, no edge,
that can be assigned to a pixel.
Probabilistic labeling would be the
assignment to a pixel of probability
of horizontal =0.6, probability of
vertical=0.2. In the discrete labels
approach, successive iterations
eliminate labels that cause
compatibility problems with a
neighbor, while in the probabilistic
case the probabilities for each label
of each pixel are modified.

Relaxation with Discrete Labels.
The relaxation process used with
discrete labels can be best presented
by an example. Suppose that we are
labeling pixels in edge analysis, that
the possible labels are horizontal
(H), vertical (V), and none (N), and
that compatibility rules require: (1)
An H pixel must have H neighbors
to the left or right; (2) a V pixel must
have V neighbors above or below;
(3) an N pixel must have N labels in
three out of four of its neighbors.
Suppose we have the following
situation at a pixel, P, labeled with
H and N, and surrounded by four
neighbors:

VH
HN HN HYV
VN
We see that the N label of P

does not satisfy compatibility re-
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quirement 3, since we cannot find
three neighbors having an N label.
The N label would therefore be
dropped from the center pixel. (In
most discrete relaxation approaches,
once a label is deleted there is no
mechanism for regenerating it at a
later stage of computation.) The H
label does satisfy condition 1 that
requires H labels on either side, so
the H label would be retained.

The iterative procedure termi-
nates when there are no pixels that
have more than one label or when
no additional changes occur in one
complete iteration. Note that it is
possible to reach a situation in
which all the labels at a pixel are
deleted because none of the labels
satisfy the required compatibility
conditions.

Relaxation with Probabilistic
Labels. As indicated previously,
a preprocessing operation must
provide the initial set of labels and
their probabilities. A revised
probability for each label at each
pixel is typically obtained by an
updating expression of the form
shown in the box below.

The support for k around pixel
iis a number between —1 and +1,
with —1 indicating that the presence
of label k is incompatible with the
neighborhood labeling. This support
value is a function of the compatibil-
ity between label & and the label L
of each neighbor and the probability
that L is a valid label for each neigh-

bor. The normalizing factor is used
to keep label probabilities between 0
and 1.

Although appealing intuitively,
this type of updating rule has no
absolute justification, and its conver-
gence properties are not generally
well understood; in many examples,
results first improve and then de-
grade if too many iterations are
used.

Discussion. Relaxation is a
computational mechanism that
attempts a global analysis by using
local consensus and iterating the
procedure many times. Relaxation
is attractive because the local oper-
ations can proceed in parallel, and
the technique therefore has the po-
tential for high-speed mechani-
zation. Relaxation has also been
suggested as the computational
mechanism employed by biological
systems [Feldman 85]. As currently
employed, relaxation procedures
tend to be ad hoc; their mathemat-
ical and semantic properties are
poorly understood.

Combinatorial Optimization

Perception can be defined as finding
a best interpretation of sensed data
in terms of a set of a priori models.
The term “best” often implies some
sort of optimization, i.e., a selection
from a set of alternatives.
Almost all optimization prob-

lems dealt with in scene analysis are
either of (1) a statistical nature, e.g.,

a statistical measure, often in a
feature space, is used to make a
selection of the best set of entities,
or (2) combinatorial optimization in
which selection from a set of alterna-
tives is made on the basis of maxi-
mizing or minimizing some objective
function. We discuss statistical
optimization below; here we de-
scribe some of the combinatorial
techniques that have been employed
in computational vision. The general
approach is to transform the original
vision problem into a problem in
which a cost or figure of merit can
be assigned to each possible combi-
nation of elements. Although the
best combination could be found by
evaluating the cost for every possible
combination and selecting the con-
figuration with the lowest cost, the
large number of combinations makes
this exhaustive approach infeasible.
The optimization techniques orga-
nize the computation so that combi-
nations that are not ‘good candidates
for solution are not considered.

Optimization Problems in ILSA.
Examples of ILSA optimization
problems are (1) finding the best way
of linking pixels, as in edge finding,
and (2) image matching.

1. The edge-linking problem.
Suppose we have a technique
that assigns a cost to each pixel
in an image to indicate the
likelihood of the presence of a
road (or edge or line) at each
pixel location. The costs are

label k at pixel i

Revised probability of _ (Previous probability) (1 +support for k)

Normalizing factor
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assigned so that a low cost
indicates a high likelihood of a
road. Given this array of cost
values, we would like to find a
path through this array such
that the sum of the costs along
this path is minimized. In the
image, this minimum cost path
would then be marked as the
road. Note that the resulting
solution assures continuity of
the global structures as well as
the best collection of locally
“roadlike” elements.

. The image-matching problem.
We are given a reference image
consisting of blobs of various
shapes, and a sensed image
that we would like to match
with this reference image. If the
sensed image is a distorted
version of the reference image,
then we cannot use a straight-
forward correlation technique
in which we move the sensed
image over the reference im-
age, looking for the best match.
Instead, we imagine the sensed
image to be on a transparent
rubber sheet, so that blobs can
be displaced from one another
by stretching and compressing
the rubber sheet. We now
perform a matching operation
by laying the sensed image over
the reference map and stretch-
ing and compressing the rubber
sheet to obtain the best possi-
ble match of the various blobs.
In this matching operation we
use a cost which is the
weighted sum of two compo-
nents: (1) a cost based on
individual comparison of blobs
in the sensed and reference

images, and (2) a cost based on
the amount of stretching or
compressing required. The
problem is to find the stretch
and match combination that
results in the smallest overall
cost.

An Edge-Linking Algorithm. An
approach to combinatorial edge
linking is to use two arrays: (1) a
local cost array that provides a
measure of the edge likelihood at
each pixel location, and (2) a fotal
path cost array, that stores the
lowest cost of the path from a
starting point to each pixel. The
total path cost array stores the
results of each iteration, and the
computation ends when no further
changes can be made to this array.
We begin with a set of initial
values stored in the total path cost
array. All the elements are set to a
very high value except that element
that we would like to be start point
of the path. We assign the start pixel
its local cost array value. Appendix
9-2 shows an algorithm in which, for
each pixel, P, we form the sum
of each of its neighbor’s total path
cost array value plus the local cost
array value of P. If the minimum of
these eight sums, SMIN, is less than
the current total path cost array
value of P, we replace P by SMIN.
The iteration is repeated until no
changes occur in the total path cost
array. All paths and their costs can
be determined directly from the final
configuration of the total path cost
array.

An Image-Matching Algorithm.
Suppose we have a reference image
consisting of N components, and

these components are constrained
in position with respect to one an-
other. For example, the pieces could
be lines constrained to form an ap-
proximate rectangle. The image-
matching algorithm must find an
optimal fit of the reference figure to
a structure visible in the sensed
image.

An example of such an algo-
rithm can be described using the
rectangle example (see Appendix
9-3). First, each component of the
reference is matched separately with
the sensed image and a list is kept
of acceptable match positions and
the quality of the match at each
position. We order the list so that
the component most likely to be
correctly matched appears at the top
of the list, followed by the next most
reliable, etc.

We now use the most reliable
piece, A, and its best match
locations in the sensed image, MA1,
MA2, ..., and the next most reliable
piece, B. Since we know the
constraint relationship between A
and B, we know for each of the
MAL, MA2, ..., the approximate
locations where the MB matches
should be. We can use the list of
best matches for B and determine '
the maximum stretch for each MB
entry which satisfies the positional
constraint condition relative to an
MA entry.

If the combined score of the
original MB match plus the stretch
cost is too great, then that MB point
will be eliminated from further
consideration. If, for some MAn
there is not at least one MBk, then
we eliminate the MAn match point
from further consideration. After
one has formed all the acceptable
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" (MAn,MBK) pairs, then the next

piece, C, on the list is examined

for MC points that satisfy the con-
straints with regard to A and B com-
ponents. Unmatched (MAn,MBk)
pairs are eliminated and the proce-
dure continues to D, the last piece
on the list.

Discussion. The design of the

cost function is crucial in the _
optimization approach, since it will
determine the complexity of the
computation and will affect the
quality and characteristics of the
solution. For example, in the path
finding problem, adding a constant
bias to each cost value tends to
smooth and straighten the optimal
path. This effect occurs because, as
the bias increases, the length of the
track becomes relatively more
important in comparison to the local
quality as defined by individual pixel
costs. Similarly, raising each cost to
a power introduces a very strong
inhibition against going through a
point with a high cost. Thus, the
designer can introduce a priori
knowledge (e.g., a preference for
curving roads in mountainous
regions, or straight roads in flat
terrain) by suitable tailoring of the
cost function.

Classification and Model
Instantiation

This section presents some classifi-
cation and model fitting techniques
that have the common characteristic
of using a “‘parameter” or “attribute
space” as the underlying representa-
tion. A parameter space associates a
different parameter with each coor-
dinate axis (or possibly the same

parameters from two different im-
ages). We map from the image space
representation to parameter space to
assign labels to individual pixels in
the image, or to find those collec-
tions of pixels in an image that
satisfy a model such as “house,”
“airport,” etc. A simple example of
a parameter space is the intensity
histogram of an image, in which
intensity is used as one axis and the
other axis is the count of pixels in
the image for each intensity value.
We will discuss three types of
parameter space decision problems:

1. Supervised classification, in
which the location of an “ideal”
for each class in parameter
space is known, and location of
unclassified points in parameter
space relative to the ideal

.points is used to make the
classification assignments
(statistical decision theory).

2. Unsupervised classification, in
which point clusters in parame-
ter space are assumed to cor-
respond to meaningful or
coherent image structures.

3. Model instantiation, in which
point clusters in parameter
space are used to find the
parameters of a modeled object
visible in a given image.

Supervised Classification. An
example of supervised classification
arises in the analysis of images ac-
quired by earth resources satel-
lites. A multispectral image, i.e., a
set of N registered images corre-
sponding to N different frequency
bands, is obtained for some por-
tion of the earth’s surface. Each pic-
ture element then has NV associated
measurements. The classification

problem is to assign a class label,
e.g., “corn,” “water,” “rock,” to
each pixel.

If we use an N dimensional
parameter space whose axes corre-
spond to the N frequency bands,
then the measurement vector at
each pixel location can be mapped
as a point in this measurement
space. To classify the pixel, we must
specify in the parameter space a
set of ideals, points that are typi-
cal of each class. Classification then
consists of assigning a pixel to the
class of the closest ideal.

Unsupervised Classification. An
example of unsupervised classifi-
cation is finding a set of intensity
thresholds to partition a gray-level
image into coherent objects by fea-
ture space clustering. Such a proce-
dure, based on histogram analysis,
is described in Appendix 9-3.

Model Instantiation. Parameter
space clustering can be used to
assign values to the parameters
of a model of some scene entity
appearing in an image. For exam-
ple, suppose we are searching for
straight lines in an image. The pa-
rameters in a model for a straight
line might be the slope, m, and
the y intercept, b, in the relation
y=mx+b.

We form a parameter space,
(m,b), so that any line through a
particular pixel will be mapped into
a point in (m,d) space. If we pass a
set of k lines of k different slopes
through a pixel x,y in image space,
we will get k different points mapped
in the m,b space. If this is done
for each pixel in the image that
has some minimum value of edge
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strength, then we have the situation
in which each such pixel votes for
the m,b combination that represents
possible lines passing through it.
After all N edge pixels are mapped
into A% N points in m,b parame-
ter space, the point in parameter
space that receives the most votes
represents the best instantiation

of the underlying model. Rather
than using quantized histogram
buckets to count the number

of points satisfying a particular m,b
combination, we could use'a cluster

analysis technique in a nonquantized

space.

In practice, the m,b parame-
terization for straight lines is not
suitable because m and b can be-
come infinite. A better choice of
parameters is the normal to the
line , and the angle of this normal,
as shown in Fig. 9-42(a). The his-

togram in (normal line, angle)
space for lines passing through the
point x,,y, is shown in Fig. 9-42(b).
Fig. 9-42(c) shows how a dominant
line can be determined using this
histogram.

Note that this approach results
in a mapping of many points to the
parameter space for each pixel in
the image. We are essentially trying
out many possible instances of the
model (in this case a straight line),
and relying on the clustering in
parameter space to obtain the best
value of the parameters for the
model. This approach, called the
Hough transform), can be extended
to general shapes, as described
below. .

If the object we are searching
for is an arbitrary shape, as shown in
Fig. 9-43, we select an arbitrary
point, P, interior to the region and

y
P1 P D .
X1, e
6 Y1
X 0 20 40 60 80 100 120 140 160
6
6) ®)
\\\. ° - -
. \\ ~¢—— Dominant line e o .
° h appears in transform space —F=e 51— 2
. as histogram bucket e T
P with the highest count 0 20 40 60 80 100 120 140 160
0
©

FIGURE 9-42 A Parameter Space for Straight Lines.

(a) p, & parameters.

(b} p, 9 histogram for lines passing through point x,, y,.

(¢) Determining dominant line.

draw the vector from this interior
point to points on the boundary.

For each point on the
boundary, we have two vectors, the
vector R to the interior point, and
the tangent vector at the boundary
point. We now form an R-table
containing each tangent vector and
its associated R-vector. The R-table
is used as follows. For each point in
a given image that is a strong edge
point we find the edge orientation,
i.e., the tangent vector at that point.
We then use this vector as a look-up
entry into the R-table and find the
one or more R-vectors that are
associated with this tangent vector.
Thus, for each edge point in the
image we now have one or more
R-vectors.

Now for each edge point,
position the tail of its one or more
R-vectors at the edge point. Note
where the head of each R-vector falls
and plot this R-vector-head point in
a histogram whose axes have the
same x and y values as the image. If
the modeled object is visible in the
image, then we will get a clustering
of R-head points in this histogram
corresponding to point P in the
model. If a strong cluster does exist,
then we have found the location of
point P and can also locate the
boundary of the object in the image.

As another example of map-
ping each image pixel into many
histogram points, consider the
following problem. Suppose we
have two images taken of the same
area but having different intensity
characteristics due to illumination
changes. Suppose, moreover, that
there is some x,y displacement
between the images. We would like
to find both the spatial displacement
and the intensity mapping function.
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offsets we find that we obtain a
better (more compact) clustering in
its histogram than for the other

Image,

APPENDIX 9-1
R Table offsets. If we carry out this proce-
Tangent | Angle of | R vector cure. for miary different displace-
veitor R vector | length mepts of the two 1maga, we can find
a histogram that provides us with
| T 8, R, the best (most compact) mapping of
.| intensities, and also provides us with
T, ) R, the corresponding positional match
\.k .k y.r between the images.
[ ] [ ] [ ]
® ] o
Statistical Classification
Reference image Description
We have previously discussed the
concept of constructing a feature
Using the R Table space whose axes correspond to
measurements made on an object.
We have also indicated that when an
Y Xl.'yl Y ¥ . XN unknown object is represented as a
+ + 0, [ —— _——d point in this space, there are several
Ry - methods for assigning it to a class by
- - using its distance from an ideal point
Edge of that class, or by noting where the
segment . . .
X nsenised seene with X unkx'xown point falls in a prewogsly
Sensed scene parameters 8,, R, votes Histogram partitioned feature space. In this
for location of reference section we will discuss how statistical
image at Xy, Y, theory can be used to provide the
distance metric or the partitioning
FIGURE 9-43 Hough Transform for General Shapes. criteria.
We can proceed by forming Peak
a histogram in which one axis foset AX,Ah
represents the intensity of a pixel |
in image 1, and the other axis
represents the intensity of a corre- _— .
sponding pixel in image 2, as shown £ Image, Intensity,
in Fig. 9-44. We show two differ- In,1age2 Intensity,
ent placements of image 1 over
Image 2. For each placement we Offset AX;, AV,
obtain a histogram of the number N
for each combination (intensity 1,
- intensity 2) that represents the
number of overlapped pixels in the , Intensity,
images that have this intensity Image,
combination. For one of the x,y Intensity,

FIGURE 9-44 Image Matching using a Two-Dimensional Histogram.
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The components of the statisti-
cal classification process are shown
in Fig. 9-45. On the right is a classi-
fier that assigns an unknown object
to a class based on the classifier
parameters and a set of measure-
ments made on the object. On the
left is shown the design or training
process for obtaining the parameters
of the classifier. To determine these
parameters, we must know or as-
sume the a priori probability of
occurrence of each class, the varia-
tion in each measurement for each
class (the probability density func-
tion, PDF, for each class), and the
cost of misclassification (the cost of
assigning an object actually of class
X to class Y.)

In the discussion below, we
use a single measurement and two

Reference objects
labeled as to class

classes for clarity, but the expres-
sions can be extended to any num-
ber of measurements and classes.

The Conditional Probability Density
Function (PDF). A typical PDF for
a single measurement, weight, and
two classes, man and woman, are
shown in Fig. 9-46. We use the term
conditional PDF and the notation
p(weight measurement|woman) to
denote the probability of a weight
measurement, given that we are
dealing with the class “woman.”
Note that in this example each PDF
has a single peak. For most objects
of practical concern, a PDF with
more than a single pronounced peak
indicates that the choice of
measurement is not a good one.
The process of estimating the

Set of measurements
of unclassified object

\
Training th I
raining the - : - =
classifier »-| Classifier parameters »-| (lassifier
Y
Knowledge or Object
assumptions about assigned
probability of classes, class label
distribution of measure-
ments, and cost of
misclassification
Training Classification
FIGURE 9-45

Components of the Statistical Classification Process.

PDFs using a given set of labeled
reference objects is known as
training and will be described later.

Bayes’s Theorem. We can use
Bayes’s theorem to modify the given
or a priori probability of a class, by
using the conditional PDF and the
measurement obtained for the
unclassified object:

p(m|Cip(C)

p(Clm) = —— "
normalizing factor

where p(C;|m) is the probability

of class C, given measurement m
(called the a posteriori probability);
p(m|C) is the conditional PDF-
supplied value, given measurement
m and assuming class C;and p(C) is
the a priori probability of class C,.
The normalizing factor is used to
make the set of a posteriori proba-
bilities sum to unity.

Given two classes C, and C,, we
classify an unknown object as being
a member of C, when the probability
of class C, given measurement m is
greater than that of class C,, i.e.,
p(C\|m) > p(C,|m). From Bayes'’s
theorem this becomes, choose C,
when p(m|C)p(C) > p(m|C)p(C)),
otherwise choose C,. If the PDFs are
given as histograms derived from a
reference set of measurements made
on ideal objects representing each
class, we would scale each histogram
based on the a priori probability of
its class, and assign the unknown
object to the class that had the
largest resulting value for measure-
ment(s) m.

We note that since p(C,) and
p(C,) are constants, and the p(m|C)
are single peaked functions for the
example shown in Fig. 9-46, the
decision criteria in this case amount
to assigning all persons with mea-
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APPENDIX 9-2
Probability of Training. The heart of the statis-
weight p(weight|man) tical classification approach is the
measurement p(weight|woman)

0 20 40 60 80 100 120 140 160 180 200

Weight measurement

FIGURE 9-46

Conditional PDFs of Weight Measurements for Two Classes.

sured values of m less than some
value, M*, to the class woman and
all persons with values of m greater
than M* to the class man. Thus, the
decision criteria based on statistical
arguments can be interpreted as a
simple partitioning of feature space
into two regions separated by a
simple boundary. For a multidimen-
sional feature space the partitioning

is performed using multidimensional
planes (hyperplanes) or multidimen-
sional surfaces (hypersurfaces). An
alternative interpretation is to con-
sider the statistical analysis as alter-
ing the initial Euclidean distance
metric in such a way that any

point can be assigned to the class
corresponding to the nearest

ideal point.

9-2

conditional PDF. Either parametric
or nonparametric classifiers can

be designed, based on what is
known about the PDF and what
must be estimated. A parametric
classifier assumes a functional form
of a PDF based on some knowledge
about the objects being classified.
Statistical procedures are used on
the reference set to estimate param-
eters such as the mean and vari-
ance of the assumed PDF. In a non-
parametric classifier we do not know
enough about the objects to assume
a PDF and therefore the PDF form
is estimated from the reference data.
This requires much more reference
data than the parametric case. The
process of estimating the PDFs
using the reference objects is often
referred to as training, and if the
reference objects have been labeled
(classified) by the designer, the term
supervised training is used.

A Path-Finding Algorithm

This appendix presents a dynamic
programming approach to finding
the lowest cost path in a cost array.
The example array is given in Fig. 9-
47(a) and the numbers represent the
local cost of having the path go
through that element. In this exam-
ple, we want to traverse the array
from the lower left (start element) to
the upper right (end element) so that
the sum of the path elements will be

minimum.

The algorithm uses a “path
cost array” that specifies the total
cost of the path from the starting
point to each element of the array.
We begin the process by initializing
the path cost array with high values
for all elements except that element
we wish to make the start of the
path; this element is assigned its
local cost array value. In our exam-

ple we want the start of the path to
be in the lower left hand corner, so
we assign that element the value 3,
its value in the local cost array. All
other elements are assigned the
suitably large arbitrary value 100,
as shown in Fig. 9-47(b).

A revised path cost array value
is obtained by adding the local value
of an element in L and the path cost
array value of one of its neighbors;
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100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
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3 5 7 917

100 100 100 100 100
100 100 100 100 100
25 16 20 17 25
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12 11 12 13 11
3 5 7 917

8l 64 4
64 9 49
49 4 36
49 64 9
81 64 49
9 4 4 4 64

1
64
64
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98221
83788
72638
78382
98762
32228

100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100

3100 100 100 100

100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
18 19 14 22 24
12 11 12 13 11
3 5 7 917

100 100 100 100 100
24 19 23 25 25
23 16 20 16 21
18 19 14 19 13
12 11 12 13 11
3 5 7 917

28 27/21—23-—24
24 1|9 23 24 24
23 16,20 16 21
18 19 14 19 13
12111213 11
35 7 917

100 100 _58-62-63
100 54781 9 96
94 45_68 32 87
94 100\41/83\2|3
84 67 56 47 19

3—7-11-15""79

FIGURE 9-47 Arrays used in the Path Computation.

(a) Local cost array (L). (b) Initial path cost array (P). (c) Results of first (left) and
second (right) iterations. (d) Third (left) and fourth (right) iterations. (e) Fifth iteration,
showing solution path. (f) Effect of squaring the local cost array on solution path:
Squared local cost array (left) and solution path cost array (right).

we perform this computation for
each of its eight neighbors, and if
one of these sums, SMIN, is less
than the element’s current path cost,
T, we replace T by SMIN (in P). We
show in Fig. 9-47(c) the result of
performing this operation while
sweeping through each row from left
to right, and processing rows from
bottom to top.

Notice in the first iteration how
change spreads from the lower left
corner. The repeated bottom-to-top
sweeping rule we are using here is
not an efficient one, since change is
generated at the bottom of the
array; a better strategy would have
been to start at the bottom, but to
reverse the sweep direction at each
additional iteration. Continuing
the iterations we obtain the array
shown in Fig. 9-47(d). Notice that no
changes are occurring in the bottom
rows. The final result is obtained on
the fifth iteration, Fig. 9-47(e).

To obtain the minimal cost
path, we start with the final element
of the path (the end element), and
look for the neighboring element
having the lowest value. Thus we
thread through the array with the
path 24-23-21-19-16-14-11-3.

To illustrate the relevance of the cost
assignment process, note what
happens when the computation is
repeated, but with the local cost
array squared, i.e., a monotonic
transformation of the cost function.
Since the differential between low
and high costs has become more
extreme, it now pays to lengthen the
path to avoid high-cost pixels, and
we obtain a longer and more “‘wig-
gly” path, as shown in Fig. 9-47(f).

The path is now 63-62-58-
54-45-41-32-23-19-15-11-7-3.
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9-3

Relational (Rubber Sheet) Image Matching

This appendix shows how dynamic
programming can be used to solve a
problem in image matching. We
have a reference image

6 4

35

and we want to find the best match
in the sensed image:

5288
7513
8157
4324

If the reference image was
“rigid,” then we would move the
sensed image over the reference
image looking for the location where
the sum of the absolute differences
between the sensed and reference
elements was smallest. (The absolute
difference of corresponding pixel
values is the local cost function
chosen for this example.) In the
present situation, we are willing to
allow a certain amount of “give”
between the reference elements;
however, a penalty will be paid for
such stretching. For reference pur-
poses, we will label the reference
image

AB
DC

We will assume that springs
exist between pairs (B,A),(C,B), and
(D,C), and that there are the follow-
ing costs to stretching:

« Element A has no spring cost

o Element B to element A: B adja-
cent to right of A costs nothing

B displaced one unit to the right
costs 1

Other movements of B from A
cost infinity

Element C to element B: C adja-
cent below B costs nothing

C displaced one unit down from B
costs 1

Other movements of C from B
cost infinity

Element D to element C: D adja-
cent to left of C costs nothing

D displaced one unit to left costs 1
Other movements of D costs
infinity

For convenience, we display below
the cost of match for each reference
element. Each array was obtained by
taking the absolute difference of a
reference element with each element
of the sensed array.

The arrays on page 300 show
the results of the computational
sequence. The leftmost arrays show

the placement of element A. Look-
ing at A’s cost matrix, we choose the
lowest cost positions, those having a
cost of 1. For clarity we have drawn
a separate array for each best loca-
tion of A. For each best placement
of A we then consider the best
placements of B. For example, B
can be placed adjacent to the first
placement of A for a cost of 1+2+0
units, or B can be stretched for a
cost of 1+4+1. The first term is A’s
best cost, the next term is B's match
cost, and the third term is the
stretch cost. Once A and B have
been placed, we have a total cost for
the A,B combination. In our exam-
ple, we choose the lowest cost in
each array to determine the posi-
tioning of the corresponding compo-
nent. In actual practice we could
carry along more than one position
for each component.

In the placement of element C
on the first row of arrays, given the
best placement of A and B costing 3
units, we can place C for 3+0+0 or
3+4+1 units, as shown. The place-
ment that results in 3 units of cost is
chosen, and is used in the rightmost
column to obtain a placement of D
at a cost of 3+4+0 units.

A match cost
1422
1153
2511
2342

B match cost C match cost

1244 0333
3131 2042
4313 3402
0120 1231

Cost Arrays

D match cost
2155
4220
5224
1011
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Placement A Placement A,B Placement A,B,C Placement A,B,C,D
1--- A36- AB-- AB--
.- ---- -3-- 7C--
. I -8-. .
1--- A25- AB-- AB--
.- - -6-- e
- - -5-- 6C--
-1-- -A43 -A-B -A-B
.- - ---5 -87C
---- ---- ---5 -66C
--1- --A4 --AB --AB
---- - ---5 -66C

Thus, the lowest cost placements have a value of 6 and they are the following:

AB--

DC--

_A-B N

--AB --AB

--DC -D-C --DC

In actual practice the computations would be in tabular form. Note that if we add the additional constraint that
D must be in the same column as A, then only three solutions are valid.



