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Computational
Vision

I

Computational vision (CV),
a subfield ofartificial intelli­
gence, is concerned with
developing an understand­
ing of the principles under­
lying visual competence in
natural and artificial systems, and with
providing a machine with some of the
capabilities of the human visual sys-
tem. Such capabilities include the ability
to describe a scene based on data pro­
vided by imaging sensors, and to produce
an understanding of the function, pur­
pose, and intent of recognized objects.
Table 9-1 summarizes the functional
requirements of a general purpose vision
system.

The challenge for computational
vision is twofold: (1) The computing

device should be capable of
simulating physical experiments,
such as imagining the movement
or rearrangement and distortion
of objects in the scene to solvea
problem or comparethe scene

with reference scenes stored in memory,
and (2) the computershould have some
way of physically interacting with, and
sensing, the outsideworld to build up a
database of knowledge and experience.
Withoutphysical interaction, there is no
reasonable way to capture and store in
computermemory a suitably complete
modelthat reflects all the complexity and
detail of a real-world scene.

In other areas ofAI, we have already
observed the appropriateness of the say­
ing, "If youare a hammer, everything
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Table 9-1 • Functional Requirements for a General-Purpose Vision System

Geometric modeling. Determine the three-dimensional configuration ofthe surfaces
and objects in a scene, including the location ofthe viewer (sensor) with respect to the
scene being viewed.
Photometric modeling. Determine the location and nature ofthe illumination sources and the
corresponding shadowing and reflectance effects induced in animage ofthe scene.

Scenesegmentation. Partition the scene into meaningful orcoherent subunits which
can be independently analyzed and identified.
Naming and labeling. Identify the objects visible ina scene aseither members ofknown object
classes, or as known individuals. Determine the physical attributes (size, material composition,
etc.) of recognized objects.
Relational description and reasoning. Determine the relationships among the objects
in a scene, e.g., the appearance ofthe scene justprior to thetime an image was ac­
quired, and how thescene will appear immediatelyafterward. How canthe objects ina
scenebe rearranged to achieve some given purpose?
Semantic interpretation. Determine thefunction, purpose, intent, etc., ofobjects ina scene.

looks like a nail." For computational
vision, this can be paraphrased as, "If you
are a digital computer, then everything
looks like a number or a symbol." Thus,
for a digital computer to deal with the
visually perceived world, the signals ac­
quired by the imagingsensors must first
be converted into numbers and ultimately
into symbols. We are therefore led to the
signals-to-symbols paradigm described in
the next section. The rest of this chapter
discusses some of the techniques' involved
in deriving symbolic descriptionsfrom
the sensed signals. The sections are se­
quenced to reflect the increasing complex­
ity and abstraction of the corresponding
techniques, beginningwith the low-level
representations and algorithms, and pro­
ceeding through the intermediate and
highest levels.

"We attempted to selecttechniques that are both
representative and can be understood without the
need for an involved mathematical presentation.

A noteworthy difference between
many computational vision representa­
tions and those of general AI is that in
vision weoften use arrays of picture ele­
ments (pixels) or other iconic (picturelike)
representations that mirror the sensed
image and thus retain a more direct
correspondence to the real world. The
accuracy and adequacyof any of the rep­
resentations in the signals-to-symbols
hierarchy is judged by how faithfully it
portrays the real worldscene that was
originally sensed - i.e., the primarycon­
cern is with physical modeling of the
world. This is in contrast to conventional
Al systems which typically do not havea
perceptual component, and thus work
within a complete, consistent, and closed
model of reality. The basic questionswe
address in this chapter are:

• What is the nature of the computer's
symbolic descriptionof the visual world,
and how is it obtained?
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FIGURE 9-1 The Signals-to-Symbols Paradigm for Computational Vision.

Raw sensed data aretransformed intoa description of the scene bya seriesofinductive steps.

• What are the representations used in
the signals-to-symbols paradigm?

• Whatalgorithms existforobtaining
these representations and extracting
information from them? How can we
build a machine that can recognize
objects and re-create scenegeometry
from the data provided by two­
dimensional images?

• Whatare the few key ideas and major
assumptions that underlie most of
the current computational vision al­
gorithms?

Weconclude the chapterwith a criti­
cal look at the signals-to-symbols para­
digm, and indicate the requirements that
mustbe satisfied by a computer if it is to
achieve human-level competence in visual
perception.

SIGNALS-TO-SYMBOLS
PARADIGM

Computational vision (CV) is that body of
theory and techniques that represents our
present understanding of howcompetence
for visual perception can be implemented
in computing hardware. The dominant
paradigm, signals-to-symbols, is one in
which the rawsensed data is transformed
into a meaningful and explicit description
of the corresponding scene by a series of
inductive steps employing progressively
more abstract representations (Fig. 9-1).
These steps can be partitioned into three
categories, based on the nature of the
modeling requiredto carry out the analy­
sis: low-level scene analysis is based on
local image properties, intermediate-level
scene analysis usesgenericgeometricand
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photometric models, and high-level scene
analysis is based on goal-oriented seman­
tic models and relationships.

LOW-LEVEL SCENE
ANALYSIS (LLSA)

At the lowest levels of the processing
hierarchy, the representations and trans­
formation techniques tend to be indepen­
dent of anyfinal purpose. Concern here is
with physical and statistical modeling of
the generic local properties of the visible
surfacesin the scene and their appear­
ance in the image. Low-level scene analy­
sis (LLSA) is also concernedwith the
processes of transforming continuous
sensor-derived signals into discrete digital
representations, and the reduction of
noise and distortion introduced by the
sensing process. Inputs to this stage of
processingare the raw signals from one or
more sensors, and the output is typically a
set of registered arrays, with each array
corresponding to aparticularscene attrib­
ute such as localsurfaceorientation,
surface reflectance, edge point location,
etc. LLSA techniqueshavebeen devel­
oped to:

• Reduce imaging noiseand unwanted
scene detail without seriously degrading
information needed for recovery of
higher-level ,scene description.

• Disambiguate, i.e., separate the contri­
butions of the illumination, surface
reflectance, and surface orientation to
the brightness of a point in the image
(in a sense, to invert the imaging
process).

• Detect local homogeneities and disconti­
nuities that can be used to partition the

image into regions corresponding to
coherentobjects in the scene.

• Detectdistinguished local image fea­
tures that are importantmarkers and
delimiters ofscene features.

• Deduce local surface geometry (three­
dimensional depth and orientation) from
shading, texture, stereo analysis, and
the analysis of a continuous sequence
of images ("optic flow").

The analysis usually deals with local
phenomena, usingmodels basedon such
general concepts as continuity (or discon­
tinuity) of intensity, texture, or color.
While LLSA provides an interpretation of
real-world physical phenomenafor use by
the integrative and reasoning mechanisms
comprising intermediate- and high-level
scene analysis, the LLSA techniques
themselves have few (ifany) of the attrib­
utes characteristic of reasoning. LLSA
techniques are almostalways basedon
the general position and the continuity
assumptions: (1) that the image was taken
from an essentially randomlocation in
space, and no deliberateattempts were
made to make separated and discontinu­
ous things look continuous in the image,
or to align shadow and occlusion bound­
aries, or to make a curved linelook
straight, etc.; and (2) that because the
scene is largely composed of continuous
surfaces, the geometric, photometric, and
physical propertiesmeasured at anypoint
in the image are good predictors of the
values appearing in the neighborhood of
that point.

We first describe the image-acquisition
process, and the preprocessing operations
usedto improve the quality and utility
of the image. Wethen describe the vari­
ous methods for detectinglocal discon-
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tinuity and homogeneity. Determination of
scenegeometry from single and from
multiple images completes the discussion
oflow-level analysis.

Image Acquisition (Scanning
and Quantizing)

The computational vision process begins
eitherwith an existing image (e.g., a pic­
ture taken at some previous time), or a
scenecurrently beingsensed bya televi­
sioncamera-type of sensor. To translate
scene illuminance information into a form
suitable for computerprocessing, it must
first be converted into an array ofnum­
bers that represents the intensity of re­
flected light at each point in the scene.

Ifwestart with an image, rather than
the actual scene, wecan obtain the inten­
sity data by moving a small aperture or
window overthe image so that the aver­
agelight intensity level of the image
within the window is sensed bya photo-

sensitive device. Thisscanningprocess
can be carried out using a mechanical
device that physically moves a sensor over
the image in a regular and exhaustive
manner, or by using a flying spot scanner
that moves a beam oflight sequentially
overthe image andsenses the reflected
(or transmitted) lightfrom the image.
(Such exhaustive scanning is in contrast
to the selective scanning employed by the
humanvisual system, as illustrated in
Fig. 9-2.)

The continuous electrical signal that
results from the mechanical scanning
process muststill be converted into an
array of numbers bysampling the signal at
regulartime intervals (corresponding to
regularspatial intervals over the image),
and then approximating the measured
voltage bythe closest integer in some
predefined rangeof numbers, as shown in
Fig. 9-3. With currenttechnology for
storing, processing, and displaying picto­
rial data, a set ofvalues for sampling and

10

FIGURE 9-2 Adaptive Scanning of a Scene by the Human Eye.

(a)Original picture. (b) Picturewith humaneyescanningpath shown. (FromNorton and Stark,
Scientific American, June 1971, with permission.)
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Voltage

Scene

TV camera
(a)

Time

Electrical signal
obtained from a
single line scan
across the image

Electrical (analog)
signal from
TV camera

\ .. 25

Array of quantized
image intensities

.. 25 50 .. . 40 30 20 10

Signal corresponding
to a single scan line

(b)

fiGURE 9-3
The Image Acquisition Process: Representing a Scene by an Electrical Signal and Then an Array
of Numbers.

(a)Obtainingan electrical signalcorresponding to intensities from a scene. (b) Converting an analogsignal to sampledand
quantized intensityvalues.

digitizing an image is typically a 256 x
256 grid with 256 possible intensity levels
at each such grid point.

An important issueis the fidelity with
which the actual scene appearance is
captured by the arrayof integers that is
extracted to describe it. In all of the digi­
tizing approaches, the scene intensity is
spatially sampled. The smallest image
distance that can be tolerated between
intensitysamples depends on the charac-

teristics of the lens system, on the sensi­
tivesurfaceof the sensor, and on the
system used to convert the signals from
spatially continuous to discretequantities.
The sampled intensities are further Quan­
tized into digital values to satisfy practical
constraintson the memory or register
wordsize ofthe computer. How much
information is lost in this digitization
process; i.e., how faithfully can werepro­
duce the original image from the derived
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-
finite array of numbers? Amazingly
enough, the continuous image can be
exactly re-created from itssampled (but
unquantized) representation if the sample
spacing is lessthan a value determined by
the maximum spatial rate of change of
intensities in the image. When the sam­
pled analogsignal values are converted to
integer quantities, some amountofquanti­
zation noise is introduced in the analog­
to-digital conversion which generally
cannotbe completely removed. However,
a sufficient numberof levels of quantiza­
tion can be selected to insure that ampli­
tude noisealready introduced bythe
sensing process is not significantly in­
creased. Thus, we conclude that the proc­
essof converting a continuous image into
an array of integers does not causeany
fundamental loss of information.

Image Preprocessing (Thresholding
and Smoothing)

Image preprocessing usesoperations
that are relatively independentof scene
content to alter the stored values in the
digital array representing the scene. Pre­
processing operations are generally in­
tended to remove noise, enhance certain
aspects of the image (e.g., edges), and in­
duce other changes that will simplify the
higher-level processing steps. It is as­
sumed that image intensities are spatially
continuous overmost of the image, and
that this continuity can be approximated,
forexample, by a low-order polynomial.
An importantgoal in preprocessing is to
avoid eliminating existing edgesor intro­
ducing false edges.

Typical preprocessing operations are
(1) thresholding, which reduces the digi-

tally quantized image containing one of
many possible integer intensity values at
each image location to a binary picture
containing one of only two possible values
at each location, and (2) smoothing, the
use of various filtering operations to en­
hance or suppress certain aspects of a
scene.

1. Thresholding. The thresholding
operation achieves image partitioning
at an early stagein the analysis, re­
ducesnoisein the image, and simpli­
fies later processing steps. The
conceptof thresholding is a simple
one: we assume that pixels in a co­
herent region of the image all have
an intensity greaterthan (or less
than) a certain value. An intensity
threshold is chosen, and all pixels
whose intensity level is below this
threshold are assigned one value
("black"), and all those above this
threshold are assigned another value
("white"). Techniques for automatic
threshold selection are discussed in
Box9-l.

2. Smoothing (filtering). Smoothing
operations (1) remove noise and
illumination artifacts that were intro­
ducedinto the image during the
sensing and image-acquisition pro­
cess; (2) enhance edges and other
selected image features; and (3) de­
grade unwanted detail below the level
of resolution at which image interpre­
tation is to be carried out (see Fig.
9-5). Smoothing is usually accom­
plished by replacing the intensity
value ofeachpixel with a new value
basedon the intensity values of pix­
els in the immediate neighborhood of
the given pixel. The problem that
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I]I BOX 9-1 Image Thresholding

Thresholding transforms a gray-level
image, whose pixels can haveanyof
a continuousrange of intensity
values, into a binary imagein which
each pixel is either black or white.
Thresholding achieves a simple form
of image partitioning, reducesnoise
in the image, enhancescertain
image features, and simplifies later
processingsteps. In some situations
different thresholds may be used in
different portions ofthe image to
compensate for some known or
deduced illumination variation or
change in localscene contrast.A
person interactively adjusting the
threshold and viewing the effect of
each such thresholdsetting can
choosea threshold value that best
achieves some desiredeffect. Auto­
matic threshold selectionisusually
based on the following techniques:

• Effect on image. An iterative
procedure for threshold selection
can be based on the number, area,
and stability of the regions gener­
ated by differentthresholds-a
good threshold settingshould
produce mostly largewell­
separated regions which retain

FIGURE 9-4
An Intensity Contour Map of an
Image.

(Photoscourtesy of SRI International,
Menlo Park, Calif.)

their shapeundersmall variations
of the selected threshold value. An
intensity contourmap for an
image can make apparent the
effect of different thresholds on
the final partitioning oftheimage
(Fig. 9-4).

• Histogram analysis. Theinten­
sityhistogram is a graph whose x
axis shows the range ofpossible
intensity values, andwhose y axis
shows the number ofpixels in the
image that have each ofthese
intensities. Animage andits
associated histogram areshown in
Color Plate3. Note that there are
several peaksin the histogram,
indicating the intensities that are
mostcommon in the image. An
appropriate threshold setting for
an image can automatically be
determined byanalyzing the
histogram shape, often underthe
assumption that individual peaks
of the histogram correspond to
coherent(relatively constant
intensity) regions ofthe image,
and that the background is the
lightest or darkestofthese re­
gions.

arises in the smoothing operation is
how to avoid throwing the baby out
with the bath water, i.e., how to avoid

.eliminating essential data in trying to
accomplish the goals stated above.
The basic issue is how to select the
appropriate image subsets to process

coherently without crossing bounda­
ries separating different scene enti­
ties. For example, since the smooth­
ing function usually consists of opera­
tions in a window centered around
the pixel being modified, how can
one keep from blurring edges when
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FIGURE 9-5
Need to Degrade Unwanted Detail.

Look at this picture from a distance. From far enough away. the textureelements disappear and this
looks like a normal photograph. Nowlook at this picture through a narrowtube from the same
distance at which the texture elements originally disappeared-the texture elements should become
visible again. showing that under appropriate conditions. the human visual system deliberately
degrades low-level detail. (Courtesyof SRI International, Menlo Park. Calif.)
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pixels interior and exterior to the
object fall in the same window?
There is no singlebest smoothing
algorithm. Some of the common
approaches to smoothing and the
implicitassumptions made for each
are described in Box9-2.

111 BOX 9-2 Image Smoothing

Detectionof Local Discontinuities
and Homogeneities (Edges, Texture,
Color)
No reasonable semantic description or
interpretationis possible if every point in
a scene is unrelated to its neighbors.
However, mostof the scenesweencoun-

Imagesmoothing is employed to
reduce noise, to enhance selected
imagefeatures, and to degradeun­
wanted image detail. Mostsmooth­
ing techniques fall into three broad
categories: (1) local averaging,
(2) model-based smoothing, and (3)
geometricsmoothing.

Smoothing via Local Averaging

Smoothingbased on localaveraging
operations assumesthat the intensity
surface is continuousover most of
the image. This assumption is a
special case of the more general
assumption that most of the image
will depict continuousscene surfaces
at an image resolutionsuitable for
interpretation to be possible. In one
smoothingapproach based on this
assumption, we replace the center
of a small region around a pixel
(typically a square window) by the
weighted averageof the values found
within the window; this operation is
identicalfor each pixel of the image.
Another approach used to avoid the
effect of deviantpixels and to retain
edges is to use the median, rather

than the average, of the intensity
values in the window.

Smoothing Based On A Priori
Models

The following techniqueis typical of
a globalapproach to smoothing.
Supposewehavea modelof how the
illumination varies in an image. For
example, ifwe know (or assume) that
the illumination can be modeled as a
quadratic function, we can fit a
quadratic surfaceto the intensity
values of the pixels in an extended
portion of the image. The intensity
of each pixel is then subtractedfrom
the corresponding valueof the fitted
surface, leaving onlythe higher­
order variations of the underlying
signal.We thus prevent a known
artifactfrom interfering with our
analysis of the intrinsic information
residing in the image.

Geometric Smoothing

Geometric smoothingof an image
can be carriedout by assuming that
very small isolated regionsconsistof

noiseand can be eliminated, and
that small gapsbetween regions are
imaging artifacts and canbe filled in.
Such smoothing canbe readily
accomplished in binary images using
sequences ofshrink andgrow opera­
tions. In the shrink/grow approach
to eliminatingsmallnoise regions,
wefirstuse a shrinking operation in
which blackpixels that arenot
completely surrounded by black are
set to white. The shrinking opera..
tion can be iteratively applied several
times. Agrowing operation can now
be used in which allblack pixelsthat
are not completely surrounded by
blackpixels are provided with sur­
rounding blackpixels. Any small
blacknoise regions will have been
eliminated bythe shrinking opera­
tions, and the larger regions will be
left unaltered if the number of
shrinkand grow operations are
equal. If the sequence ofgrow oper­
ationsis applied first (followed by
the shrinkoperations) small gaps
in blackobjects or between adja­
cent objects will be filled, but the
shapesof the objects will generally
be unaltered.
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ter can be decomposed into coherent
objects or regions that are relatively ho­
mogeneous with respect to one or more of
the following attributes: intensity, color,
texture, distance, motion, material compo­
sition, physical cohesion, etc. Correspond­
ingly, there are places in an image where
there are sharp discontinuities in some of
the above attributes; e.g., across an edge
that occludes another part of the scene.
Identifying homogeneous regions and
discontinuities greatly simplifies the prob­
lem of analyzing the image in two impor­
tant ways: (1) discontinuities are typically
associated with the edgesof objects, and
locating the edges makes objectshape
explicit; and (2) identifying portionsof an
image corresponding to coherent objects
allows us to analyze those portions in
isolation ifdesired.

Some methods for finding such dis­
continuities and homogeneities are given
below. Someofthe techniques are inde­
pendent ofthe objects in the scene, while
others assume certain characteristics of
specific real-world objects.

Local Edge Detection. It has long been
recognized that the detection of the edges
of the objects appearing in an image is an
essential step in scene analysis, and for
this reason there has been considerable
effortdevoted to developing effective edge
detection algorithms. One class of such
algorithms, local edgedetectors (LEDs),
assigns an edge value to individual pixels,
but does not linkpixels together to form
an extendededge segment. Therefore, an
additional association or linking step must
still be carriedout in the computer to
obtainan internal representation of the
connected edgesegment. Edgelinkingis
an intermediate level operation, and is

discussed later. LED algorithms can be
grouped into the following categories:

Localgradient operators: These
algorithms are basedon characterizing an
edge as a local intensity discontinuity. The
intensities in a local region of the image
are examined and an edge value (and
sometimes an edgeorientation) is as­
signedto a picture elementbased on
the change of intensity within that lo-
cal region.

The simplest and most commonly
employed gradienttype LEOs have the
following characteristics (e.g., the Sobel
edge-detector: see Fig. 9-6): Theycon­
volve a set of small digital operator arrays
(e.g:, a 3 x 3 pixel square) with the image
array," Each such operator array evaluates
the intensity gradient in one particular
direction at the image location corre­
sponding to the center of the operator
array (Fig. 9-6b). Anapproximate gradient
can be computed byapplying the operator
in two orthogonal directionsand employ­
ing vector addition (Fig. 9-6c). Better
results are obtained by running the opera­
tor at a largenumber of angularorienta­
tions and selecting the maximum value
obtainedas the gradientmagnitude at the
given location, and the corresponding
direction as the gradient direction. Edge
pixels are determined by thresholding the
gradientimage.

The simple gradient-type LEOs, such
as described above, ignore a number of
considerations relevant to real imagery.
First, most real images have extended

'In convolution the operator arrayis moved across
the image, and at each placementthe elements of
the operatorarray are multiplied by the correspond­
ing image elements. All the products are summed,
and the result is assigned to the image location
beneath the currentcenter of the operator array.



-1 0 1

-2 0 2

-1 0 1

(a)

1 2 1

000

-1 -2 -1

250

COMPUTATIONAL VISION

Image A
Sobel window for

[§J............. vertical edge

------~.....--------.
-~

I ~CJ---r- Pixel isassigned a
Image A I ~~ verticar and a
~ horizontal edge value.

@]~
Sobel window for
horizontal edge

(b)

FIGURE 9-6 The Sobel Edge Detector.

(a)SObel windows. (b)Applying Sobel windows to an image. (c)Example ofSobeledgedetectorused to finddirection
of edge through circledelement in image array.. (See Fig.9-10for exampleof application of Sobeldetectorto a real
photograph.)
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smooth gradients that are artifacts of the
illumination and imaging processes. There
isno reasonable way to set an absolute
threshold on the local gradient (e.g., as
required bythe Sobel LED) to distinguish
intensity discontinuities (edges) from these
extended smooth gradient artifacts. We
are thus faced with the problem of how to
detect low contrast edges (using a fixed
threshold gradientoperator) without be­
ingdeluged byfalse alarms arising from
smooth gradients. Thereis also the prob­
lem that the intensity discontinuities cor­
responding to different edges in an image
canvary overa rangeofwidths (resolu­
tions); a single sizeconvolution mask
(even at multiple orientations) is not ade­
quate. Box 9-3presents an approach to
local edgedetection which is better able
to deal with these problems.

Generic modelfitting: These algo­
rithms are basedon modeling an edgeas
a specific extended intensity profile.
Within somelocal search area, a single
bestfit is selected to this specified inten­
sity profile . The generic model-fitting .
approach is very specific aboutthe type of
discontinuity it is searching for, in con­
trastto the local gradient approach which
is satisfied bya wide variety of intensity
discontinuity types.

It is often acceptable to describe an
edge as beinga geometrically straight
intensity step discontinuity oversome
local extentofthe image. In such a case,
we can move a small window overthe
image and find the bestfitof the above
model to the intensity patternviewed
through the window at each of its stop­
ping locations. The Hueckel edgedetector
is the mostcommonly employed operator
of thistype. It accepts the digitized light
intensities within a small disc-shaped

subarea (containing at least32 pixels) and
yields a description ofthe mostedgelike
(brightness discontinuity) occurrence
found within the disc.

Semantic modelfitting: The algo­
rithms basedon "semantic edge models"
use specific characteristics of the objects
of interestto detectthe edges. For exam­
ple, various objects such as roads or rivers
in an aerial photograph, or ribs in a medi­
calx-ray film, have edge properties that
are dependent on the natureof the ob­
jects themselves. The algorithms in this
category are therefore tailored to search
for the edges ofa particular class of ob­
jects. For example, to detect roadsin low
resolution aerial images, the Duda road
operator (Fig. 9-7) specifically requires

Region adjacent
to road

fiGURE 9-7 The Duda Road Operator.

Thegeneralidea is (1) adjacent pixels alonga road
shouldhave similar intensities, and (2) adjacenton-road
and off-roadpixels should havedifferent intensities. If
these two conditions are satisfied, a highroad score
results.

Score - f(r)/g(1,s). f(r) is high if the differences between
r 1,r"r3 are small; g(1,s) is low if (r1-s,), (r, - sJ . (r3 -sJ
differences are large. For a road. f(r) is high and g(1,s)is
low, resulting in a high score.
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I] BOX 9-3 Local Edge Detection Based on Lateral Inhibition

FIGURE 9-8
Lateral Inhibition using "Zero-Crossing" Detector based on
Difference of Gaussians .

Organicvisual systems universally
employ a mechanism, called lateral
inhibition, that offerssome relief
from the edge-finding problems
encountered by using the simple
gradient-type LED. Computationally,
lateral inhibition involves setting the
edge "signature" of a picture ele­
ment (pixel) to be the weighted
difference of the average intensities
of two differently sized masks cen­
tered on the pixel. In some simple
implementations, each mask is a
uniformly weighted rectangular box.
In more sophisticated versions, and
especially as found in biological
systems, the masks have a gaussian,
bell-shaped weighting, rather than a
uniform weight distribution (see Fig.
9-8). Applying such an operator to a
regionof an image in which there is
a uniform gradient, no matter how
strong, will result in a zero response
everywhere (assumingthat the sum
of the weights in the two masksare
equal). If there is a sharp intensity
discontinuity superimposed on the
uniform gradient, then as the opera­
tor is movedalong a path normal to
the discontinuity, its valuewill be
zero until the larger (outer) mask of

Amp litude of
weighting function

Distance
---+-

(a)

the operator crosses the discontinu­
ity. Then the value returned by the
operator will increase until the
smaller(center) mask intersects the
discontinuity. At this point the value
returned bythe operator will rapidly
decrease, becomingzero whenthe
smallermask is exactly centered on
the discontinuity. Continuing, we
now obtain a symmetrical response

(b)

to whatwehad approaching the
discontinuity, but with reversed sign.
The edge is detectedbylocating the
"zero-crossing" of the operator's
response oversome portion of the
image (not just a zero value). The
strength and direction of the edge
must be determined by analyzing the
responseofthe operatorin the
vicinityof the zero-crossing.

that a road fragment have relatively con­
stant width and intensity values along a
line segment in addition to the generic
requirement of high intensity gradient
normal to the direction of the segment.

The results obtained by applying
several LED algorithms to the same scene
are presented in Fig. 9-10. The Duda

operator, specifically designed to detect
roads, produces a more intuitivelyobvious
result than the other more generic edge
operators.

Analysis of Local Homogeneity. The
identification of homogeneous regions is
generally accomplished by first labeling
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BOX 9·3 (continued)

To determine very sharp inten­
sity discontinuities in an essentially
noise-free image, the centralmask
can be one pixel in diameter, and
the outermaskjust slightly larger;
however, if the intensity discontinu­
ity is "blurred" overa numberof
pixels, and ifthe image is noisy, then
the outer mask musthavea diame­
ter larger than the width of the edge
transitionregion. In fact, the best
response in terms of the magnitude
andslope ofthe reversal on which
the zero-crossing occurswill be
obtained if the outer maskis made
as big as possible without making it
so largethat it simultaneously covers
more than one edge. Increasing the
diameter of the central mask
smoothes the response of the opera­
tor, but also decreases the amplitude
andslopeofthe section on which we
are looking for the zero-crossing.
Choosing an optimal size for the
central mask is a complex issue, but
it probably should not be larger than
the diameter ofthe edge transition.
To dealwith a complex scene, a set
of zero-crossing operators with
gradedsizes ofthe central mask is
required to detectedges ofvarying
widths (Fig. 9-9).

FIGURE 9-9 Useof Zero-Crossing Operators to Find Edges at
Different Scales ofResolution.

The diameter ofthe zero-crossing operator was varied to obtain these results.
(Courtesy of SRI International. Menlo Park. Calif.)

each pixelin the image with the values of
attributes such as texture and color.

Texture analysis. Although there are
many fascinating biological and compu­
tational aspects oftexture perceptionI
detection, weare concerned here only
with the limited question of how analysis
of texturecan be used to partition an

image into homogeneous regions. Since
the human visual system can easily recog­
nize different typesof textures, it may
comeas a surpriseto find that there is no
generally accepted definition of texture
and thus no agreement as to how it can
be measured. It is not easy to formally
characterize the basis ofour perception
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(b)

(e)

(c)

(f)

fiGURE 9-10 Result of Various Edge Operators Applied to the Same Scene.

(Operator scores are thresholded to highlight the locations assignedthe best scores.) (a)Original image; (b)Duda road
operator; (c) Roberts' cross gradient; (d) Sobel-type gradient; (e) Hueckellineoperator; (f) Intensity. (CourtesyofSRI
International, Menlo Park, Calif.)

of texture described by terms such as
"fine," "coarse," "smooth," "granular,"
"random," "mottled," etc. We know intui­
tively that texture involves a statistical or
structural relationship between the basic
elements, and for figurative (cellular,
macrostructure) textures such as a brick
wall or a tiled floor, our visual system can

detect the underlying patterns that make
up the texture design, and we can de­
scribe the relationship of the elements
(Fig. 9-11a). For microstructure texture,
such as the fields seen in aerial photo­
graphs, or the texture of cloth, the under­
lying patterns are no longer obvious and
it is difficult for the human to describe
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(b)

FIGURE 9-11 Texture Discrimination.

(a)Examples of macro- and microtextures. (Photosby O. Firschein.) (h) The human visual system has no troublepartitioning
images containing various types of texturepatterns.
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iii

Single array with each pixel
assigned three intensity values

(Color Plate 3 shows a color photograph and the "blue"
image extracted from it.)

obtained simultaneously using a color
vidicon, the arrays can also be obtained
by sensing the scene three times, each
time through a different color filter. Some­
times the spectral (color) component of
an image is relatively constant overlarge
areas of the surface of a single object,
while total intensity may changemore
erratically due to uneven direct illumina­
tion and local reflections. Thus colorcan
be used to help find homogeneous regions
in an image bygrouping together neigh­
boring pixels with similar color attributes.
Errors may still occur due to the fact
that objects will be coloredby reflections
from other colored objects, because of
shadows, and because the basic assump­
tion of homogeneity is not always valid.

Local Scene Geometry from a Single
Image (Shape from Shading and
Texture)

We know that the shadingand texture
present in a single image can produce a
vivid impression of three-dimensional
structure (Fig. 9-13). What is the compu­
tational basis of this effect? A crucial
source ofinformation about three­
dimensional structure is provided by
the spatial distribution of surface mark­
ings in an image. Since projection dis­
torts texturegeometry in a mannerthat
depends systematically on surface shape
and orientation (see Fig. 9-14), isolating
and measuring this projective distortion in
the image allows recovery of the three­
dimensional structure of the textured
surface. This is not a straightforward task
because the projective distortions encod­
ing surface orientations are confounded in

"Green" image

Color image

Red filter Green filter

~ (1021~U (64)-.
" Red" image

(but not to recognizel) the texture (Fig. 9­
lIb). Analysis of micro- and macrostruc­
tured textures is discussed in Box 9-4.

Color. A colored image is typically
represented in the computeras three
separate arrays of numbers, with each
array correspondingto a primary color,
and the value of a pixel representingthe
intensity of the primary color component
at the correspondinglocation (see Fig.
9-12). Each element of the image is there­
fore represented by a triple ofvalues.
Although all three images are usually

--------- t .>:
~(22'64"021

fiGURE 9-12
Color Represented as a Triple of Values.

Blue filter

(22)
'-------'

" Blue" image
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11 BOX 9-4 Analysis of Micro- and Macrostructured Texture

Texture analysis is a basicoperation
in scenepartitioning. It attempts to
formalize our intuitive notion of
surface appearance.

Microstructured Texture

Tho general approaches can be
taken to the analysis of microstruc­
ture textures, (1) analysis on the
basis ofmicrostructure regularity as
detected bystatistical or power
spectrum techniques, and (2) the use
oftechniques that modelthe original
surface that produced the texture
patterns.

Statistical features approach.
Because the basic units ofmicro­
structure are small, techniques that
detectregularity in short sequences
ofpixels can be used to partition
microtextured scenes.The basic
strategy is to form a featurespace
basedon measurements in a neigh­
borhood abouteach pixel in the
image. Segmentation of the image
can be accomplished by assigning
pixels to one or another region on
the basis of the location of that pixel
in the feature space.

• Co-occurrence approach. The
spatial gray-level relationships can
be expressed as S(i,j!d,A), the
number of times a pixel of inten­
sity i appears within d pixels and
an angle A of a pixel of intensity j,
in some neighborhood of the pixel
to be classified. One can use
functions ofS as the components
of a feature space. Typical ofsuch

functions is energy, formed by
summing the square of S over all i
and j, for given values of angle A
and distance d.

• Fourier analysis approach. Reg­
ularity in gray level pattern shows
up in the Fourier transformtaken
in various directions around a
pixel. The set of Fourier mea­
sures, obtained by convolving a
set ofweighted windows overthe
image, then formsthe components
of a featurespace. Each pixel in
the image has an associated set of
Fourierenergy measurements,
and can be represented in the
featurespace.

Modeling approach. In a
process-modeling approach to tex­
ture analysis, one attemptsto de­
scribethings in the world in termsof
howtheyarose, e.g., man-made,
growing, or wearing-down processes
(as in a canyon). Using this point of
view, it is possibleto predict how
natural surfaces will produce the
texture patterns in an image. A
techniquebased on fractal functions
can model image texturesarising
from physical processes that alter
the terrain viaa sequenceof small
changes; the corresponding image
turns out to have measurable statisti­
cal properties that are invariant over
lineartransformations of intensity
and transformations ofscale. The
fractal dimension, 0 , of a surface
corresponds roughly to our intuitive
notionofjaggedness. Thus ifwe

were to generate a series of scenes
with increasing fractal dimension 0,
we would obtain whatcould be
described as (1) a flat plane for
D=2, rollingcountryside for 0=2.1,
a worn, old mountain range for
D=2.3, a young, rugged mountain
for 0=2.5, and finally, a stalagmite­
covered plane at 0=2.8 (see Color
Plate2, a syntheticscene generated
usingfractal textures.) It is possible
to measure the fractal dimension of
imaged data, and discover whether
the corresponding three-dimensional
surface is rough or smooth. This
information can be used to partition
the image into regionsof homogene­
ous surface character, as follows.
The fractal dimension is computed
foreach (say) 8x 8 block of pixels in
an image, and a histogram of the
fractal dimensions is computedfor
the entire image. This histogram is
then broken at the valleys between
the modesof the histogram, and the
image is segmentedinto regions
belonging to one mode or another.

Macrostructured Textures

Techniques for dealingwith macro­
structure textures have met with
only limitedsuccess. Macrostructure
texture analysis is quite difficult
because one must identify both the
primitive(s) and the spatial relation­
ship between them. Perspective
effects add to the difficulty by chang­
ing the size and shape of the primi­
tives dependingon their position in
the two-dimensional image.
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FIGURE 9-13
Three-Dimensional Structure from Shading
and Texture.

(Study ofa Female Nude by Pierre-Paul Prod'hcn.
Collection of Henry P. McIlhenny.)

the image with the properties of the origi­
nal texture on which the distortion acted.

If the texture is simple and regular,
such as a square tile pattern, the change
in shape of the rectangles in the image
can be measured to derive the surface
shape. However, in most situations, there
is not a simple, regular texture pattern.
An effective technique for recovering
surface orientations from general images
must rest on texture descriptors that can
actually be computed from such images. A

natural assumption is that textures do not
"conspire" to mimic projective effects or
to cancel these effects. Thus it is reason­
able to assume that what looks like pro­
jective distortion really is such distortion.

FIGURE 9-14
Effects of Projective Imaging on
Regular Texture Patterns.
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As much as possible ofthe observed varia­
tion is therefore attributed to projection­
the surface orientation that best explains
the data in an image isthe best guess for
the actual orientation of the surface in the
scene.

The appearance ofsurface markings
in the image is subject to two simple geo­
metric distortions: (1) Asa surface recedes
from the viewer, itsmarkings appear
smaller (the railroad track effect); and
(2) as a surface is inclined offthe frontal
plane, its markings appearforeshortened
or compressed in the direction of inclina­
tion(atilted circle projects as an ellipse).
Thus, any method forrecovering surface
orientation from texture mustbe ex­
pressed in termsofsomeconcrete de­
scription of the image texture that is
sensitive to these two types of distortion.

Whena planetexture is viewed at an
unknown orientation, the original texture
andthe orientation ofthe planewith
respect to the observer cannotbe unam­
biguously recovered from the image. How­
ever, it is possible to produce a set of
candidate reconstructions byapplying an
inverse projective transform at all values
oftiltand slantangle, each associated
with a particular orientation of the planar
surface. The problem of recovering sur­
face orientation can therefore be recast
intothat of choosing a "best" or most
likely member from a set ofpossible re­
constructions, byordering the candidate
reconstructions bysome criteria of likeli­
hood. For example, the ordering can be
based on the assumption that all edge
directions are equally likely in the scene.
First, the edgepixels and their orientation
in the image are found, and then one
finds the best combination of tilt and slant

angles of a plane on which theseedges
project so as to satisfy the "randomness of
edge direction" assumption. The planar
technique is extended to curved surfaces
byfinding a planar estimator to a circular
region surrounding each image point.
Repeated over the image, this method
provides estimates of local surface orienta­
tion, but its validity depends on a random­
ness assumption which is frequently
violated.

The human canperceive convoluted
three-dimensional surfaces on the basis of
the projective distortions imposed on
complex andsubtle textures; computa­
tional vision is a long way from duplicat­
ingthisability.

Local Scene Geometry from Multiple
Images (Stereo and Optic Flow)

All of the previously described LLSA
techniques operate on a single image.
Below we discuss two techniques, stereo
and opticflow, that recover scene infor­
mation basedon analyzing a sequence of
images.

• Stereo. Stereoscopic vision allows a
three-dimensional model ofa sceneto
be derived from two sensors that ob­
serve the scenefrom slightly different
viewpoints. The relative difference in the
position ofobjects in the two images is
called disparity, and is caused bythe
slight difference in angle from any given
object to each sensor. Insome conjec­
tured, but still unknown manner, our
brainmeasures this disparity andesti­
mates the absolute distances between
objects andthe viewer (see Appendix 8-2).
From experiments employing synthetic
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III BOX 9-5 Stereopsis

problem even when the points to be matched are ran­
domly scattered in the images and there is no edge or
other obvious structure. The major problem in computer
stereo analysis is the solution of the correspondence
problem.

Our two eyes form slightly different images of the world
because their spatial separation causes them to be at
different spatial orientations with respect to objects in
the scene . The relative difference in the position of an
object on the two retinas is called "disparity," and can be
used to estimate the distance of an object from the
viewer. "Stereopsis," "binocular vision," and "stereo
vision" are the terms used to describe the ability of a
vision system to carry out this analysis.

Figure 9-15 shows a simplified two-dimensional
example of a stereo system. Tho lenses , separated by a
distance, d, project a point, P, to the respective retinas
at P1 and P2• P is distance h from the line of the lenses.
The distance from the lens to the retina is f, the "focal
length."

The disparity, the shift of the point's position in one
image relative to the point's position in the other image,
is (a+b). The distance h is given by h = (fd)/(a+b),
where the focal length f and the distance between lenses
d is a constant for a particular lens pair. If fd is unknown
but a constant, then if we can find the disparity between
points in the images, the relative distance of objects from
the image plane can be determined. Measuring disparity
requires that we first identify corresponding points in the
two images; people are able to solve this correspondence

images composedof randomdots,
[Julesz 71], we knowthat the human
does not depend on detectionof recog­
nizable features in each individual im­
age to fuse a stereo pair of images, i.e.,
to recover the depth information. In
computational vision, a stereo pair of
images is obtained by using two sepa­
rated cameras or by moving a single
camera to two locations (motion stereo).

The criticaland difficult step is deter­
mining correspondencesbetween points
in the twoimagesso that the disparity

Foeal length
f

h

i
all = f/h
1= ah/f

d = / + r = h(a + b)lf
h = fdl(a + b)

FIGU RE 9-15 Stereo Geometry.

can be determined. Once this has been
accomplished, straightforward geometric
analysis can be used to compute the
three-dimensional location ofpoints in
the scene (see Box9-5). Figure9-16
showsa stereo pair of images, and an
artificially constructed view of the cor­
respondingscene obtainedby deduc­
ing the scenegeometry usingstereo
analysis. The only scene information
employed in this reconstruction was
obtained from the stereo image pair
shown in Fig. 9-16(a).

blr = f/h
r = bh/f
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(a)

(b)

FIGURE 9·16 Three-Dimensional Scene Modeling using Stereo Analysis.

(a) Stereo pair of images. (b)Anartificially constructedview ofthe scene depicted in (a), obtainedby
stereoanalysis. (Courtesy of SRIInternational, Menlo Park, Calif.)

• Optic flow. Supposewe have an imag­
ingsensor moving through a scene. As
the sensor moves forward, scene points
will move in the image plane along
curves known as optic flow curves. By
analyzing these flow curves it is possible
to determine the distance from points in
the scene to the sensor. These distances
can then be used to constructa three:
dimensional model of the scenejust as
in the case ofemploying stereo analysis.
If the sensor is moving forward with
pure translational motion, the optic flow
curves will be straight linesthat con-

verge at a point known as the focus of
expansion (FOE) (Fig. 9-17). (Ifthe
sensor moves backward, the lineswould
converge at a focus ofcontraction.) If
the FOE can be located in the image
plane, and the distance moved by the
sensor from frame to frame is known,
then the distance from a point in the
scene to the sensor can be found. If it is
known only that the motion of the sen­
sor was constant, but not howfar the
sensor moved, then the relative depth
of points in the scene can be obtained
(see Box9-6). This is often sufficient,
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FOE

,Hood of car

View from driver's seat

Car at later
time t2

Top view
of road scene

'--------- --J,.- - --'-=Car at
t1

FIGURE 9-17 An Example of OpticFlow.

Seen from the driver's eyes, the hood of the speedingcar is perceived as stationary, but the features
of the tree-lined road appear to be moving along straight lines radiating from the focus ofexpansion
(FOE).

for example, to partition the scene. If
the motion of the sensor is more gen­
eral, then the optic flow curves must
be decomposed into rotational and
translational components. Only the
translational component contributesto
the depth computation. One approach
used is to analyze small regions of the
image, usingthe disparities to obtain a
trial FOE for each region. For portions
of the imagein which the rotational
effects are strong, the flowsegmentswill
not converge to a FOE. If enough por­
tions of the scene do provide a consist-

ent FOE, then the translational portion
can be separated fromthe rotational
portion ofthe disparities. Optic flowis
an interesting alternative to stereo
because it offers a method for three­
dimensional scene modelingthat is not
dependent on a solution to the match­
ing problem.

INTERMEDIATE-LEVEL SCENE
ANALYSIS (ILSA)

Intermediate-level scene analysis (ILSA) is
concerned with integrating localor point
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• BOX 9-6 The Computation of Depth from OpticFlow

Assume a camera with centerof
perspective at pointF is moving with
constant velocity v along its princi­
palaxis, z, relative to somepointP
in three-dimensional space. Assume
a focal length ofone unitwith the
image plane parallel to the y axis, as
shown in Fig. 9-18.

LetP' be the image of P.Then

yl = ylz and v = dzldt,

andW , the image planevelocity of

y

p = [Y,zl

F Z

FIGURE 9-18
Geometry of Optic Flow.

PI, is:

w = dy'ldt = ~, (ylz')v = - y1vlz
and z - -y'vlw

Thus d2 - if + 2!- Z2[(ylf + I],
andd is approximately equalto
(yl)2Vlw. This means that if the
camera velocity is known, and the
image velocity ofa point can be
measured, then the distance from
the camera to the point in spacecan
be found.

features into global constructs, e.g., form­
ingedgepoints into continuous contours,
partitioning the image into coherent re­
gions, assigning semantic labels to de­
tectedscene entities, evaluating sensor
parameters (e.g., determining the spatial
location of the sensor), deriving a model
of the illumination sources, etc. Distinct
representations and techniques are re­
quired for intermediate-level scene analy­
sisbecause it is not possible to extend
techniques employed in LLSA to the
more complex global phenomenarequired
to understand and interpret natural imag­
ery. ILSA is primarily involved with the
selection of models and the assignment of
values to these models ("instantiation").
The models employed are ofboth a ge­
neric and scene- or domain-specific na­
ture; ILSA cannotbe completely divorced
from final purpose.

As indicated in Chapter 8, vision in
organic systems involves reasonedintelli­
gent behavior. Wheredo these intellectual
functions appear in the CV paradigm?

Certainly not in the low-level analysis
which has a largely mechanical flavor.
Eventhough the achievements of CV are
still, at best, comparable to those of fairly
primitive organic systems, we will see that
many of the intermediate- and high-level
techniques described in this and the fol­
lowing sections satisfy the basic criteria
for reasoning presented in Chapter 4. In
particular, the representations used in
intermediate- and high-level analysis, e.g.,
graphs and relational nets, are similar to
those used in the cognitive areas of AI.
The techniques are typically designed to
performan efficient search overpoten­
tially infinite solution spaces, and many of
the methods haveassociated validation
procedureswhich determine whenan
acceptable solution has been found. We
will describe the following ILSA integra­
tion tasks:

1. Image/scene partitioning-the prob­
lemof breakingthe image into coher­
ent or meaningful units
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2. Edge linking and drawing a sketch­
organizingindividual pixels that have
been identified as candidate lineor
edge elements into contiguous seg­
ments; transforming primitive line
drawings into more abstract represen­
tations of shape

3. Recovering three-dimensional scene
geometry from line drawings-using
the constraintsbetween edgesand
surfaces to deduce three-dimensional
scene geometry from a two-dimen­
sionalline drawing

4. Image matching-determiningthe
correspondencesbetween two images

5. Objectlabeling-assigning labels or
classnames to image structures

6. Modelselection and instantiation-«
selectinga model withgeneralized
parameters, and assigning values to
these parameters to fit a given set of
image data

Computational techniques currently
used for some of these integration tasks
are givenin Appendixes 9-1 to 9-3.

Image/Scene Partitioning

A point-by-point description of a scene,
such asthat obtainableusing LLSA tech­
niques, is too complex and thus relatively
useless (in that form) for mostpurposes.
To produce a useful description, one of
reasonable complexity in which higher­
level scene attributes havebeen made
explicit, the scene must be partitioned.
into meaningful or coherent components.
How can this be accomplished without
prior knowledge about the given scene?

It is conceivable that the human
visual system firstmakesglobal judgments
about the scene, and then decomposes

this gestalt into a structured description
using linguistic or visual primitives to
describelocalized regions in the image or
scene. Exceptin the simplest cases, we
have no notionof how to duplicate this
approach in a practical mannerwith the
computational techniques currently at our
disposal.

Within the signals-to-symbols para­
digm, a common approachto image par­
titioningis image space clusterinq (Box
9-7), the grouping of pixels basedon both
spatial contiguity, and homogeneity of
attributes that can be measured by LLSA
techniques. This approach is often imple­
mented by requiring that regions be com­
posed of adjacent pixels, where each pixel
has an intensity value that does not differ
from that of its neighbors by morethan
somespecified amount. Other partitioning
techniques, employing the same general
strategy, include: (1) feature space clus­
tering, grouping of pixels locatedany­
where in an image based on homogeneity
of locally measured attributes, and (2)
boundary analysis/contouring in which a
region of an image is considered to be
determinedby its boundary; the partition­
ing algorithm linkslocally detected edge
points into closed contours.

An image such asFig. 9-22 (where a
gestalt or overall impression is obtained
from the interplay of a myriad of small,
relatively meaningless intensity patches)
cannot be meaningfully partitioned into
regions byany of the above techniques.
Isolating the small patchesdoes not help
in recovering the global aspectof the
image. Further, many images do not yield
a unique partitioning since the goalor
purpose ofthe subsequentanalysis can
playan importantrole. Asingleimage can
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I] BOX 9-7 Partitioning via Image Space Clustering

Pixels in an image can be grouped
into a common region if theyhave
the same local characteristics. e.g.,
gray level or color, and satisfy a
distance or connectivity criterion.
Techniques for region or cluster
finding canbe basedon the fact that
goodcriteria for clusterseparation
canbe defined in terms of connec­
tivity ofa graph. The first step in
suchapproaches is to form a graph
by (1) connecting each point to its k
nearestneighbors (only pixels with
somedistinguished set of attributes
are involved), or (2) by connecting
anypairofpoints whose distance is
less thana threshold distance. Each
edgeof the graph can be labeled
with the distance between the two
points. A typical graph isshown in
Fig. 9-19.

Oneapproach forpartitioning a
graph intoseparate clusters is to
lookfor"cut points," nodeswhose
removal would disconnect the graph
(e.g., see Fig. 9-20), or "bridges,"

FIGURE 9-19
Typical Graph used to Cluster
Pixels.

Distances are actual imagedistances
between pixels. Each node is an image
point having a desired characteristicor
label.

edgeswhose removal would discon­
nect the graph. Anothergraph
approach to partitioning is based on
the conceptof the minimum span­
ning tree (MST), the tree that con­
nectsall the nodes and whose sum
of distances on edgesis minimal.
The general approach to partition-

ingdata points representedbya
MST is to lookfor edges that are
long with respectto some average of
lengths on both sides of the edge.
For example, Fig. 9·21(a) shows a
set of points formed into a graph,
Fig. 9-21(b) shows one of the possi­
blespanning trees of the graph, and
Fig. 9-21(c)shows the minimum
spanning tree. The longedgesin the
tree correspond to the gaps between
the perceptually obvious clusters.

FIGURE 9-20
Use of Cut Nodes to Obtain
Clusters.

Elimination of cut node (arrow) would
disconnect the graph. and define two
separate clusters.

3

(a)

FIGURE 9-21 Minimum Spanning Tree.

(b) (c)

(a)Original graph.(b) One of the spanning trees that connect all the nodes. (c) Minimum spanning tree of original graph; long edges
(arrows) indicate possible separation of clusters.
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fiGURE 9-22
The "Dalmatian," an Imagewith a Myriad of Small, Meaningless Regions.

It is possibleto finda dalmatian in the approximate center of this picture. (Photo © Ronald C. James
withpermission.)

also be partitioned in more than one way
based on the level of detail desired, or on
the point of view of the observer. Figure
9-23 shows a satellite image and the dif­
ferent partitionings madeby experts hav­
ing differentdisciplinary interests. Figure
9-24 shows an object that is partitioned
differently by most people,depending on
whether it is viewed right side up or
upside-down.

In an important sense, image/scene
partitioning is the creative step in visual
perception that makes the rest of the
descriptive process feasible. It not only
decomposes the analysis probleminto
manageable units, but also provides the
necessary structuring needed to index

into a knowledge base of stored models.
The partitioning techniques described
above lack the competence for the type of
performance required. What other ap­
proaches are possible?

Tho of the issues that must be ad­
dressed by anypartitioning schemeare:

1. What is the nature of the primitive
vocabulary if it is not simply the set of
locally measurable point attributes?

2. Withoutusing domain-specific knowl­
edge, how can wejudge the merits of
a proposedpartition, or compare two
alternative partitions?

There issignificant evidence from
psychological experiments ([Julesz 83],
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FIGURE 9-23 Different Line Drawing Interpretations ofa Single Satellite Photograph Made by
Experts in Different Disciplines (Geology, Forestry, and Hydrology).

(From Ecological Surveys from Space. NASA Office ofTechnological Utilization, NASA SP-230, 1970,with permission.)

FIGURE 9-24
Different Partitionings basedon
Orientation of the Figure.

(After Hoffman and Richards, Cognition
18:65-96, 1985.)Acosine surface, which
observers almostuniformly see organized
into ringlike parts. Apart stopsand another
begins roughly wherethe dottedcircular
contours are drawn. But if the figure is
tumed upsidedown the organization changes
suchthat eachdotted circular contour, which
before laybetween parts, now liesin the
middle of a part

[Treisman 85]) to indicate that groupings
of certainprimitive features can be de­
tected almost instantaneously regardless
of where they occur in the humanvisual
field (e.g., see Fig. 9..11). Suchfeatures,
called textons byJulesz and Bergen, con­
sist ofelongated blobs (especially line
segments) distinguished by such proper..
ties as angular orientation, width, length,
and color; endsof lines and crossings of
line segments are also textons. Julesz
hypothesizes the existence of a separate
"preattentive' human visual system that
can distinguish between different types of
textons, anddifferent densities of textons,
but is unable to process information
aboutpositional relationships between
different textons. Positional information
essential forform perception can be ex­
tractedbya time-consuming process,
called "focal attention," which is only
available to the normal visual system.

There is still much debate about the
nature of the primitives that are first ex­
tractedfrom the raw sensed data. Beyond
linesor edges, andregions homogeneous
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(b)

FIGURE 9-25
Criteria Underlying Effective
Partitioning Decisions.

(a)
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(c)

(d)

~.
•

sive deviations of data points from the
hypothesized line are highly correlated.
On the other hand, even though the
deviations are larger in Fig. 9-25(b), a
straight line is a more believable expla­
nation here because of the random
nature of the deviations.

• Conciseness. Conciseness or simplicity
of explanation can be measured by the
"length" of the explanation assuming

• Completeness. One way of measuring
completeness is to require that devia­
tions of the data from the hypothesized
explanation (partition, model, etc.) have
the characteristics of random noise; i.e.,
that all of the correlations and detect­
able patterns in the data are explicitly
addressed in the explanation. For exam­
ple, suppose we must decide if a single
straight line is a good description of the
data points shown in Fig. 9-25(a), i.e., is
this data set coherent or should it be
partitioned? We would tend to reject the
straight-line explanation since succes-

in some local attribute, it is difficult to
defend any higher-level construct as hav­
ing sufficient utility to serve as a primitive
for a general purpose vision system. It is
certainly possible that most of the primi­
tives employed (in human vision) for parti­
tioning are not universal, but are derived
for each scene domain based on some
general set of principles . For example, if
some pattern of points , or particularly
shaped region or line segment appears
often enough in a given scene, then such
an entity would be a good candidate as a
primitive for describing that scene, assum­
ing it could be discovered in some reason­
ably efficient way.

How can we evaluate a proposed
partition, or compare two competing
decompositions of the same scene? If we
recognize the fact that scene partitioning
is an implied explanation of how the im­
age was constructed, then in the absence
of any absolute validity checking proce­
dure or criteria, we must use various
measures of believability as the basis for
evaluation or comparison . A believable
explanation should be complete, concise
(Occam's razor), and stable:
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that the vocabulary is appropriate for
the given problemdomain. For exam­
ple, ifour vocabulary consisted only of
the terms"circular are," "straight line
segment," and "image point," and we
wished to construct a believable descrip­
tion of the object shown in Fig. 9-25(c),
then the singleterm "circle" is a sim­
plerexplanation than a description
composed of a concatenation ofpoints
or linesegments. The objectshown in
Fig. 9-25(d) is decomposed into the
shortest (simplest) description possible
in terms of our given primitives (assum­
ing a reasonable "cost" for each point,
straightlinesegment, and circular arc).

• Stability. Believable explanations should
bestable under slightchanges of view­
ingconditions or of decision procedure
parameters. For example, to protect
against interpretationmistakes due
to viewing an object from an unusual
perspective, the "story should remain
unchanged" when the relationship be­
tween the viewer and the object is
slightly perturbed. (If you remember, the
storywas indeed changedin the impos­
sible triangle of Fig. 8-12.)

Asimple computational example of
how the stability criterion leadsto correct
interpretations is illustrated in the prob­
lem of attempting to distinguish intensity
quantization boundaries from true bound­
aries denoting actual scene content If we
shift the quantization thresholds slightly,
the intensityquantization boundaries will
typically shiftspatially while the true
boundaries will remain stationary.

Edge Linking and Deriving a Line
Sketch

One of the main purposes of ILSA is to
take clues about the nature of a scene,as
discovered byLLSA, and compile them
into moremeaningful and abstractstruc­
tures. The linesketch is one of the most
natural and effective abstractions available
for representing scenecontent For exam­
ple, someof the earliest expressions of
human art are essentially line sketches
(Fig. 9-26). The ability to depictstructure
with a few line strokes, however, is a crea­
tive ability only possessed by the most
talented artists (Fig. 9-27). What are the
computational approaches and problems '

FIGURE 9-26 Early LineSketches.
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FIGURE 9-27
Sketch by Matisse that Captures the Nude
Form in a Few Line Strokes.

(© Spadem, DavisNaga, NewYork 1986, withper­
mission.)

to be dealt with in attempting to trans­
form a gray-level imageinto a line sketch
abstraction of the correspondingscene?

The human visual system is so good
at interpreting line sketches that it is easy
to overlook the fact that such sketches
employ the same iconicsymbol (the line
symbol) to represent three completely
different types of information, objective
edges, subjectiveedges, and skeletons:

• Objective edges. These are the directly
visibleedges of regions or objects, e.g.,
locations in the imageat which there
are measurable discontinuities of inten­
sity, color, or texture. Even if we restrict
our attention to.objective edges, there

are usually many distinct ways to link
the edge pixels found by low-level tech­
niques. It is thereforegenerally neces­
sary to appeal to some purpose or value
function to provide a criterion for select­
ing one interpretation over others. An
optimization technique for edge linking
is described in Appendix 9-1. A more
general solution, which is not a function
of purpose or semantic constraints, is
possiblefor simple scenes, i.e., those for
whichalmostany observerwould pro­
duce the same line sketch. The general
idea is to find all the edge points in
some contiguous region of the image
and link these points using a minimum
spanning tree algorithm (see Box 9-7).
Long continuous paths extracted from
the tree correspond to the perceptually
obviousline structures in the image.
This approach is illustrated in Fig. 9-28.
The process involves extracting linear
feature points based on local intensity
characteristics (Fig. 9-28b); separat-
ing the extractedpoints into coher-
ent clustersand linking the points in
each cluster into a minimum spanning
tree (Fig. 9-28c); pruning the tree of
spurious and insignificant branches
(Fig. 9-28d); and superimposing the rna..
jor linear segments, as obtained above,
on the original image (Fig.9-28e).

• Subjective edges. These are edges
known or deduced to be present in the
scene, but not directly visible in the
image, i.e., edges not represented by
measurable local discontinuities (see
Fig. 9-29). Edge linking cannot be ex­
pected to produce a completeline
sketch. In manyrealisticsituations,
points associated with a particular edge
will be too scattered (because of low
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(a) (b)

(c) (d) (e)

FIGURE 9-28 A Technique for Finding Perceptually Obvious LineStructures in an Image.

(a)Original image. (b) Extracted linear feature points. (c) Asingle cluster offeature points. (d) Linear segmentextracted. (e)
Linestructures found in the image. (Photos courtesyof SRI International. Menlo Park. Calif.)

contrast, occlusions, and interference
from adjacent but distinctedges) to be
correctly linked by a simple contiguity
criterion. Inferringthe presenceof
subjective edges seems to require de­
duction from an assumed model, rather
than inductive reasoningbased on local

evidence. For example, in the picture
of the Dalmatian (Fig. 9-22), we must
assumeat some point in the analysis
process that the image contains a dog,
and then deduce the presenceof the
edges that form its outline. When there
are no contextual constraints on what



272

COMPUTATIONAL VISION
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•
FIGURE 9-29 Examples of Subjective

Edges.

(See also Fig. 8-13.)

can appear in a scene, it is difficult to
comprehend howthe human visual
system is able to select appropriate
models from an infinity of possible
alternatives.

• Abstract lines orskeletons. These are
the centerline, or spine, of long, thin
objects; e.g., as in the use ofstick fig­
ures to represent shapes (seeFig. 9-30).
There may be locally detectable image
structures corresponding to the abstract
lines, but often this will not be the case.
In simplescene domains, especially
where the imageinformation is essen­
tially binary, the complete contours of
isolated objects can be extractedto
obtain a primitive line drawing represen­
tation of the image content. However, a
human-produced sketch of the same
imagewould almostcertainly be a more
abstract representation. For example,
in the case of printedmaterial, the
widthof the characterswould be sup­
pressed and only the skeletonwould
be provided. Techniques are available
for extracting and using skeletons
as the basis for both two- and three­
dimensional shape representation.

(a)

-Boundary

All points on this line
are the same distance
from theboundary

Line of points farthest from
boundary is theskeleton

(b)

FIGURE 9-30
"Stick Figures" Automatically Produced by
a "Skeleton" Generating Technique.

(a) Example of stick figure derived from image ofa dog.
(h) Method for obtaining a skeletonbygenerating a
nested sequence of contours. A"distance transform"
algorithm for this purpose is described in [Fischler and
Barrett 80].
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If it is desired to represent a natural
scene by a linesketch, it is generally
necessary to eliminate all but a small
subset of the detected and inferred
edgesas the final abstraction. The ini­
tial linking, insertionof abstractedges,
and subsequent elimination process
must be based on purpose or semantic
knowledge of the scene domain and a
depth of reasoning well beyond the
capabilities of our current paradigm.

Recovering Three-Dimensional Scene
Geometry from a Line Drawing

A person lookingat a two-dimensional
linesketch of a three-dimensional scene
can usually partition the sketch into its
coherent components and describe the
corresponding scene. Given that the
sketch is indeed two-dimensional, and
thus an ambiguous representation of the
three-dimensional world, whatis the basis
for this rather remarkableability? In this
subsection wewill describesomecompu­
tational techniques that attemptto
achieve similar performance for a limited
class of scenes.

It is possible to transform a gray-level
image of a three-dimensional scene into a
linedrawing usingedge analysis methods
of the type discussed in preceding sec­
tions. WewiIl assume for the present that
unbroken lines representing actual edges
are obtained, i.e., a perfect line drawing.
We will further assume that the scene only
containsobjectswith planar surfaces and
that no more than three surfaces meetat
one point in space. Given these blocks­
world assumptions, it is possible to
achieve close to human-level partition-
ing of the scene with relatively simple
algorithms.

Ell

FIGURE 9-31
Three-Dimensional Shape from
Line Drawings: Obtaining Junction
Labels.

The simple but powerful idea is to
assign one of three labels to each line in
the image; these labels correspond to
three typesof three-dimensional edges:
+ (fora convex edge), - (for a concave
edge), and ... (for an occluding edge).
Further, only four labeltyp~ are needed
to distinguish nodes based on the enter­
ing edge types, an ell, a fork, an arrow,
and a T, as shown in Fig.9-31. A good
way to derive the complete set of physi­
cally realizable node (iunction) labels is to
view a simple solidfigure from various
viewpoints, as shown in the figure. If this
approach is repeatedfor all possible view­
ing angles, the complete set of eighteen
legal node labels shown in Fig. 9-32 is
obtained.

This labeling scheme can be used to
analyzea blocks-world line drawing. An
iterativeprocedure is used in which we
begin withall possible labels attached
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FIGURE 9-32
Three-Dimensional Shape from LineDrawings: Legal Junction Labels.

(FromP. H. Winston. ArtificialIntelligence. Addison-Wesley, Reading, Mass. 1984, with permission.)

to each edge, but by usingthe diction­
ary of legal junction typeswecan elim­
inate invalid labels. The key idea is that
since an edge must have the same label
at both of its end points, it imposes a
constraint on the two nodes it joins. A
globally consistent labeling will oftenpro­
duce a unique label for each edge. It is
possible to obtain several different label­
ings for a given line drawing, but this is
to be expected since, when weview
a line drawing, we can often see the three­
dimensional scene in more than one way,
e.g., the stairway illusion (Fig. 9-33) that
can be seen in twodifferent ways.

The labelingapproachdoes indeed
determine that the object shownin Fig.

FIGURE 9-33 Stairway Illusion.

Arethesestairs being viewed from above or
below?
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FIGURE 9-34 Impossible Figure.

An impossible object The indicated ell
junction is not amongthe legal ones. (From
P. H. Winston. Artificial Intelligence.
Addison-Wesley, Reading,Mass., 1984, with
permission.)

9-34 is impossible. However, other cases
existfor which a depicted object cannot
exist in the real world, but we are still able
to find a legal set oflabels. This failure
has caused researchers to look for repre­
sentations that can more adequately han­
dle impossible objects, and can deal with
more complex objects and imaging condi­
tions. In the case of the blocks world,
rather complex scenes-even scenes con­
taining cracks and shadows-can be cor­
rectly analyzed, (Fig. 9-35), and necessary
and sufficient conditions do exist to deter­
mine if a perfect linedrawing corresponds
to a physically realizable object, but these
resultshave not yetbeen extended to
more realistic scene domains or imperfect
delineations.

FIGURE 9-35
A Scene Typical of the Type that can be Correctly Analyzed and Partitioned by
Existing Techniques.

(From D. I. Waltz. In P. H. Winston (editor), ThePsychology of Computer Vision. McGraw·Hill, New
York, 1975, with permission.)
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ImageMatching

It is difficult to conceive of a more basic
perceptual act than determining whether
two images depict the samescenecon­
tent, and more precisely, the specific or
local correspondences. In the case of
human stereo vision, the correspondences
between the two almostidentical images
provided by our two eyes allows the brain
to create a depth map ofthe scene, prob­
ably using a techniqueequivalent to
simple trigonometric triangulation (see
Box9-5).

When the views to be matched are
almost identical (say, differing only in
translationand possibly scaledin inten­
sity), then a simple computational solution
to the matching/correspondence problem
is area correlation, in which small fixed­
size patches of the two images are com­
pared. More generally, we are often faced
with the problem ofmatching images that
represent significantly different views of
the scene. Such images may differ in three
respects: (1) the viewing conditions may
have changed-view angle, perspective
distortion, occluded surfaces, illumination,
shadows, highlights, and atmospheric
conditions may be significantly different;
(2) physical changesmay have occurred in
the scene-new or altered features such
as roads, buildings, floods, or seasonal
changes may be present, or objects may
have moved, such as cars in a parking
lot; and (3) the image acquisition and pro­
cessingsystem may have changed-the
sensors may have different noise and
distortion characteristics, resolutions,
spectral response, and the representations
produced may be the resultofdifferent
nonreversible transformations (e.g., an
intensity array converted to a linesketch).

In registering one image to another,
wewish to find the transformation be­
tween eitherthe images or the sensor
models, taking full advantage of the
known or deduced physical characteristics
of the sceneand the viewing situation. If
the natureof the variation of such charac­
teristics cannotbe quantified, then the
variable describing these characteristics
mustbe eliminated from the decision
process. The matching process is based
on the selection of the features to be
matched, the control strategy that speci­
fies how to search for potential matches,
and the criteria for evaluating the match
or selecting a best match.

Correlation approach. The traditional
approach to image matching is based on
signal processing and statistical decision
theory concepts. Each image is treated as
a (context-free) signal, with all known
distortions, viewing and illumination arti­
facts, etc., removed prior to the matching
step; the images (signals) to be matched
are assumed to have some common area
of overlap in which the only difference is
nominally describable as additive gaussian
noise. The matching techniqueis gener­
ally someform ofarea correlation in
which the features to be matchedare
small fixed-size patchesof the image.
We search for matches by "comparing"
a patch in the first image with all the
patches in the secondimage that are
potential match candidates, and weselect
the match that produces the highest"cor­
relation coefficient."

Feature matching approach. As our
ability to model the distortion and illumi­
nationdifferences between the two scenes
decreases, we are motivated to extract
descriptions that ignore the detailed
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(pixel-by-pixel) intensity variations in the
images, and concentrate instead on se­
lected measurable features (or attributes)
and relationsthat are relatively invariant
to viewing conditions and sensorvaria­
tions. For example, intensity discontinui­
ties, or edges, are more likely to remain
invariant across two views of the same
scenethan the absolute intensity values
whose differences produced the edges.

We often employ a signal-processing
approach in determining if two images
represent the samescene, bycomparing
the values of a set of feature measure­
ments made on each of the images. Typi­
cal features might include area, perimeter
length, spectral energy distribution, etc.
The descriptions usedfor matching pur­
poses in this caseare the feature vectors,
and the measureofsimilarity ofthe two
images is the distance between the feature
vectors in a Euclidean spacedefined by
the features (see Chapter 3 and Appen­
dix 9-1).

Relational matching approach. To
establish detailed correspondences be­
tween the images, and to increase the
reliability of the matching process beyond
that possible using feature measurements,
wemust explicitly include geometric rela­
tionships between selected components of
the scene in both the image descriptions
and in the matching process. The image
descriptions now are conceptually equiva­
lent to a graph, where the nodes repre­
sent features or objects in the scene, and
the branches represent relations; the
matching process (called structural match­
ing) involves the comparison oftwo
graphs, or part of one graphwith another.

The matching techniques discussed
above (correlation, feature, and relational

matching) form a natural ordering in two
respects. First, there is an orderingbased
on the descriptive power of the represen­
tation. In area correlation the representa­
tion is the intensity array, and there is no
language for introducing semantic infor­
mation or for modeling view or sensor­
related factors that cause changesin
image appearance. The representation
for feature matching is the feature vector,
and there is no mechanism for introduc­
ing information aboutrelations between
features. However, the semanticnet rep­
resentation for structural matching poten­
tially offers the full descriptivepower of
natural language.

The second ordering characteristic is
that of modeling difficulty. As the descrip­
tive power of the matching techniques
increases, there isa corresponding re­
quirement to define an enlargedvocabu­
lary(names for additional features and
objects) and a set ofrelationships between
these vocabulary primitives. However, this
brings with it the difficult requirementof
detecting the presence or absence of
these primitive linguistic constructsin an
image to create the desired description.

The image-matching problem is fun­
damental to all ofmachine vision, and is
therefore typical ofwhat appears to be a
pervasive difficulty facing us in all aspects
of machine vision underthe currentpara­
digm: Our morepowerful techniques are
based on a symbolic formulation in which
large amounts of low-level information are
successively integrated into more global
and abstractdescriptions. Currently, we
are limited in our ability to obtain relevant
low-level information ofsuitablequality
because our analysis depends on weak
descriptive formalisms and a local per-
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spective that is too restrictive to avoid
ambiguity and error. If we attempt to use
more globalprimitives, the number of
such primitives necessary to provide de­
scriptive completeness grows exponen­
tially, and the level of modeling required
for each such primitive makessuch an
endeavor impractical.

Object Labeling

This and the next section discuss the
problemsof assigning namesto objects.
Tho forms of this problem are: (1) given a
specific reference object, find instances of
it in an image, and (2) label the objects in
an image according to the genericclasses
to which they belong:

1. Labeling specific objects. In the sim­
plest form of specific object labeling
we assume that image shape does not
differ significantly from reference
shape; it is therefore easy to obtain a
description suitable for matching. An
example of this situation is the recog­
nition of alphabetic charactersof a
given font, where the number of free
parameters is limited, and we can use
an attribute spacein which the refer­
ence pattern and the unknown pat­
tern appear as points. An unknown
pattern is assigned to that reference
pattern whose representative point is
closestto it in the attribute space.
However, finding suitable descriptions
for complex objects becomes a signifi­
cant problem. An example here is
finding a specific person in a crowd.
Since a person can assume various
shapes when sitting, standing, or
bending, a simple description will not
suffice. The description must indicate

the relationship between parts, the
constraints in movement, the shape
of parts, and the ability of the parts
themselves to changeshape (e.g., the
shape of the mouth); we are also
faced with the problem of how to
structure the descriptions so that the
reference objects can be compared to
the descriptions derived for the
sensedobjects. The matching proce­
dure mustbe able to deal with occlu­
sion and flexibility ofobjects. Objects
are often occluded by their own
parts, by other objects, or by
shadows, so that the derived descrip­
tions will only partially match the
reference descriptions.

2. Labeling generic objects. An example
of genericlabeling is finding all in­
stances ofa road in an image. Note
that we are not looking for a known
road whose description is available.
Instead, a generic description of
"roadness" is required. In more diffi­
cult problems, one mightwantto
label objects withterms such as
"tree," "bush," "meadow," etc. We
are not askedto find a specific tree
whose measurements are known. The
reference object is now muchmore
difficult to describe in terms that
permitsimple matching. In addition,
there is a chicken and eggsituation:
How canwebe sure that the shape of
part ofan unknown object corres­
pondsto a branch, ifwe are not sure
that the objectwe are attempting to
identify is a tree? Mostof our tech­
niques depend on producinga de­
scription from image measurements,
retrieving relevantmodels from our
stored database (possibly) containing
an immense number of such models,
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and making the indicated compari­
son. Ifwe do not know that weare
looking at a tree in the firstplace,
then the effort required to examine
all components of all models in the
database becomes exorbitant. Com­
pletegeneric labeling of arbitrary
scenes is well beyond the present
state of the art. Labeling procedures
now require that the numberof ge­
neric classes be limited. One way of
accomplishing this is by.specifying
the contextof the image to the pro­
gram, e.g., "outdoor scene," " office
scene," etc., so that the program can
selectdescriptions from its database
that are appropriate to this context.

Model Instantiation

Visual perception is based on selecting
models that are relevant to the analysis of
a sensedscene, and then determining the
values of the parameters of these models
basedon scene content (instantiating the
model). In intermediate-level vision, typi­
cal models of interest are:

• Geometric models: e.g., lines, curves,
polygons, planes, and surfaces

• Illumination models: equations that
relate the lightsources, surface reflec­
tances, and image intensities

• Sensor models: equations that define
the camera(sensor) orientation and
location parameters, for a given image,
in terms of a coordinate system tied to
the sensedscene

• Semantic models: descriptions of ob­
jects and events that mightappear in an
image (e.g., person, building)

The model instantiation processworks as
follows: Once it has been determined that

a particular model is appropriate for a
given image, e.g., a triangle, the system
could identify lines in the image that
mightbe the sides ofa triangle, find their
lengths, and the angles between contigu­
ous lines. If the model is that of a person,
the appropriate instantiations could be
size of the person, or male or female. In
intermediate-level vision, model instantia­
tion often results in numerical values for
the model parameters.

There are three approaches to assign­
ing values to the parameters of a model
based on observed or experimental data.
The classical approach is to use an opti­
mization technique, such as least squares,
to solve an ouerconstrained set of equa­
tions in order to define an instantiated
model that best fits all the data, i.e., all
the data is usedsimultaneously to solve
for the parameters ofthe model. Prob­
lemsarisewhen the data contain gross
errors or intermixed data from multiple
objects. For example, evena single mea­
surementerror, iflarge enough, can cause
least squares to fail, and there is no gen­
eral method for reliably eliminating such
gross errors.

A secondapproach (e.g., the Hough
transform, see Appendix 9-1) takesone
data point at a time and finds all the pa­
rametersof the model consistent with this
data point; i.e., we solve an undercon­
strained set of equations to find all solu­
tions compatible with the given data
point. The set ofsolutions determined for
each data point is used to "vote" for all
the correspondingparameter values. After
all the data pointshave been processed,
those parameter values receiving the most
votes are taken as the desiredsolution.

The third approach (e.g., random
sampleconsensus [Fischler 83]) randomly
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selects just enough data points to solve
the model equations, and then attempts
to confirm this instantiated model by
testing it against the remaining data. If
such confirmation fails, the process is
repeated with another random selection of
data points. This approach issurprisingly
efficient, as well as robust, undera fairly
wide range of reasonable conditions.

The determination of the appropriate
model (discussed in the previous section),
as opposed to the instantiation of the
model, is a problem in detection or classi-

fication. Onemustutilize the evidence
accumulated as the result of low level
analysis to make this determination. Peo­
ple have a remarkable ability to select the
appropriate model from whatamountsto
an almost infinite set of models. For ex­
ample, in Fig. 9-36, how do we know that
this is a picture of Paris when we have
never seen the city from this particular
viewpoint? In the case of computer vision,
the designer is currently forced to indicate
somesmall set of models to which the
system can direct its attention.

FIGURE 9-36 Recognizing a Scene: WhatCity is Depicted Here?

(Drawing by Oscar Firschein.)
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A

HIGH-LEVEL SCENE
ANALYSIS (HLSA)

High-level scene analysis (HLSA) invokes
the full body of AI techniques (e.g., sym­
bolic logic, expert systems theory) and
representations (e.g., relational nets) to
provide a description of an image, or the
corresponding scene, in terms of some
given set of semantic models and linguis­
tic relationships. Currently, there is little
directcoupling between the information
that can directly and automatically be
obtainedfrom our LLSA and ILSA tech­
niques and the input needs of available
HLSA systems. The problem here is that
high-level scene analysis is strongly cou­
pledto semantic knowledge and final
purpose-a tremendous amountof knowl­
edgeis needed to bridge the gap between
what is immediately visible in an image,
and whatcan be deduced about the cor­
responding scene.

In trying to derive a symbolic descrip­
tion of a scene, one realizes that the say­
ing, "A picture is wortha thousand
words," may be too conservative. Asa
striking example of HLSA consider the
political cartoon: The viewer is expected
to recognize the participants, the topic
under consideration, and the editorial
view of the cartoonist, all from a simple
linedrawing. Whenweview a political
cartoon from the 1800swemay no longer
have the requiredworld knowledge to
understand its message.

Image/Scene Description

Having a humanproduce a natural lan­
guage description of objects and their
relationships in a scene would seemto be

straightforward, and we might expect that
the meaning of the natural language ex­
pression should also be readily deter­
mined. For example, the meaning of "The
hat is in the box" should be derivable by
having a dictionary entryfor "in" that
says "X is in Y ifY spatially includes most
of X." It turns out, though, that the mean­
ing of the word "in" is more subtlethan
that. Expressions suchas those given
below indicate quite different spatial char­
acteristics, someofwhich are not cap­
tured bya simple definition of inclusion:

• The water in the vase (we meanthe
contentsof the vase and not water com­
posing the vase material)

• The crackin the vase (crack in the
surface ofthe vase)

• The block in the circle (a blockresting
on a surface on which a circle is drawn

• The bird in the tree (a bird on a branch
within the bounding region of the tree)

In addition, there are peculiarities of
use, such as beingable to talk about the
table beingin the garden, but not that the
table is in the lawn. It is acceptable to
draw a linein the margin, but not to draw
a line in the blackboard. Somelocative
expressions are context dependent. Thus,
given the scene:

B
A

wewould say that B is to the rightof A.
But if the scenechanges to:

B
C

wewould be hesitant to makethe unquali­
fied assertion that B is to the right of A.

Natural language constructions such
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as these are not merely curiosities: if we
expect a robot to use descriptions pre­
pared by nontechnical people to navigate
in the real world or to carry out com­
mands, it is important that the robot be
able to decode these expressions to derive
the meaning intended by the person.
Thus, a person would be dismayed if the
command "Get the box under the bush "
resulted in the robot's digging into the
ground to get under the bush, presumably
to find a second, not yet visible box!

Recent studies in the semantics and
pragmatics of expressions involving loca­
tion [Herskovits 85], have revealed re­
markable nuances of use, some of which
were illustrated above.

We can gain insight into the difficulty
of automatic preparation of a high-level

description of a gray-level image by exam­
ining descriptions prepared by human
subjects. Such descriptions depend on the
background of the person, the goal of the
description, and the complexity of the
photograph. The descriptions can be in
terms of natural language, or in the form
of line drawings that extract the essence
of the image. The importance of the back­
ground and point of viewof the person
preparing the description was illustrated
in Fig. 9-23, where a satellite photograph
was described in terms of three com­
pletely different line drawings by a geolo­
gist, a hydrologist, and a forestry expert.

An example of a natural language
description of an aerial photograph,
Fig. 9-37, by a layman is as follows: "The
picture is an aerial photograph of a land

FIGURE 9-37 Aerial Photograph of an Industrial Area.

(Supplied by O. Firschein and M: A. Fischler.)
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area invaded bya three-pronged fork­
shapedwaterway. Wharves line the sides
of the waterway. A bridge, probably for
auto traffic, but possibly for rail traffic,
crosses the handle of the waterway. The
land is used primarily for industry: many
largelow buildings and fluid storage
tanks, such as those used to store oil or
water are on the land. The area depicted
has dimensions ofperhaps one to two
miles; the photo exhibits a significant
parallax effect. The waterway, perhaps a
river or canal, is perpendicular to the line
ofsight of the camera; its average width is
about a quarter mile."

In examining this description, we
note (1) probabilistic terms, "seems,"
"perhaps"; (2) many objects and relations
between objects; (3) inferences, "probably
for auto traffic"; and even(4) information
about the cameraviewing location. In
addition to the sophisticated reasoning
needed to derive such descriptions, to
store them in a database for future re­
trieval purposes, we must represent infor­
mation in a way that captures all the
different aspectsof entities beingde­
scribed, i.e., the knowledge representa­
tion problem, as discussed below.

Knowledge Representation "

If the description, A bridge crosses the
waterway, is in the databaseand the
question is asked, Whatspansthe uiater­
way?, there mustbe some equivalence
established between crosses and spans for
a retrieval match to be made. In addition,
ifwehavestored A is part ofB and B is
part of C, we need some mechanism for
deducing that A is part of C.Thus, in
representing knowledge about a scene, we

are faced with the classic representation
questions: (1) Whatformalism shouldbe
used for relating facts and drawingdeduc­
tions from a collection of facts?; and (2)
What basic relationship and descriptive
words should be used in the formalism? A
good image representation should have
the additional important characteristic of
capturing someof the implicit iconic
information, e.g., objects that are near in
the image should be near each other in
the representation. Ofthe two representa­
tions described below, frames and seman­
tic nets, only the semantic nets retain
some of the iconic aspects of the original
image.

Frame representations. In the chap­
ter on language we discussed frames,
scripts, andscenarios, an attempt to cap­
ture the components of typical situations
for use in understanding natural language.
Similarly, it is possible to developframes
applicable to image analysis, with each
frame representing a stereotypedsituation
or objectthat might be found in a scene.
The frames supply needed information
and indicate whatimage data is relevant.
For example, an office frame mightspec­
ify whatconstitutes an office, e.g., desk,
telephone, etc.,"and this frame can be
used to provide the image analysis system
with an expectation as to what objects
mightbe in such a scene.

Semantic networks. The semantic
network, as described in Chapter 3, has
been usedfor HLSA. In imagedescription
applications of semantic networks, objects
in the sceneare represented by nodes,
and the arcs from nodeto node represent
the relations between the objects. A basic
set of primitives is chosen to describe
objectsand relationships, and all descrip-
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The picture is a black and white aerial photograph of a land area invaded by a triton-shaped or three-prong-shaped waterway,

Wharves line the sides of the waterway....

Concept kernels of the description fragment Conceptclasses

The picture is a black and white aerial photograph

Photograph is of a land area
Landarea is invadedbya triton-shaped, i.e., a three-prong-shaped, waterway

The waterway has sides

The sides are lined withwharves

Picture property
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FIGURE 9-38 Semantic Network used for Image Description.

Denotes description
fragmentgiven above.

-__ Denotesadditional descriptive
information about scene.
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tionsare converted into compositions of
these semanticprimitives. The number
and type of primitives that form the basic
vocabulary is importantbecause the
choice of primitives will determine the
expressive power of the representation.
A semantic network for a portion of
the description of the aerial photograph
(Fig. 9-37) is shown in Fig. 9-38.

Care must be taken to separatege­
neric concepts, such as bridqes from a
specific token such as the George Wash­
ington Bridge, otherwise errors in deduc­
tionscan result. For example, ifwe have
the following network:

A-+is part of-B
B-+is part of-C ,

then we can follow the links to deduce
that A is-part-of C. However, linking can
result in incorrectdeductions if the ge­
nericand specific nodes are intermingled,
or if the inheritance characteristics are
not carefully isolated. For example, ifwe
have a generic description of a bridgeas
something that spans a road or body of
water, then a specific highway bridge that is
in the state of construction must not inhe­
rit the characteristic "spanning," if only
the abutments have been constructed.

The semantic network representation
is not a formal mathematical system with
unifying principles. Its use tends to be
rather ad hoc, with various researchers em­
ploying different net interpretation schemes
basedon the same general concepts.

The Problem of High-Level Scene
Analysis

There is no program at the present time
that can automatically create a descrip-

tion of a scene at a human level of per­
formance. Further, existing programs
for converting from a natural language
description to a semantic network are of a
rudimentary nature, and workonly in very
limited domains ofdiscourse. The basic
difference between describing a document
and describing an image is that a textual
document is usually created in accordance
with somespecific objective of the author.
While a potential user may be more inter­
ested in a tangential fact of the document,
the use cannot be too far removed from
the intended themeof the document.
Most images, on the other hand, have no
central or organizing theme, and a de­
scription ofthe sameobjectfrom two
different pointsof view may be completely
unrelated.

Reasoning About a Simple Scene

Given the sceneshown in Fig. 9-39, we
are able to reason aboutwhat has hap­
pened and what is likely to happen next:
weuse our knowledge of how physical
objectsbehave in the world to deduce that
the youngwoman has pushed the man,
causing him to losehis balance, and we
predict that he will fall into the well.

Littlework has been carried out in
obtaining programs that can reason about
scenes. Funt [Funt80] developed a pro­
gram called WHISPER that reasons about
simple linedrawings of objects to predict
the behavior of a structure constructed
from blocks. The program generates calls
to a low-level analysis program to deter­
minewhatshapes are involved and how
the shapesmake contact Someof the
Questions that the vision programmust be
able to answer are: (1) Do shapesA and B
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FIGURE 9-39
Example o.fReasoning about a Scene: What Actions do we Expect will Follow?

(From S. Appelbaum. Advertising Woodcuts from the 19th Century Stage. Dover Publications.
New York, 1977.)

touch? (2) Is shape C symmetrical around
a given axis? (3) Where is the center of
the area of shape D? (4) How far can
shape E rotate around a given point be­
fore it will intersect some other shape?

The high-level reasoner consists of
procedures which reason about the physi­
cal world in such common-sense terms
as, "If a block is hanging over too far, it
will topple." To determine that a block
is hanging over too far, the high-level
reasoner must generate calls to the sen­
sor, and the reasoner then assigns
domain-dependent meanings to the an­
swers returned. In the case of Fig. 9-40,
WHISPER would find that the top rectan-

gular block will fall, and will collide with
the block balanced on the triangle, caus­
ing it to fall.

Note that in this program , rather
than employing a strictly data-driven
formalism, specific sensor-based observa­
tions are called for by the reasoner, and
the interpretation of these observations
depends on the goals and purposes of
the reasoner.

DISCUSSION

We began this chapter with a description
of the signals-to-symbols paradigm, and
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(a)

(a) Starting state.

FIGURE 9-40 Reasoning about a Simple Scene.

(b)

(b) Result of first predicted
event.

then described the various assumptions
and techniques that represent the current
realization of this paradigm. We now take
a critical look at this entireapproach.
The questions wewantto address here
are: (1) Is signals-to-symbols an adequate
paradigm? In particular, what are its
weaknesses?, and (2) Whatare the attri­
butesrequired by a machine vision sys­
tem if it is to be capable ofhuman-level
performance?

A Basic Concern About
Signals-to-Symbols

The signals-to-symbols paradigm was
presented in a hierarchical manner: from
low- through intermediate- to high-level
representation and analysis. In actual
practice, the processing will rarely follow
such a linear route; wereally do not know
how to impose an effective control struc­
ture on a computational vision system that

must contendwith images from uncon­
strained scene domains. For example,
very few ofthe low-level techniques we
described would be meaningful in helping
to extract the information needed to
perceive the Dalmatian shown in Fig.
9-22. On the other hand, ifwetried to
guide our processing byguessing what
was present in the image, there would be
an effective infinity ofpossible guesses.
Finally, even knowing that wewantto
look for a Dalmatian, it is not clear how
webypass the lack ofmeaningful low-level
information to achieve the final perceptual
gestalt.

The signals-to-symbols paradigm is
the only game in town given today's digi­
tal computers which can only process
numbersor symbols. However, byemploy­
ing a representation without an iconic or
isomorphic component, we incur the
following penalties:

Limitedvocabulary. Weare forced to
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FIGURE 9-41 A Scene Difficult to Describe.

(Photo courtesy of Joseph Firschein.)

describe a scene as a network of relation­
ships among a relatively small number of
discrete named entities.Thus, we must
describe a perceptually continuousscene
with a description based on a limited
vocabulary-the result is often a weakand
inadequate description, or an unusably
complexone. The driftwood shown in Fig.
9-41 is an example of a scene that is diffi­
cult to describe adequately with even the
full powerof natural language.

Loss of iconic representation. We lose
the constraints and innate spatial relation­
ships of the imagewhen we go to a sym­
bolic representation that does not havea
corresponding innate spatialstructuring.
We have gone from an iconic to a non-

isomorphic representation. In the iconic
representation relationships are innate;
in the nonisomorphic symbolic repre­
sentationwe must explicitly express rela­
tionships such as "near," "to the right
of," etc.

Available iconic representations,
suitable for computer implementation, are
quite primitive. Typically, the image is
stored as an array of numbers represent­
ing a local attribute of a scene, such as
intensity. Implicit information about the
shapes, relative positions, and proximity
of objects is inherentin this pictorial
template representation. However, the
pictorial template and its currently known
generalizations fall considerably short of
whatwill probably be requiredfor a gen­
eral solution to the problem of modeling
real-world vision.

There is a largevolume of experimen­
tal evidence to indicate that humans usea
sophisticated iconic representation in at
least some oftheir visual tasks. For exam­
ple, Roger Shepard [Shepard 71] has
shown that when subjects are asked to
mentally transform the spatial orientation
of solid figures, they perform mental oper­
ations that are highly analogous to the
transformations used to reorient the cor­
respondingphysical objects in space.
Kosslyn [Kosslyn 80] has shown that the
stored mental images used byhuman
subjects appearto preserve distance:
operations suchas scanningtook longer
whenthe objects mentally searchedfor
werefarther apart.

Necessary Attributes of a Machine
Vision System

Almost all computer vision research to
date has dealtwith the problem of identi-
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fying objects and describing their geomet­
ricrelationships based on their
appearance in an image. However, this
mode of analysis represents a small subset
of the reasoning employed by humans in
interpreting a scene. Equally important is
the ability to answer to such questions as:

Function. Whatare the objects in the
scenedoing?

Purpose. Whatare the objects supposed
to be doing?

Competency. Whatare the objects able
to do?

Intent. Whatdoeseach objectintend
to do?

Anomaly. Whatis unusual or "wrong"
with the scene?

Event analysis. Whathas happened?
Prediction. Whatis going to happen?
Evaluation. Why did the eventhappen?

The sizeandsophistication of the
appropriate database, and the deductive
apparatus needed to carry out the above
type ofanalysis isfar beyond what weare
currently capable ofdoingwith available
techniques.

Summary

Key points that are implied in the above
discussion canbe summarized as follows:

Iconic representation. .Many vision
problems cannotbe adequately described
in a purely abstract formalism; this implies
the need for employing some sort of
iconic representation, aswell as a comput­
ing device capable ofsupporting such a
representation.

Learning. We cannot, in a practical
sense, make explicit all of the knowledge
needed to createa system capable of
general purpose vision; some learning
ability mustbe provided.

Needfor experimentation. Because of
limited understanding ofthe visual world,
many vision problems will have to be
solved bya process resembling physical
experimentation; where the complexity of
the problem environment prevents us
from modeling it at a suitable level of
detail, the experimental spaceofa device
capable ofgeneral purpose vision may
haveto be extended out to the realworld.
Thus there mustbe an active interplay
between sensing and interpretation.

Appendixes
9-1

Mathematical Techniques for Information Integration

Intermediate-level scene analysis was
defined as the aggregate of opera­
tionsin which localor point events

are integrated into globalphenom­
ena. For example, edge pointsare
connected to form continuous con-

toursand semantic labelsare as­
signed to detectedscene entities.
Thisappendix describes someof the



mathematical techniquesusedto
perform these integrationopera­
tions:

• Relaxation. Localvalues or
labelsare adjustedto be compati­
ble with neighborhood values or
labels. The adjustment process
continuesuntil all values are
compatible withtheir neighbors.
The nature of the solutionis
determined byspecified consis­
tencyand boundary conditions
which remain unaltered during
the computation.

• Combinatorial optimization.
Given a set of objects, and a
"cost" associated with each subset
or configuration of these objects,
the problemis to select a subset
that satisfies a set of constraints,
and at the same time minimize or
maximize the value of a function
of the costs. An optimal solution is
selectedby organizing the compu­
tation so that onlythe mostprom­
ising alternative choices are
pursued.

• Model instantiation. The free
parametersof a modelare as­
signedthose values that permit
the modelto best describe a given
set of data.

• Statistical classification. Objects
are to be assignedto N predesig­
nated classes. Each object is
represented by a vectorwhose
componentscorrespondto mea­
surements made on the object.
Vectors correspondingto ideal
measurementsets are specified for
each of the N classes. Objects are
classified by some function of their
feature (measurement) space
distance to the ideal measure­
ment vectors.
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Relaxation

The labeling or assignment process
is a basicone in scene analysis. For
example, assigning an edgestrength
and edge direction to a pixel is a
form of labeling. On a higherlevel,
wemightlabela line in an image
with a codethat indicates concavity
or convexity of the edge it repre­
sents in the three-dimensional world.
Intuitively, weknow that ifglobal
informationis usedwecan obtain
a better assignment of labels than
ifweonlyuse localinformation.
A majorproblem is that of com­
putational cost, sincethe larger
the regionused as the basisfor
establishing the labeling, the more
time-consuming and complex the
computation.

Relaxation techniques forscene
analysis use iteration (repeated tries)
as a meansof obtaining a global
interpretation by using'onlylocal
understanding and localoperations.
Multiple passesare madethrough
the image, and the labeling results
are modified in each pass based on
constraints, or compatibility of the
current assignment of the labels at
each pixeland those of itsneighbor­
ingpixels. The intent is to have the
local information propagate globally
by means of label modification.

Forms of LabelAssignment. In
order to implementa relaxation
process, wemust havesomeway
ofmaking an initial assignment
of labelsto each pixel. For exam..
ple, in edgeanalysis this canbe
done by usingmultiple masks,
each representing a distinctedge.
orientation. At every pixel, those
masks that produce a response
greater than a certain-threshold

value causea corresponding label to
be assigned to that pixel. Labels can
appear in two forms: (1) discrete
labeling that doesnot involve
probability assignments, and(2)
probabilistic labeling in which a
strength or score is assigned to
the labels. An example ofdiscrete
labeling is the set of labels verti-
cal, horizontal, diagonal, noedge,
that can be assigned to a pixel.
Probabilistic labeling would be the
assignment to a pixel of probability
of horizontal- 0.6, probability of
vertical=-0.2. In the discrete labels
approach, successive iterations
eliminate labels that cause
compatibility problems with a
neighbor, while in the probabilistic
case the probabilities for eachlabel
of eachpixel are modified.

Relaxation withDiscrete Labels.
The relaxation process usedwith
discrete labels can be best presented
byan example. Suppose that we are
labeling pixelsin edge analysis, that
the possible labels are horizontal
(H), vertical (V), and none (N), and
that compatibility rules require: (1)
AnH pixel musthave H neighbors
to the leftor right; (2) a Vpixel must
have Vneighbors aboveor below;
(3)an N pixel musthave N labels in
three out of fourof its neighbors.

Suppose wehavethe following
situation at a pixel, P, labeled with
H and N, and surrounded byfour
neighbors:

VH

HN HN HV

VN

We see that the N label of P
does not satisfy compatibility re-



quirement 3, sincewecannot find
threeneighbors having an N label.
TheN label would thereforebe
dropped from the centerpixel. (In
most discrete relaxation approaches,
oncea label is deletedthere is no
mechanism for regenerating it at a
laterstage ofcomputation.) The H
label does satisfy condition 1 that
requires H labels on either side, so
the H label would be retained.

The iterative procedure termi­
nates when there are no pixelsthat
have more than one label or when
no additional changesoccur in one
complete iteration. Notethat it is
possible to reacha situationin
which allthe labelsat a pixel are
deleted because none ofthe labels
satisfy the required compatibility
conditions.

Relaxation with Probabilistic
Labels. Asindicated previously,
a preprocessing operationmust
provide the initial set of labelsand
theirprobabilities. A revised
probability for each label at each
pixel is typically obtained byan
updating expression of the form
shown in the box below.

Thesupport for k around pixel
i is a number between -1 and +1,
with -1 indicating that the presence
oflabel k is incompatible with the
neighborhood labeling. This support
value is a function of the compatibil­
itybetween label k and the label L
ofeach neighbor and the probability
that L isa valid label for each neigh-
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bor. The normalizing factor is used
to keep label probabilities between 0
and 1.

Although appealing intuitively,
this typeof updatingrule has no
absolute justification, and its conver­
gence properties are not generally
well understood; in many examples,
results firstimprove and then de­
grade iftoo manyiterationsare
used.

Discussion. Relaxation is a
computational mechanism that
attempts a globalanalysis by using
local consensus and iteratingthe
procedure many times. Relaxation
is attractive because the localoper­
ationscan proceed in parallel, and
the techniquetherefore has the po­
tentialfor high-speed mechani­
zation. Relaxation has also been
suggested as the computational
mechanism employed by biological
systems [Feldman 85]. Ascurrently
employed, relaxation procedures
tend to be ad hoc; their mathemat­
icaland semanticproperties are
poorly understood.

Combinatorial Optimization

Perception can be defined as finding
a best interpretationofsensed data
in terms of a set of a priori models.
The term "best" often implies some
sort of optimization, i.e., a selection
from a set of alternatives.

Almost all optimization prob­
lemsdealt with in scene analysis are
either of (1) a statistical nature, e.g.,

a statistical measure, oftenin a
feature space, is used to makea
selection of the best set of entities,
or (2) combinatorial optimization in
which selection from a set of alterna­
tives is madeon the basisof maxi­
mizing or minimizing some objective
function. We discuss statistical
optimization below; here we de­
scribe some ofthe combinatorial
techniques that havebeen employed
in computational vision. The general
approach is to transformthe original
vision problem into a problem in
which a cost or figure of meritcan
be assigned to each possible combi­
nation of elements. Although the
best combination couldbe foundby
evaluating the cost for every possible
combination and selecting the con­
figuration with the lowest cost, the
large numberof combinations makes
this exhaustive approach infeasible.
The optimization techniques orga­
nizethe computation so that combi­
nations that are not :good candidates
for solution are not considered.

Optimization Problems in ILSA.
Examples of ILSA optimization
problems are (1) finding the best way
of linking pixels, as in edge finding,
and (2) image matching.

1. The edge-linkingproblem.
Suppose we havea technique
that assigns a cost to eachpixel
in an image to indicatethe
likelihood of the presenceof a
road (or edge or line) at each
pixel location. The costsare

Revised probability of
labelk at pixel i

(Previous probability) (1+support for k)

Normalizing factor



assignedso that a low cost
indicates a high likelihood of a
road. Given this array of cost
values, we would like to find a
path through this array such
that the sum of the costs along
this path is minimized. In the
image, this minimum cost path
wouldthen be marked as the
road.. Note that the resulting
solution assures continuityof
the global structures as well as
the best collection of locally
"roadlike" elements.

2. The image-matchingproblem.
Weare given a reference image
consistingof blobs of various
shapes, and a sensed image
that we would like to match
withthis reference image. If the
sensed image is a distorted
version of the reference image,
then we cannot use a straight­
forward correlation technique
in whichwe movethe sensed
imageover the reference im­
age, looking for the best match.
Instead, we imagine the sensed
imageto be on a transparent
rubber sheet, so that blobs can
he displaced from one another
bystretching and compressing
the rubber sheet. Wenow
perform a.matching operation
by layingthe sensed imageover
the reference map and stretch­
ingand compressingthe rubber
sheet to obtain the best possi­
blematch of the variousblobs.
In this matching operation we
use a cost which is the
weighted sum of two compo­
nents: (1) a cost based on
individual comparisonof blobs
in the sensed and reference
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images, and (2)a cost based on
the amount of stretching or
compressing required. The
problem is to find the stretch
and match combination that
results in the smallestoverall
cost.

An Edge-Linking Algorithm. An
approach to combinatorial edge
linkingis to use two arrays: (1) a
localcost arraythat provides a
measureof the edge likelihood at
each pixel location, and (2) a total
path costarray, that stores the
lowest cost of the path froma
starting point to each pixel. The
total path cost arraystores the
results of each iteration, and the
computation ends whenno further
changes can be made to this array..

Webeginwitha set of initial
values stored in the total path cost
array. Allthe elementsare set to a
very high valueexcept that element
that we would like to be start point
of the path. Weassignthe start pixel
its local cost array value. Appendix
9-2 shows an algorithm in which, for
each pixel, P, weform the sum
of each of its neighbor'stotal path
cost array value plus the local cost
array valueof P. If the minimum of
these eight sums, SMIN, is less than
the current total path cost array
value of P, wereplace P by SMIN.
The iteration is repeated until no
changesoccur in the total path cost
array. All paths and their costs can
be determineddirectly from the final
configuration of the total path cost
array.

An Image-Matching Algorithm.
Supposewe have a reference image
consisting ofN components, and

these components are constrained
in position with respectto one an­
other. For example, the pieces could
be linesconstrained to form an ap­
proximate rectangle. The image­
matching algorithm mustfind an
optimal fit of the reference figure to
a structure visible in the sensed
image.

An example ofsuch an algo­
rithm can be described using the
rectangle example (see Appendix
9-3). First, each component of the
reference is matched separately with
the sensed image and a listis kept
of acceptable match positions and
the quality of the match at each
position. We order the listso that
the component most likely to be
correctly matched appears at the top
of the list, followed by the next most
reliable, etc.

We nowuse the mostreliable
piece,A, and its best match
locations in the sensed image, MAl,
MA2, ..., and the next mostreliable
piece,B. Sinceweknow the
constraint relationship between A
and B, weknow for each ofthe
MAl, MA2, ..., the approximate
locationswhere the MB matches
shouldbe. Wecan use the list of
best matchesfor B and determine '
the maximum stretch foreach MB
entry which satisfies the positional
constraintcondition relative to an
MA entry.

If the combined scoreof the
original MB matchplus the stretch
cost is too great, then that MB point
will be eliminated from further
consideration. If,for some MAn
there is not at least one MBk, then
weeliminate the MAn match point
fromfurther consideration. After
one has formed all the acceptable
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(MAn,MBk) pairs, then the next
piece, C, on the list is examined
for MC points that satisfy the con­
straints with regardto A and Beam­
ponents. Unmatched (MAn,MBk)
pairs are eliminated and the proce­
durecontinues to D, the last piece
on the list.

Discussion. The designof the
costfunction is crucial in the
optimization approach, since it will
determine the complexity of the
computation and willaffectthe
quality and characteristics of the
solution. For example, in the path
findingproblem, addinga constant
bias to eachcost value tends to
smooth and straighten the optimal
path. Thiseffect occursbecause, as
the biasincreases, the length of the
track becomes relatively more
important in comparison to the local
quality as defined by individual pixel
costs. Similarly, raising each cost to
a power introduces a very strong
inhibition against goingthrough a
point with a highcost. Thus, the
designer can introduce a priori
knowledge (e.g., a preferencefor
curving roads in mountainous
regions, or straightroads in flat
terrain) bysuitable tailoringof the
costfunction.

Classificationand Model
Instantiation

This section presentssome classifi­
cation and model fitting techniques
thathave the common characteristic
ofusing a "parameter" or "attribute
space" as the underlying representa­
tion. A parameter space associates a
different parameter with each coor­
dinate axis (orpossibly the same
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parameters from two different im­
ages). Wemapfrom the image space
representation to parameter spaceto
assign labels to individual pixels in
the image, or to findthose collec­
tions ofpixelsin an image that
satisfy a model such as "house,"
"airport," etc. A simple example of
a parameterspace is the intensity
histogram of an image, in which
intensity is used as one axis and the
other axis is the count of pixels in
the image for each intensity value.

We will discuss three types of
parameterspace decision problems:

1. Supervised classification, in
which the locationof an "ideal"
for each classin parameter
space is known, and location of
unclassified points in parameter
space relative to the ideal

.points is used to make the
classification assignments
(statistical decision theory).

2. Unsupervised classification, in
which point clusters in parame­
ter space are assumed to cor­
respond to meaningful or
coherent imagestructures.

3. Model instantiation, in which
point clustersin parameter
space are used to find the
parametersof a modeled object
visible in a given image.

Supervised Classification. An
example of supervised classification
arisesin the analysis of images ac­
quiredby earth resourcessatel­
lites.A multispectral image, i.e., a
set ofN registeredimages corre­
sponding to N different frequency
bands, is obtained for some por­
tion of the earth's surface. Each pic­
ture elementthen has N associated
measurements. The classification

problem is to assign a classlabel,
e.g., "corn," "water," "rock," to
each pixel.

If we use an N dimensional
parameterspace whose axes corre­
spond to the N frequency bands,
then the measurement vectorat
each pixel location can be mapped
as a point in this measurement
space. To classify the pixel, wemust
specify in the parameter spacea
set ofideals, points that are typi­
cal of each class. Classification then
consists of assigning a pixel to the
class of the closest ideal.

Unsupervised Classification. An
example of unsupervised classifi­
cation is finding a set of intensity
thresholds to partitiona gray-level
image into coherent objects byfea­
ture space clustering. Such a proce­
dure, based on histogram analysis,
is described in Appendix 9-3.

Model Instantiation. Parameter
spaceclustering can be used to
assign values to the parameters
ofa model of somescene entity
appearing in an image. For exam­
ple,supposewe are searchingfor
straightlines in an image. The pa­
rameters in a model for a straight
linemight be the slope, m, and
the y intercept, b, in the relation
y=mx+b.

Weforma parameter space,
(m,b), so that any line through a
particularpixel will be mappedinto
a point in (m,b) space. Ifwepass a
set ofk linesof k different slopes
througha pixel x ,y in image space,
we will get k different points mapped
in the m.b space. If this is done
for each pixel in the image that
has some minimum value ofedge
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(c)

FIGURE 9-42 A Parameter Spacefor Straight Lines.

(a) o, f) parameters.
(b) p, 8 histogram for lines passingthrough point Xl' Ul'
(c) Determining dominantline.

drawthe vectorfrom this interior
point to points on the boundary.

For each point on the
boundary, wehavetwovectors, the
vectorR to the interior point, and
the tangent vectorat the boundary
point. We nowform an R-table
containing each tangent vector and
its associated R-vector. The R-table
is used as follows. For each point in
a given imagethat is a strongedge
point wefind the edge orientation,
i.e., the tangent vectorat that point.
Wethen use this vectoras a look-up
entry into the R-table and find the
one or more R-vectors that are
associated with this tangent vector.
Thus, for each edge point in the
imagewenowhaveone or more
R-vectors.

Nowfor each edge point,
position the tail of its one or more
R-vectors at the edge point.Note
where the head ofeach R-vector falls
and plot this R-vector-head point in
a histogram whose axes have the
samex and Y values as the image. If
the modeled object is visible in the
image, then wewill get a clustering
ofR-headpoints in this histogram
corresponding to point P in the
model. Ha strong clusterdoes exist,
then we havefoundthe locationof
point P and can also locatethe
boundaryof the object in the image.

As another example of map­
ping each image pixel into many
histogram points, considerthe
following problem. Suppose we
havetwoimages taken ofthe same"
area but having different intensity
characteristics due to illumination
changes. Suppose, moreover, that
there is somex,y displacement
between the images. We would like
to find both the spatialdisplacement
and the intensity mapping function.

o 20 40 60 80 100 120 140 160

(J

. . .· .. .
· .

. .
· ••• · .

-- ". . •· · · .. • ·

(b)

p

o 20 40 60 80 100 120 140 160

e

togram in (normal line, angle)
space for lines passingthrough the
point X1,Yl is shown in Fig. 9-42(b).
Fig.9-42(c) showshowa dominant
line can be determinedusingthis
histogram.

Note that this approach results
in a mappingof manypoints to the
parameter space for each pixel in
the image.Weare essentially trying
out manypossibleinstancesof the
model ( in this case a straight line),
and relying on the clustering in
parameter space to obtain the best
value of the parameters for the
modeL This approach, called the
Hough transform), can be extended
to general shapes, as described
below.

If the object weare searching
for is an arbitraryshape, as shown in
Fig. 9-43, weselect an arbitrary
point, P, interior to the regionand

x

•

~~ .
• "-"........-- Dominant line

", appears in transform space
• ... as histogram· bucket

with thehighest count

(a)

x

strength, then we have the situation
in which each such pixel votes for
the m.b combination that represents
possible lines passing through it.
AfterallN edge pixelsare mapped
into kxNpoints in m.b parame-
ter space, the point in parameter
space that receives the most votes
represents the best instantiation
of the underlyingmodel. Rather
than using quantized histogram
buckets to count the number
of points satisfying a particularmb
combination, we could use'a cluster
analysis technique in a nonquantized
space.

In practice, the m.b parame­
terization for straight lines is not
suitablebecause m and b can be­
comeinfinite. A better choice of
parameters is the normal to the
line, and the angle of this normal,
as shownin Fig. 9-42(a). The his..

y
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FIGURE 9-43 Hough Transform for General Shapes.

We have previously discussed the
concept of constructing a feature
spacewhose axes correspond to
measurements madeon an object.
We have also indicated that when an
unknown objectis representedas a
point in this space, there are several
methods for assigning it to a class by
usingits distancefrom an ideal point
of that class, or by notingwhere the
unknown point falls in a previously
partitioned feature space. In this
section wewill discuss howstatistical
theory can be used to provide the
distance metric or the partitioning
criteria.

offsets. If wecarry out this proce­
dure for many different displace­
mentsof the two images, wecan find
a histogram that provides us with
the best (most compact) mapping of
intensities, and also provides us with
the corresponding positional match
between the images.

Statistical Classification

X
Histogram

RTable

Description

Tangent Angleof Rvector
vector Rvector length

IT1 81 ~
\Tk 6k Y• • •• • •• • •

......---1--­
Edge
segment
in sensed scene with
parameters 61> Rl votes
for location of reference
image at Xl' Yl

Reference image

X
Sensed scene

+
y

Using the RTable

FIGURE 9-44 Image Matching using a Tho-Dimensional Histogram.

Intensity2

t..r- Imagel

Image2

Offset ,iX2,~ Y2

We can proceedbyforming
a histogram in which one axis
represents the intensity of a pixel
in image I, and the other axis
represents the intensity of a corre­
sponding pixel in image 2, as shown
inFig. 9-44. We showtwo differ-
entplacements of image lover
Image 2. For each placement we
obtain a histogram of the numberN
for eachcombination (intensity I,
intensity 2) that represents the
number ofoverlapped pixels in the
images that have this intensity
combination. For one of the x,y
offsets wefind that weobtain a
better(more compact) clustering in
itshistogram than for the other
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FIGURE 9-45
Components of the Statistical Classification Process.

p(mIC)p(C;)
p(C;lm) =

Bayes's Theorem. We can use
Bayes's theorem to modify the given
or a priori probability ofa class, by
usingthe conditional PDFand the
measurement obtained for the
unclassified object:

PDFs usinga given set of labeled
reference objects is known as
training and will be described later.

normalizing factor

wherep(Cilm) is the probability
of classC;given measurement m
(called the a posteriori probability);
p(ml Ci) is the conditional PDF­
supplied value, given measurement
m and assuming classC;;and p(C) is
the a priori probability ofclassC/.
The normalizing factoris usedto
make the set of a posteriori proba­
bilities sum to unity.

Given two classes C, and C2, we
classify an unknown object as being
a memberof C, when the probability
of classC,given measurement m is
greater than that of class C2, i.e.,
p(C,lm) > p(C2Im). FromBayes's
theoremthis becomes, choose C,
whenp(mIC,)p(C,) > p(m!CJp(C2) ,

otherwise chooseC2• If the PDFs are
given as histograms derived froma
reference set of measurements made
on idealobjectsrepresenting each
class, wewould scaleeach histogram
based on the a priori probability of
its class, and assign the unknown
objectto the classthat had the
largest resulting value for measure­
ment(s) m.

Wenote that sincep(C,) and
p(CJ are constants, and the p(m\Ci)
are single peakedfunctions for the
example shown in Fig. 9-46, the
decision criteriain this caseamount
to assigning all personswith mea-

Classification

I Set of measurements I
of unclassified object

.' Classifier II

Object
assigned
class label

classes for clarity, but the expres­
sions can be extended to any num­
ber of measurements and classes.

The Conditional ProbabilityDensity
Function (PDF). A typical PDFfor
a single measurement, weight, and
two classes, man and woman, are
shown in Fig. 9-46. Weuse the term
conditional PDFand the notation
p(weight rneasurementlwoman) to
denote the probability ofa weight
measurement, given that we are
dealingwith the class"woman."
Note that in this example each PDF
has a single peak. For mostobjects
of practical concern, a PDF with
more than a singlepronouncedpeak
indicates that the choiceof
measurement is not a good one.

The process of estimating the

1----i~1 Classifier parameters I

Training

Knowledge or
assumptions about
probability of classes,
distribution of measure­
ments, and cost of
misdassification

Reference objects
labeled as to class

The components of the statisti­
cal classification process are shown
in Fig. 9-45. On the right is a classi­
fier that assigns an unknownobject
to a class based on the classifier
parameters and a set of measure­
ments made on the object. On the
left is shown the design or training
process for obtaining the parameters
of the classifier. To determine these
parameters, we must knowor as­
sume the a prioriprobability of
occurrence of each class, the varia­
tion in each measurement for each
class (the probability density func­
tion, PDF, for each class), and the
cost of misclassification (the cost of
assigning an object actually of class
Xto class Y.)

In the discussion below, we
use a single measurement and two
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Weight measurement

a 20 40 60 80 100 120 140 160 180 200

FIGURE 9-46
Conditional PDFs of Weight Measurements for Tho Classes.

Training. The heart of the statis­
ticalclassification approach is the
conditional PDF. Eitherparametric
or nonparametric classifiers can
be designed, based on what is
known about the PDF and what
mustbe estimated. A parametric
classifier assumes a functional form
of a PDF based on some knowledge
about the objects beingclassified.
Statistical procedures are used on
the reference set to estimate param­
eterssuch as the meanand vari­
anceof the assumed PDF. In a non­
parametric classifier we do not know
enough about the objects to assume
a PDFand thereforethe PDF form
is estimated from the reference data.
Thisrequires much more reference
data than the parametriccase.The
process of estimating the PDFs
using the reference objectsis often
referred to as training, and if the
reference objects havebeen labeled
(classified) by the designer, the term
supervised training is used.

is performed using multidimensional
planes (hyperplanes) or multidimen­
sionalsurfaces (hypersurfaces). An
alternative interpretation is to con­
sider the statistical analysis as alter­
ing the initial Euclidean distance
metric in such a way that any
point can be assignedto the class
corresponding to the nearest
ideal point

Probability of

~~ ~~~-
measurement

sured values ofm lessthan some
value, M' , to the classwoman and
all persons with values ofm greater
thanM· to the classman. Thus, the
decision criteria based onstatistical
arguments can be interpreted as a
simple partitioning offeature space
into two regions separatedbya
simple boundary. For a multidimen­
sional feature space the partitioning

9-2

A Path-Finding Algorithm

This appendix presents a dynamic
programming approachto finding
the lowest cost path in a cost array.
Theexample array isgivenin Fig. 9­
47(a) and the numbersrepresentthe
local costofhaving the path go
through that element. In this exam­
ple, we want to traverse the array
from the lower left (start element) to
the upperright(end element) so that
thesumofthe path elements will be

minimum.
The algorithm usesa "path

cost array"that specifies the total
costof the path fromthe starting
point to each elementof the array.
Webegin the processby initializing
the path cost array with high values
for all elements except that element
wewish to make the start of the
path; this element is assigned its
local cost array value. In our exam-

plewewant the start of the path to
be in the lower left hand corner, so
we assign that elementthe value 3,
its value in the local cost array. All
other elements are assignedthe
suitably large arbitraryvalue100,
as shown in Fig. 9-47(b).

A revised path cost array value
is obtained by addingthe local value
ofan elementin L and the path cost
array value of one of its neighbors;
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(a) Local cost array (L). (b) Initial path cost array(P). (c) Resultsof first Oeft) and
second(right) iterations. (d) Third Oell:) and fourth (right) iterations. (e) Fifthiteration,
showing solutionpath. (t) Effectof squaring the localcost arrayon solution path:
Squaredlocalcost array (left) and solution path cost array(right).

98221
8 3 7 88
72638
78382
9 8762
32228

81 64 4 4 1 100 100 58-62-63
64 9 49 64 64 100 5,4/81 96 96
49 4 36 9 64 94 45<,68 32 87
49 64 9 64 4 94100 41'/83"23
81 64 49 36 4 84 67 56 47 19

9 4 4 4 64 3 - 7-11-15 ......79

Arrays used in the Path Computation.

(a)

(b)

(c)

(d)

(e)

(f)

fiGURE 9-47

100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100

12 11 18 24 26
3 5 7 9 17

100 100 100 100 100
100 100 100 100 100
25 16 20 17 25
18 19 14 19 13
12 11 12 13 11
3 5 7 9 17

100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100
100 100 100 100 100

3 100 100 100 100

100 100 100 100 100
100 100 100 100 100
100 100 100 100 100

18 19 14 22 24
12 11 12 13 11
3 5 7 9 17

100 100 100 100 100
24 19 23 25 25
23 16 20 16 21
18 19 14 19 13
12 11 12 13 11
3 5 7 9 17

28 27 21-23-24
24 19/23 24 24
23 16,20 16 21
18 19 14 19 13
12 11'....12 13 11

/

3 5 7 9 17

we perform this computation for
each of its eight neighbors, and if
one of these sums, SMIN, is less
than the element's current path cost,
T, we replace T by SMIN (in Pl. We
show in Fig. 9-47(c) the result of
performing this operation while
sweeping through each rowfrom left
to right, and processing rowsfrom
bottom to top.

Notice in the first iteration how
change spreads from the lower left
corner. The repeated bottom-to-top
sweeping rule we are using here is
not an efficientone, since change is
generated at the bottom of the
array; a better strategy wouldhave
been to start at the bottom, but to
reverse the sweep direction at each
additional iteration. Continuing
the iterations we obtain the array
shown in Fig. 9-47(d). Notice that no
changes are occurring in the bottom
rows. The final result is obtained on
the fifth iteration, Fig. 9-47(e).

To obtain the minimal cost
path, we start with the final element
of the path (the end element), and
look for the neighboring element
having the lowestvalue. Thus we
thread through the array with the
path 24-23-21-19-16-14-11-3.
To illustrate the relevance of the cost
assignment process, note what
happens when the computation is
repeated, but with the local cost
array squared, i.e., a monotonic
transformation of the cost function.
Since the differential between low
and high costs has become more
extreme, it now pays to lengthen the
path to avoid high-cost pixels, and
we obtain a longer and more "wig­
gly" path, as shown in Fig. 9-47(f).

The path is now 63-62-58­
54-45~1-32-23-19-15-11-7-3_
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9-3

Relational (Rubber Sheet) Image Matching

This appendix shows how dynamic
programming can be usedto solve a
problem in image matching. We
have a reference image

6 4
3 5

andwe wantto find the best match
in the sensedimage:

5 2 88
7 5 1 3
8 1 5 7
4324

If the reference image was
"rigid," then we wouldmove the
sensed image over the reference
image looking for the location where
thesum ofthe absolutedifferences
between the sensed and reference
elements was smallest. (The absolute
difference of corresponding pixel
values is the local costfunction
chosen for this example.) In the
present situation, weare willing to
allow a certain amount of "give"
between the reference elements;
however, a penalty will be paid for
suchstretching. For reference pur­
poses, we will label the reference
image

A8
D C

We will assume that springs
exist between pairs (8,A),(C,8), and
(O,C) , and that there are the follow­
ingcosts to stretching:

• Element A has no spring cost
• Element 8 to element A: 8 adja­

centto right ofA costs nothing
8 displaced one unit to the right
costs 1
Othermovements of8 from A
costinfinity

• Element C to element 8: C adja­
centbelow 8 costs nothing
Cdisplaced one unit down from 8
costs 1
Othermovements of C from B
costinfinity

• Element 0 to element C:D adja­
centto left of C costsnothing
D displaced one unit to leftcosts 1
Othermovements of 0 costs
infinity

For convenience, wedisplay below
the costof match for each reference
element Each arraywas obtained by
taking the absolutedifference ofa
reference elementwith eachelement
ofthe sensed array.

The arrays on page 300 show
the results of the computational
sequence. The leftmost arrays show

the placementofelementA. Look­
ingat Ns cost matrix, wechoose the
lowest cost positions, those having a
costof 1. For clarity we have drawn
a separate arrayfor each best loca­
tionofA. For each best placement
ofAwe then consider the best
placements of B. For example, 8
canbe placed adjacent to the first
placement of Afor a cost of1+ 2+0
units, or 8 can be stretchedfor a
costoil + 4+ 1. The first term is A's
bestcost, the next term is8 's match
cost, and the third term is the
stretch cost. Once A and 8 have
beenplaced, wI} have a totalcost for
the A,8 combination. In our exam­
ple, we choose the lowest cost in
each array to determine the posi­
tioning of the corresponding compo­
nent. In actual practicewe could
carry along morethan one position
foreach component.

In the placement of element C
on the first rowofarrays, given the
bestplacementofAand 8 costing 3
units, we can place C for 3+0+ 0 or
3+4+1 units, asshown. The place­
mentthat results in 3 unitsofcost is
chosen, and is usedin the rightmost
column to obtaina placement of 0
at a cost of3+4+0 units.

A match cost
1422
1153
2511
2342

B matchcost
1244
3131
4313
0120

C matchcost
0333
2042
3402
1231

D match cost
2155
4220
5224
101 1

Cost Arrays



300

COMPUTATIONAL VISION

Placement A
1 - --

Placement A,B
A3 6-

Placement A,B,C
A B --
..3 ..-
- 8 - ..

Placement A,B,C,D
A B .. ·
7 Coo ..

1 - -- A2 5- A B -- A B ....
- 6 - ..
- 5 .... 6 C--

- 1 ..- -A 4 3 -A-B -A-B
- - - 5 - 8 7 C
- - - 5 .. 6 6 C

- - 1 - .. - A 4 -- A B
- - - 5

- -A B
- 6 6 C

Thus, the 'lowestcost placements have a value of 6 and they are the following:

A B--

DC --

-A-B

-D-C

-A-B

- - D C
--AB
-D-C

--A B
.. - DC

In actual practice the computations wouldbe in tabular form. Note that ifweadd the additional constraintthat
D mustbe in the same column as A, then only three solutions are valid.


