Part Two

Cogn

81

ition

4. Reasoning and Problem Solving
5. Learning

6. Language and Communication

7. Expert/Knowledge-based Systems

1

In this part of the book we deal with the gen-
eral symbolic machinery that provides a basis
for reasoning, planning, and communication.
A main theme is the need for “representing”
a problem in a form that permits its effec-
tive solution, and the difficulty of obtaining
such representations automatically.

4

Reasoning and Problem
Solving

ANNT 77/
N V]

In its most basic sense, rea- : EE designer. (The pocket calculator,
soning is the ability to solve for example, fails this test.) Thus,
problems. However, simply [| :~ our first requirement implies that
because a device cansolvea [N areasoning system be based on
problem does not mean [a set of representations that has
that it is capable of reason- /[1 \ \ broad expressive power.

ing. For example, a pocket calculator can
“solve” a variety of mathematical prob-
lems, but certainly such problem solving
ability is not an example of reasoning.
What are some of the necessary condi-
tions that distinguish reasoning from
“mechanical” behavior?

First, we require that a reasoning
system be capable of expressing and
solving a broad range of problems
and problem types—including problem
formulations that do not correspond to
rigid templates anticipated by the system

Second, the system must be able to
make explicit the implicit information that
is known to it, i.e., for any information
possessed by the system it can systemati-
cally obtain all equivalent representations
of this information.! For example, from
the information (1) all tigers are danger-
ous, and (2) this animal is a tiger, the sys-
tem should be able to obtain the explicit
statement (3) this animal is dangerous.

'This is meant in a conceptual sense; in practice,
obtaining all equivalent representations could take
an impractical amount of time.

84
REASONING AND PROBLEM SOLVING

Note that (3) was implicit in statements
(1) and (2). Thus, we require a set of
operations or transformations that pro-
duce other “valid” representations
when applied to the representations of
information possessed by the system.
The system must be able to translate

a problem situation expressed in some
external representation into its own
(internal)representation as well as being
able to “syntactically” transform infor-
mation already expressed in its own for-
malism. For example, a translation may
be made from natural language to a logic
formalism, and expressions in the logic
formalism may then undergo additional
transformations during the course of
constructing a proof.

Third, we require that the system
have a control structure that determines
which transformations to apply, when a
solution has been obtained, or when fur-
ther effort is futile.

Finally, we require that all the above
be accomplished with a reasonable degree
of computational efficiency.

In the remainder of this chapter, we
will consider a number of distinct formal-
isms for reasoning, and describe how
these formalisms are applied to problem
solving. Some of the issues addressed
include:

« What is reasoning, and what is its role
in intelligent behavior?

« How can a reasoning system use a for-
mal language to represent things and
their relationships in the world, and
how can it solve problems using such
a representation?

« What are the conceptual and practical
limits of problem solving systems em-

ploying formal representations?

« How can a reasoning system deal with
imprecisely formulated problems?

« How can a reasoning system select the
best representation for a given problem?

« How can a reasoning system know
which facts in its database are relevant
to solving a given problem?

« How can a machine formulate a plan of
action to achieve a desired goal?

HUMAN REASONING

Until the twentieth century, logic and the
psychology of thought were considered to
be one and the same. In Chapter 1 we
quoted Boole’s statement as to the pur-
pose of his book on logic: fo investigate
the fundamental operations of the mind
by which reasoning is performed. Thus, it
is not surprising that often formal logic or
probability theory is taken as the ideal,
and human reasoning is found to deviate
from this ideal. This point of view is in
contrast to investigations in visual percep-
tion and language, where the biological
system is taken as the exemplar and an
attempt is made to attain similar perfor-
mance by machine.

As discussed in Chapter 2, almost
nothing is known about the physical ma-
chinery used by the brain to carry out its
reasoning activity. Attempts to gain in-
sight into the functional aspects, if not the
actual brain mechanisms involved in hu-
man reasoning have motivated a large
body of psychological research. However,
unlike experiments in which the speed or
accuracy of a perceptual or motor action
can be objectively measured, experiments
in reasoning are subject to contextual
conditions and variables that are difficult
to control, and that can only be quantified

85

HUMAN REASONING

using subjective judgment. For example,
since subjects come to such experiments
with a lifelong experience of cooperative-
ness in conversation, they expect to en-
counter a cooperative experimenter who
will provide them with information useful
for solving the posed problem. Thus,
although the experimenter may have
provided redundant or misleading infor-
mation, subjects will attempt to use this
material to find a solution. There is also
the problem of experiments that are for-
eign to the natural reasoning processes
used by people, resulting in misleading
conclusions. Scribner [Scribner 77] de-
scribes some of the fascinating cultural
influences on logical processes.? Finally,
the experiments often require that human
subjects describe their reasoning activities
as they solve a problem; the recorded
protocols are then analyzed. Such proto-
col analysis suffers from the fact that
people typically do not have access to the
reasoning mechanisms that they are really
using.

Much of the research on human
judgment and reasoning is based on the
study of “errors.” This approach is similar
to the study of optical illusions to under-
stand the principles of visual perception
or the study of forgetting to learn about
memory. Research on systematic errors
and inferential biases in reasoning can
sometimes reveal the psychological pro-
cesses that govern judgment and infer-

2For example, suppose a subject is presented with
the statements, All women in Biranga are married.
Mary lives in Biranga, and is asked “Is Mary mar-
ried?” In some cultures, subjects might reply that
they cannot answer because they do not know Mary.
Others will not accept the initial premise because
they know that there are unmarried women in
Biranga.

ence. Such research can also indicate
which principles of logic and statistics are
nonintuitive or counterintuitive. However,
given the large body of work investigating
human problem solving, there have been
surprisingly few results concrete enough
to be suitable for transfer to machine-
based formalisms.

Human Logical Reasoning

Some of the rules of formal logic are quite
intuitive for people, but many others are
not. Experiments [Rips 77] have shown
that people readily use forms of inference
such as “From (P implies Q) and P you
can deduce Q.” For example, “If John is
good, he will be rewarded. John is good.
Therefore, John will be rewarded.” How-
ever, the valid deduction “From (P implies
Q) and (not Q) you can deduce (not P)” is
mistrusted by people untrained in formal
logic. For example, “If John is good, he
will be rewarded. John will not be re-
warded. Therefore, John is not good.”
The difficulty with this form may be due
to the fact that people are not used to
reasoning about what is not true. In ad-
dition, people tend not to seek negative
information when carrying out reasoning
processes.

~ People have difficulty with many
deduction forms, “syllogisms,” that deal
with “all” and “some.” For example, the
invalid syllogism “Some A’s are B’s; some
B’s are C’s implies that some A's are C’s”
is considered correct by most people.
Figure 4-1 shows that there are situations
for which this syllogism is false. The valid
syllogism “Some B’s are A’s; No C’s are
B’s; therefore some A's are not C’s” was
considered as invalid by 60% of tested
subjects [Anderson 80].

86

REASONING AND PROBLEM SOLVING

No A’s are C's

Some A’s are B’s Some B’s are C’s

Note that in this example

FIGURE 4-1
The Use of a Venn Diagram to Test a
Syllogism.

Testing the syllogism “Some A’s are B's; some B’s are
C's; therefore some A’s are C's. ” The diagram gives an
instance in which the syllogism is false.

Johnson-Laird and Wason summarize
the situation as follows [Johnson-Laird
77): “There is not much of a consensus
about the psychological mechanisms un-
derlying deduction or even about so fun-
damental a matter as to whether or not
human beings are basically capable of
rational inference. . . . [p.76).” In later
work, described by Gardner [Gardner 83,
pp. 363-367], Johnson-Laird offers the
theory that people reason by sequentially
integrating the premises and conclusion of
an argument into one or more “mental
models” which are then searched for
inconsistencies (i.e., any interpretation in
which the premises lead to a denial of the
conclusion). If no such inconsistencies can
be found, the conclusion is accepted as
valid; while formal logic provides system-
atic methods for searching for counter-
examples, ordinary human reasoning
employs no such methods.

Human Probabilistic Reasoning

There are major differences between
human and formal probabilistic reasoning
[Tversky 74]. When dealing with ques-
tions concerning the probability that
object A belongs to class B, or the proba-
bility that event A originates from process
B, a person generally evaluates the degree
to which A is representative or resembles
B, while ignoring prior probabilities, the
effects of sample size, and a statistical
principle known as “regression to the
mean.””

In a typical experiment, subjects were
shown brief personality descriptions of
several individuals, allegedly sampled at
random from a group of 100 persons—
engineers and lawyers. For each descrip-
tion, the subjects were asked to assess the
probability that it belonged to an engineer
rather than to a lawyer. One set of sub-
jects were told that there were 30 engi-
neers and 70 lawyers, and the other group
of subjects were told that there were 70
engineers and 30 lawyers. Ignoring the
prior probabilities, the two sets of subjects
came up with essentially the same proba-
bility judgments.

Other experiments have shown
that people expect that a sequence
of events generated by a random process
will represent the essential characteristics
of that process even when the sequence is
short. For example, in tossing a fair coin,
people regard the sequence H-T-H-T-T-H
to be more likely than the sequence
H-H-H-T-T-T [Tversky 74]. Thus, people
expect that the essential characteristics of

*This is the phenomenon that exceptional perfor-
mance is more often than not followed by disap-
pointing performance and failures by improvement.

FORMAL REASONING AND PROBLEM SOLVING

the process will be represented, not only
globally in the entire sequence, but also
locally in each of its parts.

Another heuristic used by people is
assessing the probability of an event based
on the ease with which instances or occur-
rences can be brought to mind. For exam-
ple, one may assess the risk of heart
attack among middle-aged people by
recalling such occurrences among one’s
acquaintances. Concering this “availabil-
ity” heuristic, Tversky and Kahneman
have pointed out [Tversky 74]:

Lifelong experience has taught us that,

in general, instances of large classes

are recalled better and faster than in-
stances of less frequent classes; that likely
instances are easier to imagine than
unlikely ones; and that the associative
connections between events are strength-
ened when the events frequently co-
occur. As a result, man has at his disposal
a procedure, the availability heuristic, for
estimating the size of a class, the likeli-
hood of an event, or the frequency of co-
occurrences, by the ease with which the
relevant mental operations of retrieval,
construction, or association can be per-
formed. However, this valuable estimation
procedure results in systematic errors.

In both the logical and statistical
domains, it appears that the human rea-
soning process is context-dependent, so
that different operations or inferential
rules are required in different contexts
[Hayes 77]. Consequently, human reason-
ing cannot be adequately described in
terms of context-independent formal
rules. Furthermore, performance is dra-
matically improved when an experimental
task is related more clearly to the sub-
ject’s experiences. The difficulty in solving

a posed problem is often not intrinsic to
the logical structure of the task, but
rather to the mode of presentation (e.g.,
[Johnson-Laird 77)).

FORMAL REASONING AND
PROBLEM SOLVING

Requirements for a Problem Solver

A problem exists when there are condi-
tions that certain objects must satisfy,
given some set of constraints or facts. A
solution is a way of satisfying the condi-
tions. Thus, given the problem of getting
from home to the airport, the database of
facts should contain information concern-
ing the transportation available, the time
available, the distance to be traversed,
etc. The condition to be satisfied is your
presence at the airport, and the solution,
the “plan,” is the sequence of operations
that you use in satisfying the condition
consistent with the given (or implied)
constraints.

An obvious first step in solving a
problem is to recognize that a problem
exists. However, prompt recognition that
a problem exists may not be simple. For
example, novice chess players may not
notice that they are being drawn into a
losing position until it is too late. A child
may not realize that the bicycle is going
too fast until it goes out of control. One
might drive for a considerable distance
before recognizing that one is lost.

Once the problem is recognized, the
problem solver must represent it in a
suitable formalism and then plan a course
of action using this representation and a
knowledge of the effects of proposed
actions. As indicated in Chapter 3, the

88

REASONING AND PROBLEM SOLVING

heart of the problem-solving process con-
sists of choosing the right representation,
and being able to set up the appropriate
correspondence between the problem and
the representation.

In carrying out a plan, the problem
solver must know when the information at
hand is inadequate and should be supple-
mented or supplanted. If the environment
changes, the problem solver must change
the plan accordingly. For example, in the
airport problem, we may plan to take
Bayshore Highway but find that construc-
tion has slowed traffic too much, requiring
us to take First Street instead.

Any proposed solution must satisfy
the conditions of the problem. However,
in real-world problems we find that some
of the most important conditions are not
stated. In the airport problem, the impor-
tant condition—“I want to get to the
airport in a reasonable amount of time”—
may not be stated. The solution “walk
there” may satisfy the stated conditions
but not the implicit ones.

Categories of Reasoning

There are many different systems of rea-
soning that can be used to solve prob-
lems. We divide these systems into the
three major categories presented below;
however, we will encounter some reason-
ing techniques that span more than one
category.

Deductive Reasoning. In deductive
reasoning, we attempt to find a “deductive
chain” of “valid” assertions leading from
statements which are assumed to be true,
to some given assertion whose validity we
wish to establish. The power of the deduc-

tive approach lies in the fact that the rules
of deductive inference obtain new true
statements from existing ones. Deductive
arguments are characterized by their
logical necessity; the conclusion is “‘en-
tailed” by (implicit in) the premises.
Deduction is meaningful only in the
context of a formal system in which sym-
bols are combined and transformed under
a given fixed set of rules. The essence of
a deductive system is the maintenance of
validity or consistency: a statement and its
contradiction cannot both be derived. We
are therefore guaranteed validity of de-
rived results. However, to insure this
property, deductive systems are often
extremely awkward in expressing certain
types of information. Thus, deductive
logic systems have no practical way of
dealing directly with probabilistic asser-
tions, or with information implied by
quantitative assertions requiring numeri-
cal computation; mathematical systems
have no practical way of dealing directly
with conflicting or probabilistic assertions,
or with qualitative statements (e.g., “Bill
looks quite a bit like John”); probabilistic
systems, to the extent that they can be
considered to be deductive, have no prac-
tical way of expressing relational informa-
tion (e.g., “Bill is twice as tall as John”),
and no effective way of manipulating
assertions that are strictly either true
or false.

Inductive Reasoning. In inductive rea-
soning (nondemonstrative inference), a
form of reasoning basic to scientific in-
quiry, we attempt to find some generaliza-
tion or abstraction that describes or
categorizes a set of data. A major distinc-
tion between deduction and induction is

FORMAL REASONING AND PROBLEM SOLVING

that in induction we have a set of con-
straints to satisfy, rather than an explicit
(given) assertion to establish. Further,
inductive problems are less likely to be as
precisely formulated as deductive ones.

For example, given the problem of
finding the next number in the sequence
<1,2,4,8,16 >, most people will give the
answer “32” without requiring any addi-
tional problem specification. It is typical
of problems in induction that there is
more than one acceptable answer to the
problem (any answer could be justified in
the above example). Such problems often
require extrapolation, and generally do
not permit a definitive way to check the
“correctness” of a final answer. Premises
support, but do not logically entail the
derived solution. The rules of inductive
inference do not provide an assured
means for deriving new true statements
from existing ones.

One of the most important distinc-
tions between deductive and inductive
reasoning is the amount of “evidence”
that must be invoked to derive a new
assertion (or verify some hypothesis).
Because of assured consistency and com-
putational considerations, deductive sys-
tems generally use long reasoning chains
consisting of small steps; in each step,
only a very small subset of the total set of
“facts” known to the system is explicitly
invoked. Deductive systems make “local”
syntactic transformations—they cannot
take a “global” perspective in solving a
problem. On the other hand, because of
the possibility of erroneous information,
inductive systems use short reasoning
chains consisting of big steps. Inductive
systems generally attempt to explicitly use
as much of their available information as

possible in every step since they depend
on consensus to insure “correct” conclu-
sions. Thus, inductive systems must work
at a global level in solving a problem.

Analogical Reasoning. In analogical
reasoning, we set up a correspondence
between the elements and operations of
two distinct systems. Typically, one of the
systems is well understood, and the other
is the one we wish to ask questions about;
we answer the questions by posing them
in the system we understand. An example
of analogical reasoning is the solution

to the 15 game by the known procedure
for playing tick-tack-toe, as described in
Chapter 3. Another example is using our
knowledge and intuitions about fluid flow
to reason about the flow of electrical
current.

The major problem in reasoning by
analogy is to find the correspondence
between the known and unknown sys-
tems. For example, if we have an analogy,
“An electric battery is like a reservoir,” it
is not the size, shape, color, or substance
of a battery that is relevant, but rather
that both store potential energy and re-
lease energy to provide power. Thus, only
relationships dealing with the storage and
release of energy would be meaningful in
this analogy. The insight used by a person
to recognize that a previously encoun-
tered situation is analogous to another
situation eludes mechanization.

Common-sense reasoning, discussed
later in this chapter, combines analogi-
cal and inductive techniques to solve
everyday problems about the behavior of
physical objects in the world. Analogical
reasoning also plays an important role in
learning, as will be shown in Chapter 5.

90

REASONING AND PROBLEM SOLVING

The following sections describe a
number of different reasoning formalisms.
No matter which formalism is employed, a
major part of the reasoning process is the
conversion of some given problem into
that formalism. This conversion or trans-
lation step is actually a problem in ana-
logical reasoning for which we have no
adequate solution at present; i.e., we still
consider the translation step to be a crea-
tive process.

THE DEDUCTIVE LOGIC
FORMALISM

In this section we will discuss a special
kind of reasoning called “logical deduc-
tion,” in which true conclusions result
when “rules of inference” are applied to
true statements. Thus, we are interested
in consistent systems in which one propo-
sition may be inferred or deduced from
other propositions. A deductive system
with a consistent set of premises will be
consistent in assigning truth-values to
conclusions: such a system cannot prove
both that B is true and that B is false.
Although the words “true” and “false” are
used in the continuing discussion, these
words do not necessarily mean true or
false in the real world. One should think
of “true” and “false” as labels or values
(truth-values) that have been assigned to
statements, regardless of their relationship
to the real world.

Below, we will describe how real-
world situations are expressed in the
notation of formal logic and how to de-
duce new facts from a given set of prem-
ises. We first describe the propositional
calculus that allows us to deal with given

propositions (sentences), and composi-
tions of such sentences, which must be
either true or false. Then we will treat
the predicate calculus that allows us to
compose true or false sentences from
more primitive elements than complete
sentences. These two logic systems have
been thoroughly investigated and are
well understood, but they correspond to
a very small part of the reasoning used
by people. However, they form the basis
of many Al reasoning programs, and are
also part of the machinery underlying
“logic programming,” as typified by the
language PROLOG, discussed in Ap-
pendix 4-1.

Propositional Calculus

The calculus of propositions deals with
statements or sentences of the type
“Water boils at 212 degrees Fahren-
heit,” “The number 3 is an even num-
ber,” where the first sentence has an asso-
ciated truth-value designated by T for true
and the second one F for false. Sentences
will be denoted by capital letters such as
P, Q, R. The following “connectives” are
used to combine or modify sentences.

Negation. Negation is indicated by a mi-
nus sign, e.g. —P, and designates “it
is NOT the case that P.” If P is true,
then —P is false; if P is false then
—P is true.

Conjunction. The conjunction of two
sentences P, Q is true if both P and Q
are true. Conjunction is designated
by P&Q, read as P and Q, e.g. (the
block is made of wood)&(the block
is red).

Disjunction. The disjunction of two sen-
tences P, Q is true if at least one of P,

91

THE DEDUCTIVE LOGIC FORMALISM

Q is true. Disjunction is designated
by PvQ, read P or Q, e.g. (Tom is a
man)v(Tom is poor). PvQ allows us to
express that at least one of the state-
ments is true without saying which
one is true.

Implication. Implication, designated as
P—Q, asserts “if P then Q,” where
P is known as the antecedent and Q
the consequent. The sentence is false
only if the antecedent is true and the
consequent is false; otherwise it is
true. Note that, unlike the ordinary
use of if-then, e.g., “If taxes rise then
the market will drop,” no causality is
inherent in a logical if-then sentence.

A truth-table is a way of specifying
the results of assigning all possible combi-
nations of truth-values to a proposition.
For the conjunction operation, the truth
table is of the form:

P | Q ” P&Q
F | F F
F|T .F
T | F F
TIT T

Thus, P&Q is true only if both P and Q
are both true. Two expressions are equiva-
lent if (and only if) their truth-tables are
identical. For example, to show that P—>Q
is equivalent to —PvQ, we develop the

following truth-tables:
P | Q[P0 P
F | F T T
F| T T T
T | F F F
T T T T

Since the columns P—Q and —PvQ

are identical, P—Q is equivalent to —PvQ.

Proof by truth-table comparison is gener-
ally not practical because if n different
propositional variables occur in the prem-
ises, then a table with 2" rows must be
filled out. A more efficient approach is to
use an inference rule such as:

P the block is heavy

P—Q if the block is heavy, then
the block is hard to move
Q the block is hard to move

which can be informally expressed as: “if
P is true, and if the statement P—Q is
true, then we can infer that Q is true. This
deductive rule (“modus ponens”), which
can be proved by means of a truth-table,
can be used to establish proofs without
resorting to the truth-table.

The study of logic involves the study
of various inference procedures and the
technique of applying these procedures.
Until the work of Hao Wang [Wang 60] in
1960, the use of such procedures required
intuition, and thus these methods were
unsuited for computer implementation. A
more recent approach to computer mech-
anization of logic, called “resolution”
[Robinson 65], will be described below.

Propositional Resolution

One can verify by truth-table comparison
that the theorem QvS can be proved from
the premises PvQ and —PvS. From an
operational point of view, we can say that
the P and —P terms in the two premises
have been eliminated (resolved), leaving a
single expression that is the disjunction
(logical sum) of the remaining terms.

Any proposition can be put in the form
(P1)&(P2)&(P3). . ., where P1, P2, and P3

92
REASONING AND PROBLEM SOLVING

are expressions consisting of disjunctions
of variables or negated variables. This
transformation can be performed using
the propositional equivalences shown

in Box 4-1. P1, P2, and P3 are called
“clauses,” and clauses can be resolved
to eliminate variables. For example, the
expression (—PvQ)&(P) consists of the
clause —PvQ and the clause P. P and
—P in these clauses can be resolved to
obtain the result Q. Clauses preceded by
a negation sign must be transformed

to remove the negation sign. A clause
such as —(PvQ) must be converted to
—P&—Q using De Morgan’s theorem
given in Box 4-1.

An important approach to theorem
proving assumes that the theorem to be
proved is false; i.e., its negation is true.
Then one shows that this assumption,
taken together with the premises, leads to
the impossible situation of some variable
and its negation both being true (a “con-
tradiction”). Thus, if the negation of the
theorem is inconsistent with the premises,
the unnegated theorem must be consist-

ent with the premises and therefore true.

Arriving at a contradiction is a useful

termination condition for an automatic ,

theorem-proving process. An example P

of a resolution proof is given below. [
Given the premise (— PvQ)&(—QvR)

&(—RvS)&(— Uv-S), we want to prove

the theorem (—Pv—U). Note that this

would require a truth-table of 2° rows for

a truth-table proof. To prove the theorem

by contradiction, we take the negation

of the theorem, —(—Pv—U), which by

De Morgan'’s theorem in the equivalence

table of Box 4-1 is P&U. We place the

clauses P, U in the set of clauses (we have

placed each in a position that allows the

reader to see how the resolution process

is carried out):

P —PvQ —QvR —RvS -Uv-S U
\/
Q -S

N

R

N

S

BOX 4-1 Equivalences in Logic

The following equivalences can be used to convert logic expressions to a standard normal form:

Propositional Calculus

P&Q=Q&P
PvQ=QvP
--P=P Double negation
~-PvQ =-P&-Q De Morgan’s theorem
-P&Q =-Pv-Q De Morgan’s theorem

P & (QvR) = P&Q v P&R

Predicate Calculus

—X)Px) = (Ex)[-P(x)] P does not hold for all x =
there exists an x for which P does not hold.

WP = @)QW)] = IPK) ~ Q)

93

THE DEDUCTIVE LOGIC FORMALISM

Since we obtain a contradiction, S
and —S, for the negation of the proposi-
tion, the original proposition —Pv—U
must be true, i.e., deducible from the
given premises.

Predicates

The propositional calculus is limited in
its expressive power; sentences cannot
be composed of primitives standing for
individual objects and their properties
or relationships, but must be composed
of primitive elements that are capable
of being assigned a truth-value. For ex-
ample, there is no way of representing an
individual such as “John” without mak-
ing some explicit assertion about him,
such as “John is a student.” Also, the
fact that certain relationships hold for
some, or for all individuals, cannot be
expressed without being explicit and
exhaustive.

In order to provide additional expres-
sive power, the propositional calculus is
expanded to the predicate calculus by
introducing terms, functions, predicates,
and quantifiers, as follows:

Terms or individual variables serve
the grammatical function of pronouns
and common nouns. They are the things
talked about, e.g., “car,” “John,” or un-
specified things such as x, y, or z.

A “predicate” denotes a relationship
between objects. A unary relation specifies
a property of an object. Red(x), a unary
relation, is a predicate expression that
asserts that x is red. Father(John,Tom)
asserts that John is the father of Tom. A
predicate can take on a value of true or
false when its variables have assumed
specific values (converting them to terms).

Quantifiers

The universal quantifier, shown by paren-
theses around the variable,* e.g., (x), is
the notation that indicates “for all x.”
Thus, “all men are animals” is expressed
as (x)[Man(x)— Animal(x)]. A second
quantifier, “there exists,” is designated by
an E. “There is at least one x such that x
is greater than zero” can be represented
by (Ex)(x>0). “A red object is on top of
a green one” can be represented by

(Ex) (Ey)[Red(x)&Green(y)&ontop(x,y)].

Universal and existential quantifiers
can be combined in the same expression.
Thus, “Everyone has a mother” can be
expressed as (x)(Ey)[(Human(x)—
Mother(x,y)].

Note that (Ex)Q(x) allows us to ex-
press the fact that something has a certain
property without saying which thing has
that property, and (x)[P(x)—Q(x)] ex-
presses the fact that everything in a cer-
tain class has a certain property without
saying what everything in that class is.

Semantics

Even though we may use symbols that
form English words, it must be kept in
mind that to an automatic theorem prov-
ing system these are merely symbols that
are to be manipulated. The system sees
no difference between P(x) and Red(x);
the meaning or semantics must be pro-
vided by the user mapping the variables
and functions to things in the problem
domain. The specification of a domain
and the associations between logical sym-

“The confusion between parentheses denoting the
universal quantifier and those used to denote the
variables in a function is easily resolved by context.

94
REASONING AND PROBLEM SOLVING

bols and the problem domain constitute propositional-type expressions; the various
an interpretation or a model of the logical ~ connectives and quantifiers are removed
system. using the steps shown in Box 4-2. (In
logic programming languages such as
PROLOG [see Appendix 4-1], the ex-

Computational Issues) X : :
pressions are written directly in a

Mechanized inference techniques in the “clause ” form, eliminating the need for
predicate calculus first convert the expres- this conversion.)
sions into a normal form, consisting of In the early 1930s, Herbrand

BOX 4-2 Converting Predicate Calculus Expressions
to Clause Form

The following sequence of operations is used to convert function, such as G2 in the expression, (x)[Hu-
a predicate calculus expression to clause form: man(x)—Motherof(x,G2(x))], to indicate the depen-
1. Removing implications. Occurrences of P—Q are dence of the y on the particular x selected.

replaced by —PvQ. Thus, (x)[Man(x)—Human(x)] is
replaced by (x)[—Man(x)vHuman(x)].

. Moving negation inwards. We replace

— [Human(Caesar)&Living(Caesar)] by

— Human(Caesar)v ~ Living(Caesar). The quantifier
“all” preceded by a negation is transformed as in
the example — (y)[Person(y)] to (Ey)[— Person(y)].
That is, if not all things satisfy a predicate, then
there must be at least one thing that does not
satisfy it.

. Removing the existential quantifiers. The
removal of existential quantifiers, known as
“skolemizing,” is done by introducing new constant
symbols. Instead of saying that there exists an
object with a certain set of properties, one creates
a name for one such object and simply says that

it has the properties. Thus, for (Ex)[Female(x)
&Motherof(x,Eve)], we say Female(G1)&
Motherof(G1,Eve). When there are univer-

sal quantifiers in a formula, skolemization

is not quite so simple. If we skolemized
(x)[Human(x) — (Ey)(Motherof(x,y))],

“every human has a mother” to (x)[Human(x)—
Motherof(x,G1)], we would be saying “every human
has the same mother.” Thus, we have to use a

4. Moving universal quantifiers outward. We can
move universal quantifiers outward without affecting
meaning. Thus, (x)[Man(x)— (y)[Woman(y)—
Likes(x,y)]] can be transformed to (x)(y)[Man(x)—
(Woman(y) — Likes(x,y))].

5. Conjunctive normal form. The expression is now
transformed so that conjunctions no longer appear
inside disjunctions, i.e., we obtain the form (P)&(Q)
...,where P, Q... do not contain &. This normal
form is used in propositional resolution.

6. Clause form. The formula we now have is made
up of a collection of &'s relating things which are
either literals or composed of literals connected by
v's. If we have something like (A&B)&(C&D&EE)),
where A,B,C,D.E represent (possibly complex)
propositions that have no &'s in them, then we can
ignore the parentheses and write A&B&C&D&E,
and we can consider this a collection of clauses
ABC,...

Proof procedures such as resolution can now be invoked
in a manner similar to that described for the proposi-
tional calculus; the main distinction is due to the possi-
ble existence of variables in the predicate clauses which
then requires the use of unification to achieve the neces-
sary matching.

THE DEDUCTIVE LOGIC FORMALISM

[Herbrand 30] proved that if a set of
clauses containing variables is contradic-
tory, then there will exist a finite set of
variable-free instances of these clauses
that can be shown to be contradictory by
propositional methods. An efficient proce-
dure for finding such a contradiction was
developed in 1965 by J. A. Robinson
[Robinson 65]. This procedure makes
inferences by the use of “unification” and
propositional resolution. Thus, once we
have the expression in clause form, we
can carry out these procedures to obtain
a proof.

Propositional resolution requires that
two clauses to be resolved have a common
element (literal), negated in one clause
and unnegated in the other. Sometimes a
constant, another variable, or a function
(not containing the variable) must be
substituted for some given variable in
order to satisfy the above condition. The
process of finding substitutions that make
two clauses resolvable is called unifica-
tion. An important feature of the resolu-
tion method is that it doés not require
that the clauses being resolved contain
only constants, but allows the most gen-
eral possible form of the variables to be
retained consistent with the resolution
condition. For example, we can resolve
the two clauses P(c,x)vF and —P(c,y)vG
by making the substitution x=y; we need
not assign a specific value to x or y.

Resolution proof procedures are
hopelessly inefficient if they have no
mechanisms to specify which of the many
possible sequences of resolutions to se-
lect. Many different techniques have been
developed to deal with this problem. For
example, the “set of support” strategy
takes the first clause to be resolved from

the negation of the statement to be
proved (because such a step will eventu-
ally be required to complete the proof). It
further dictates that at least one resolvent
in every resolution must be descended
from the negation of the statement to be
proved, because only such resolutions are
relevant. The “linear format” strategy
attempts to keep the sequence of resolu-
tions relevant by requiring that each new
resolution make use of the results of the
previous one.

A good discussion of the “art” of
setting up the proof strategy is discussed
in Wos [Wos 84]:

The use of an automatic reasoning pro-
gram is an art, even though the program
employs unambiguous and exacting
notation for representing information,
precise inference rules for drawing con-
clusions, and carefully delineated strate-
gies to control those inference rules. . . .
In using an automated reasoning pro-
gram, one makes good choices for the
representation, for inference rules, and
for strategies. . . . Without strategy, an
automated reasoning program will drown
in new information. With strategy, a
reasoning program can sometimes per-
form as a brilliant assistant or colleague.

Nonstandard Logics

In the first order predicate calculus it is
not possible to represent relationships
among predicates, temporal relationships,
hypothetical assertions, beliefs, assertions
of possibility, and vague asssertions based
on incomplete information. In addition,
there is no mechanism for deleting state-
ments from the database. There is a grow-
ing literature devoted to the creation and

96

REASONING AND PROBLEM SOLVING

exploration of alternative logics and asso-
ciated inference mechanisms. Some of
these systems are extensions designed to
supplement standard logic, while others
are alternatives to standard logic. These
systems, being explored for use in Al, are
described briefly below; a detailed treat-
ment is given in Turner [Turner 85].

Modal logic is concerned with concepts of
necessity and possibility. It extends
standard logic by using the operators
“it is necessary that” and “it is possi-
ble that.” This type of logic can be
used to deal with the concept of
“belief,” an important consideration
in the planning of actions. A modal
logic suitable for representing knowl-
edge and action has been developed
by Moore [Moore 85].

Temporal logic deals with the representa-
tion of time, important in automatic
planning and in diagnosis. Concepts
such as is true, was true, will be true,
and has always been true must be
expressed, as well as time-interval
relationships such as during, before,
and overlaps in time.

Higher order logic can represent proper-
ties of predicates or even properties
of properties of predicates. For exam-
ple, in the second order predicate
calculus, equality can be defined as

(P)x)@) [x=y]—[Pe)—~P@)),

i.e., if x and y are equal, then for all
predicates, the predicate of x equals
the predicate of y. This quantification
over predicates is not permissible in
the first order predicate calculus.

In higher order logic, care must be
taken to avoid contradictions of the sort
discovered by Russell and treated by the

theory of types in Russell and White-
head’s Principia Mathematica. Higher
order logic has not as yet seen much use
in AL

Multivalued logics. While classical logic
employs two truth-values, a multi-
valued logic can represent interme-
diate values. Multivalued logics are
useful for situations in which one
cannot always make a commitment
to either true or false, and yet one
wants a deductive system that is
consistent.

Fuzzy logic. In fuzzy logic, predicates
such as “red” and “tall” are consid-
ered as vague predicates, and an
element is considered to have a
“grade of membership” in any given
set. Truth-values are also considered
to lie on a scale between true and
false. “A is small; A and B are ap-
proximately equal; therefore, B is
more or less small”’is an example
of a fuzzy inference.

Nonmonotonic logic. In classical logic,
the system increases its stock of
truths as knowledge is added and as
inferences are made. There is no
mechanism for discarding informa-
tion or revising beliefs. This aspect of
classical logic is termed “monotonic.”
In nonmonotonic systems, inferences
can be made on the basis of available
data, but these inferences can be
rejected and new ones made when
new data become available.

INDUCTIVE REASONING

In inductive reasoning we form generaliza-
tions that characterize a class of data from
the characteristics of a set of samples of

97

INDUCTIVE REASONING

the class. These generalizations, and the
inferences based on them, are inductive
because it is always possible that our
initial conclusions will be invalidated by
new evidence, acquired by observing a
larger sample, or even a single new sam-
ple. Despite this risk, induction is an
indispensable mode of reasoning, used
continually in everyday life as well as in
the development of scientific theory.

In this section we describe the Bayes-
ian and Shafer-Dempster probabilistic
formalisms; these formalisms are impor-
tant tools used in inductive reasoning.
While the deductive systems described
previously cannot deal with conflicts in
evidence because such conflicts lead to
logical contradictions, probabilistic tech-
niques are able to make predictions in the
presence of conflicting evidence. These
predictions will not always be true, but
they are good guesses that make effective
use of the given information.

Just as there are various forms of
deductive reasoning, various forms of
probabilistic reasoning are possible. The
different forms depend on the nature of
the belief measures used and how they are
manipulated. Philosophers have identified
at least four distinct versions of the con-
cept of probability:

1. The measured frequency of occur-
rence of events.

2. The disposition of events (or a single
event) to occur, e.g., “Everyone who
looks at this car agrees that there is a
low probability that it will be able to
make the trip from New York to Los
Angeles”

3. The subjective belief a person has
about the likelihood of occurrences
of different events

4. The logical relationship between
evidence and relevant hypotheses,
e.g., “If the patient has a fever and
his glypus test is positive, then it is
probable that he has Hendrix syn-
drome”

Probabilistic reasoning first requires
the construction of a problem representa-
tion. This step, called “sample space con-
struction,” or developing the “frame of
discernment,” formulates the vocabulary
and statements that will be used to de-
scribe the given problem. Next, a belief
“value” is provided for each statement,
either by ranking the statements, assign-
ing a belief number to each, or assigning
a lower and upper belief number (bound)
to each. Finally, the known belief values
are combined or pooled, and propagated
to modify the belief numbers of other
statements, and especially that of the
target hypothesis. As in most Al prob-
lems, the representation step is crucial. It
depends on the designer’s understanding
of the relevant events in the world, and
the availability of evidence that relates to
these events. Representation as an issue
in probabilistic reasoning is discussed
later.

Measures of Belief

There are various characteristics that a
belief measure might have. A set of intui-
tively satisfying characteristics was pro-
posed by Cox [Cox 46] and discussed

in detail in Horvitz and Heckerman
[Horvitz 86]:

1. Clarity. The propositions must be
defined precisely enough so that one
can tell when a proposition is true or
false.

98

REASONING AND PROBLEM SOLVING

2. Completeness. It must be possible
to assign a degree of belief to any
proposition.

3. Scalar continuity. Measures of
degree of belief should vary continu-
ously between certain truth and cer-
tain falsehood.

4. Context dependency. The degree of
belief in a particular proposition
should depend on knowledge about
the truth of other propositions.

5. Consistency. If two propositions are
logically equivalent, the degree of
belief in one proposition given cer-
tain evidence should equal the degree
of belief in the other.

6. Hypothetical conditioning. The
belief in the proposition A&B should
be a function of the belief in A and
the belief in B given that A is true.

7. Complementarity. The belief in the
negation of A should be determmed
by the belief in A itself.

Cox showed that these seven proper-
ties are logically equivalent to the axioms
of classical probability theory; alternative
belief formalisms change one or more of
these properties. Below we first describe
belief revision in classical probability
theory, and then discuss the Shafer-
Dempster (S/D) theory that rejects several
- of the above properties.

Bayesian Reasoning

Bayesian reasoning is the classical mecha-
nism used to revise belief, given new evi-
dence [Feller 50, Parzen 60]. We begin
with a probability distribution that com-
pletely describes our degrees of belief in
a set of-hypotheses before obtaining new

evidence. If a probability P is assigned to
an event A, then (1-P) is assigned to
—A, the nonoccurrence of A. New evi-
dence results in modifying or “condition-
ing” P based on computations relating
evidence to the hypotheses.

In Bayesian reasoning, the logical
form of the implication “if E then H,” is
replaced by “if E then H with a probabil-
ity P.” This “conditional probability”
assertion is written P(H|E), and is read
“the probability of hypothesis H given that
the evidence E is true.” Probabilities are
updated according to Bayes’s theorem:

P(H|E) = P(E|H) P(H)/P(E).

This equation, derived in Box 4-3,
states that we can update the probability
of hypothesis H, P(H), given that new
evidence E, assumed to be true, has been
received. Bayesian calculus for compli-
cated situations requires knowledge of
the a priori probability of some events,
e.g. P(H) and P(E), and depends on the
sequential use of known conditional prob-
abilities, P(E|H), to evaluate the corres-
ponding values for implied propositions.
If the required a priori and conditional
probability values are known, an evalu-
ation path can be found to allow the
computation of the likelihood of some
target event. However, the determina-
tion of all these necessary a priori and
conditional values is often impossible
or impractical, and one is then forced
to heuristic or approximation techniques
to compute the unknown values.

When the relationship between
events is unknown, a basic technique
used is to assume their independence. We
can then compute, rather than guess, the
a priori values of joint events, such as

————

INDUCTIVE REASONING

BOX 4-3 Conditional Probability and the Bayes Theorem

A conditional probability P(H|E) is the probability of an
event or hypothesis, H, given that we know that some
other event or hypothesis, E, is true. The relationships
are readily derived using simple sets. Suppose we have
N things, some of them with property H, some of them
with property E, and some with both properties E and
H as shown in the Venn diagram in Fig. 4-2.

Property E Property Property H

EandH

FIGURE 4-2
Example of Conditional Probability Calculation
Using the Venn Diagram Representation.

P(H|E)=N(E and H/N(E)
N(E)=5

N(E and H)=2
PH|E)=2/5

The conditional probability P(H|E) = N(E and H)/
N(E), where N(E and H) is the number of elements that
have both properties E and H, and N(E) is the number
of elements with property E. If we divide the top and
bottom of the right-hand side by N, the total number of
elements, we get

N(E and H)
P(H|E) = N = PEandH) 4.1
N(E) P(E)
N

Using a similar argument, we can obtain the expres-
sion for P(E|H), the probability of the event E, given
that event H is true:

P(E|H) = P(H and E)/P(H). (4.2)

Since P(H and E) is the same as P(E and H), we
can solve for P(H and E) in Eq. (4.2), P(H and E) =
P(E|H)P(H), and substitute in Eq. (4.1) to obtain Bayes'’s
theorem,

P(H|E) = P(E|H)P(H)/P(E). 4.3

This says that if we have an initial (a priori) proba-
bility of event or hypothesis H, P(H), and we know that
event E is true, then we can get an updated probability,
P(H|E), assuming that we also know both the probability
of event E, P(E), and the conditional probability of E
given that H is true, P(E|H).

P(A,B). Thus if A and B are independent
P(B|A)=P(B), so that P(A,B)=P(A)P(B|A)
=P(A)P(B). Obviously, we get incorrect
answers if we assume independence when
it is not appropriate.

A second technique is to employ the
principle of insufficient reason. This prin-
ciple states that if there is no reason to
believe x to be more or less likely than y,
then assume that the probability of x
equals that of y. Thus, in the absence of

any additional information, the probability
assigned to any one hypothesis becomes a
function of the number of hypothetical
alternatives. This is an undesirable prop-
erty since a particular hypothesis can
always be broken down into several sub-
hypotheses, thus altering the a priori
probabilities assigned to other hypothe-
ses. For example, given that an apple has
disappeared in a locked room containing
two men and a woman, we might assign to

100

REASONING AND PROBLEM SOLVING

each of two competing hypotheses a prob-
ability of 1/2:

P1: A man ate the apple.
P2: A woman ate the apple.

However, we also could have formu-
lated our hypotheses as:

Q1: Bill ate the apple.
Q2: Bob ate the apple.
Q3: Mary ate the apple.

Under the principle of insufficient
reason, we assign Q1, Q2, and Q3 each a
probability of 1/3. P2 and Q3 are identical
assertions which are assigned different
probabilities under the principle of insuffi-
cient reason simply because of the way we
chose to express the remaining alterna-
tives. Even if we could improve the value
assignment process for the priors, we
might still want to profess ignorance.
However, Bayesian probability offers no
mechanism to permit this option.

Belief Functions

The Shafer-Dempster belief function for-
malism [Shafer 76, Garvey 81] rejects the
completeness assumption that asserts that
a degree of belief can be assigned to any
proposition. This approach also rejects
the principle of insuffient reason or any .
probability assignment that provides a
value to a proposition when not enough
is known about the proposition. In addi-
tion, separate measures are assigned to a
proposition and its negation, rejecting the
complementarity assumption.

In the Shafer-Dempster formalism,
the evidence received by a knowledge
source results in its apportioning a “unit
of belief’” among a set of propositions.

The amount of belief (called “mass”)
committed to a proposition represents a
judgment as to the strength of the evi-
dence that specifically favors that propo-
sition. It is not required that belief not
committed to a given proposition should
be given to the negation of the proposi-
tion. This is in contrast to the Bayesian
approach in which a unit of probability
must be apportioned between the two
sides of every question.

The Shafer-Dempster formalism
makes lack of information concerning
probabilities explicit by expressing the
belief in a proposition as a subinterval
[support(a), plausibility(a)] in the unit
interval [0,1]. Using this notation, a prop-
osition would be written A[.25,.85] to
indicate that the probability of A is be-
tween .25 and .85. The lower value repre-
sents the support for a proposition A, and
sets a minimum value for its likelihood.
The upper value denotes the plausibility
of A and establishes a maximum likeli-
hood. The support may be interpreted as
the total positive effect a body of evidence
has on a proposition, while plausibility
represents the total extent to which a
body of evidence fails to refute a proposi-
tion. The degree of uncertainty about the
probability value for a proposition corres-
ponds to the width of its interval. Table
4-1 presents some additional examples of
belief assignment employing the Shafer-
Dempster representation.

To use belief functions, one partitions
evidence into relatively simple compo-
nents, makes probability judgments sepa-
rately with respect to each of these
components, and then combines these
judgments to obtain a final judgment that
represents the total evidence.

101

INDUCTIVE REASONING

TABLE 4-1 m Examples of Belief Assignment in the Shafer-Dempster Approach

[0,1] no knowledge about the proposition

[0,0] proposition is false

[1,1] proposition is true

[25,1] evidence provides partial support for proposition
[0,.85] evidence provides partial refutation of proposition

[-25,.85] evidence is conflicting, providing both evidence for and against the proposition

The Shafer-Dempster formalism has
the desirable property that the intervals
become points when precise probability
information is available, and under certain
independence assumptions, the corres-
ponding computations produce results
consistent with Bayesian probability the-
ory. If the only events that can occur are
known to be either true or false, then the
results of the Shafer-Dempster computa-
tions are consistent with those of deduc-
tive logic. The Shafer-Dempster formalism
also provides a way of dealing with con-
flicting information, but now the resulting
likelihoods can no longer be interpreted
in the same way as Bayesian probabilities,
and in particular, they no longer have a
simple frequency of occurrence interpreta-
tion.

The underlying representation for the
Shafer-Dempster formalism consists of an
exhaustive list (L) of mutually exclusive
event possibilities with each subset (A of
L) interpreted as the “proposition” that
the true state of the world is one of the
elements of L contained within A. L is
called a “frame of discernment,” to em-
phasize that each possibility in L can
always be split into more specific possibili-
ties, i.e., the resolution with which we
view the world can be increased, thus -
increasing the number of propositions
that L discerns.

Single Belief Functions in the S/D
Formalism. A “knowledge source” dis-
tributes a unit of belief across a set of
propositions for which it has direct evi-
dence in proportion to the weight of that
evidence as it bears on each proposition.
For example, if there are five possible
events, a knowledge source KS1 might
distribute belief as <.13, .22, .35, 0, 0>
for the events A, —A, B, C, D. Once mass
has been assigned to a set of propositions,
the evidential intervals can be determined
directly. Support for a proposition A is the
total mass ascribed to A or to its subsets;
the plausibility of A is one minus the sum
of the mass assigned to —A or to the
subsets of —A; the ignorance about A is
equal to the mass remaining. For exam-
ple, the evidential interval for the event A
given by KS1 is [.13, .78], since the mass
of —A is .22,

Intuitively, mass is attributed to the
most precise propositions a body of evi-
dence supports. If a portion of mass is
attributed to a proposition, it represents a
minimal commitment to that proposition
and all of the propositions it implies.

Composition of Individual Beliefs.

There is a formal rule for combining
belief functions, known as “Dempster’s
rule.” Dempster’s rule combines a belief
function (constructed on the basis of one

102

REASONING AND PROBLEM SOLVING

item of evidence) with a second belief
function (constructed on the basis of
another, assumed independent item of
evidence), so as to obtain a belief function
representing the combined body of evi-

dence. An example of this procedure is
given in Box 4-4. Dempster’s rule makes
explicit the fact that the S/D formalism
has not escaped a critical weakness of all
inductive methods, i.e., the need (for

BOX 4-4 Combining Two Sets of Evidence Using Dempster’s Rule

Dempster’s rule for combining two different sets of
evidence can best be understood by example. Suppose
there has been a hit and run accident, and there are two
witnesses. The witnesses are willing to assign belief as to
the culprit as follows:
Witness #1: I'd say it was a Ford with belief .3

I'd say it was a Chevy with belief .5

I don’t know how to distribute .2 of my belief.
Vitness #2: I'd say it was a Chevy or a Toyota with

belief .7

I don’t know how to distribute the remaining .3 of

my belief.

We illustrate Dempster’s rule using the following tableau:

Witness #1:
Undistributed .2 | Chevy or Toyota | Undistributed
belief 0.14 0.06
Ford 3 null Ford
0.21 0.09
Chevy 5 Chevy Chevy
0.35 0.15
Chevy or Toyota | Undistributed
0.7 0.3
Witness #2

The belief distribution for witness #1 is shown on
the left of the array, and for witness #2 at the bottom of
the array. We multiply the row and column weights to
obtain the values assigned to each element of the array.
For example, the value of the upper left array element

is 0.2 * 0.7 = .14 . Whenever the evidence is incompat-
ible, e.g., the belief of witness #1 that it was a Ford is
incompatible with the belief of witness #2 that it was a
Chevy or Toyota, we assign that product to the null set.
When there is undistributed belief of one witness, we
assign that cell the value of the other witness, e.g.,
undistributed belief for witness #1 causes the upper
left cell to be assigned the Chevy or Toyota classification
of witness #2.

When we add up all the areas, we obtain:

Pooled Ford values = 0.09

Pooled Chevy or Toyota = .14

Pooled Chevy = .35 + .15 = .50

Pooled uncertain = .06

Conflict (null set) = .21

Since there is 0.21 unit of conflicting mass, we
normalize the mutually consistent pooled values so that
they sum to 1.0 by dividing each by (1 - 0.21), to obtain:

Ford pooled belief = .11

Chevy or Toyota pooled belief = 0.18
Chevy pooled belief = 0.63
Uncertainty = 0.08

The evidential interval for Chevy is [.63, .89], indi-
cating an uncertainty interval of .26.

These final results agree with our intuition. We
would expect that the belief about the Ford would be
decreased since witness #2 mentioned nothing about a
Ford. The belief for a Chevy has been increased some-
what above the .5 belief of witness #1, since both wit-
nesses have some degree of belief in the Chevy.

103
INDUCTIVE REASONING

either practical or theoretical reasons) to
assume independence of observations
and/or events.

Representing a Problem in a
Probabilistic Formalism

As in the case of logical reasoning, choos-
ing an appropriate representation for a
given problem is the creative step in prob-
abilistic reasoning. We will illustrate the
nature of the representation problem by
an example, first describing the problem
formulation and then showing the compu-
tations. Our example is inspired by the
work of Shafer and Tversky [Shafer 85].
Suppose we have an election predic-
tion service and wish to estimate the prob-
ability of candidate Jones being elected.
There are many facets of election politics
that might be considered, including the
amount of campaigning effort, the effect
of the world situation, the condition of the
economy, etc. Suppose our election ex-
perts decide that “campaigning effort” is
the most crucial determinant. They might
set up the alternative strategies for a
candidate: (1) maintain current level of
campaigning, (2) slightly increase current
level of campaigning, (3) greatly increase
level of campaigning, and (4) decrease
current level. Notice that the experts must
supply an estimate of the probability of
each event and of the effect that the event
will have on winning the election.
Suppose it was felt that the other
leading contender, Smith, should be taken
into account in making the estimate. We
might believe that candidate Smith’s cam-
paigning effort could be described by
using three levels of activity. Now the
interaction of Jones’s and Smith’s cam-

paign must somehow be computed. Esti-
mates must be made of the probability
of activity for Smith and the conditional
probabilities of Jones winning, given vari-
ous levels of activity for both Jones and
Smith. At this point an important (and
perhaps unrealistic) assumption must be
made if we are to avoid estimating how
Jones and Smith will respond to each
other’s strategies. We must assume that
the campaign level of each candidate is
independent of the activity of the other.
A Bayesian computation for this situation
is shown in Box 4-5, and an evidential
reasoning approach is shown in Box 4-6.
After examining the results of the
analysis, the analysts might make other
partitions of the problem, using more
or fewer levels of campaign activity, or
introducing other campaign factors. For
each of these it would be necessary to
supply the required probability or belief
measures.

Comments Concerning the
Probabilistic Formalism

Our nominal view of the world embodies
the concept that there is a unique course
of events that can be characterized by
observed or measured physical quantities.
Our understanding of the world is, in
turn, characterized by our ability to pre-
dict the values of these “observables.”
Physical theories (models, paradigms) can
be ranked in terms of how accurately they
perform the prediction task. Reality pro-
vides an exact and explicit basis for eval-
uation of proposed theories.

On the above grounds, we might
consider probabilistic models as descrip-
tions of processes and events that we

104

REASONING AND PROBLEM SOLVING

BOX 4-5 An Example of Bayesian Analysis

A four-level breakdown of campaign activity for Jones
and a three-level breakdown of campaign activity for his
opponent, candidate Smith, is shown in the table. Ex-
perts have assigned probabilities to each of Smith’s
activity levels. Entries in the table specify conditional
probabilities that Jones will win, given the activity of
Jones and the activity of Smith. Thus, a conditional
probability of 0.3 in the upper left element of the table
indicates that if Jones maintains his campaign and Smith
increases his campaign, then there is a 0.3 chance of
Jones winning. A conditional probability of 1 indicates a
sure win for Jones, while a 0 indicates a sure loss. The
table indicates that a candidate who decreases his cam-
paign activity is going to be in trouble unless his oppo-
nent also does so.

Probability of activity
level
.85 Maintain 3 1.0
.03 Increase 5 6 1.0
Jones slightly
.07 Increase v 1.0 1.0
much
.05 Decrease 0 0 5
Probability of activity level — 1 N 2
Political activity level — |Increase| Same [Decrease
Smith

The probability of Jones winning is the sum of the probabilities of his winning for each of the twelve situations
described by the above table. The computation is known as a total evidence design since the final probability is the
sum of the probabilities of all the possible situations. The probability for each pair of activity levels is determined by

using the formula,

Prob(Jones wins|condition A and condition B)*Prob(A and B),

where P(A and B) = Prob(A|B)*Prob(B).

The independence assumption allows us to say that P(A|B) = P(A).
Thus, Prob(Jones wins) = (.3)(.85)(.1)+ (.5)(.85)(.7) + ... + (.5)(.05)(.2).

Prob(Jones winning) = .586

resort to when deterministic models are
not available; they are necessarily cruder,
but should be capable of being ranked in
terms of accuracy on the same scale as
the deterministic models.

Given two probabilistic descriptions
of the same situation, such as provided
by the Bayesian and Shafer-Dempster for-
malisms, we might expect to be able to
compare their relative performance and
choose one or the other as being more
accurate. Thus, in the case of the election
examples, presented in Box 4-5 and Box

4-6, the Bayesian formulation tells us that
candidate Jones has a .586 probability of
winning the election, while the Shafer-
Dempster formulation tells us that the
likelihood of candidate Jones winning is
between .239 and .96 (both predictions
were based on the same evidence). All this
seems quite straightforward, except that
the numbers produced by the two formal-
isms do not really mean the same thing,
nor can they be directly compared or
evaluated. Suppose, for example, that
Jones wins the election. This fact cannot

105
INDUCTIVE REASONING

be used to favor either the Bayesian or
the S/D approach since neither estimate
has a clear meaning that is decisively
verified by the real-world result.

Then what do the probabilities really
mean? The Bayesian formalism assumes
an underlying random process such that,
if the election were held often enough
under the same conditions, Jones would
win 58.6 percent of the time. The Shafer-
Dempster formalism provides a way of

combining evidence which satisfies our
intuition in regard to the ordering of
possible outcomes (even when the evi-
dence sources conflict), but does not
always have a simple interpretation in
terms of the relative frequencies of the
outcomes of a random process. Thus, the
Bayesian and Shafer-Dempster formalisms
provide different underlying models of
reality—they are not directly comparable,
nor is there generally any way to choose

BOX 4-6 An Example of Belief Function Analysis

Referring to the Bayesian analysis of the two-candidate
problem (Box 4-5), we choose to interpret the a priori
probabilities for different levels of campaign activity as
degrees of belief. Thus the degrees of belief for the four
hypotheses concerning candidate Jones are (.85, .03,
.07, .05). For candidate Smith we have (.1,.7, .2) as the
degrees of belief for the three hypotheses concerned
with his campaign activity. From Box 4-5 we see that
Jones will win when the table entry has the value 1.0.
We convert these 1 entries to the proposition “Jones
will win” denoted by “Win” in the table on the right.
The 0 entries are replaced by the proposition “Jones
will lose” denoted by “Lose,” and everything else by the
proposition “We can’t assign a win or lose judgment”
denoted by “?”

We now combine these beliefs by Dempster’s rule,
again assuming independence. The use of Dempster’s
rule is similar to that shown for the Ford/Chevy/Toyota
example of Box 4-4. We add up the products of compati-
ble beliefs. For example, in the upper right-hand ele-
ment, we have beliefs for Jones and Smith that both
agree on the event “Win.” We therefore get a contribu-
tion of .85*.2 toward that event. Adding up the areas
pertaining to a win for Jones we get .85(.2) + .03(.2) +
0707 + (.2)] = .239.

Adding up the areas that support the proposition
“Jones loses” we get ((05)(.1 + .7) = .04 .

Degrees | Political
of belief | activity
level
.85 Maintain ? ? Win
.03 Slight ? ? Win
Jones increase
.07 Large ? Win Win
increase
.05 Decrease | Lose | Lose ?
Degrees of belief — 1 a 2
Political activity — |Increase| Same [Decrease|

Smith

This results in an evidential interval for Jones of
[.239, .96], indicating a small support, a small refutation
of the event “Jones will win,” and a very large degree of
uncertainty remaining. Thus, we are unable to choose a
likely winner in this election.)

These conclusions are weaker than the conclusion
of the Bayesian analysis, since we are not claiming to
have evidence about what will happen in the cases where
our descriptions of Smith’s and Jones’s behavior do not
determine the outcome of the election.

106

REASONING AND PROBLEM SOLVING

between them in unconstrained real-world
situations.

ADDITIONAL FORMALISMS
FOR REASONING

There are some forms of reasoning that
involve combinations of the deductive/
inductive/analogical paradigms. Below,
we describe some of these: mathematics,
programming systems, “production sys-
tems,” and common-sense reasoning.

Algebraic/Mathematical Systems

In the algebraic/mathematical approach

to reasoning, we start with a set of mathe-
matically described (physical) relationships
relevant to some (real-world) situation;

the problem information is then phrased
in terms of these known relations to pro-
vide a set of equations; the equations are
solved using the standard techniques of
mathematics.

Thus, solving a problem such as “If
one person can do a job in 3 hours and
another can do the same job in 5 hours,
how long will it take for them to do the
job together?” requires the following
steps:

« We must know that the appropriate
basic relationship is “rate of doing work
times the time worked equals the
amount of work done.”

« We must assume that working together
does not change the individual rates of
work.

+ We must reason that if a person can do
a job in N hours, he does 1/N of the job
in 1 hour. Thus, in the given problem,
the first person works at a rate of 1/3 of

the job per hour, and the second at a
rate of 1/5 of the job per hour.

« Time is represented by the variable £.
We finally can write the equation
ARt + 1/t =1

« The equation can now be solved for ¢
using algebra.

Note that the difficult aspect of this type
of reasoning consists of (a) knowing that
the pertinent relationship is “rate times
time equals work done,” (b) that people
are assumed by convention to work at a
constant rate in this problem context, and
then (c) translating the problem statement
into these algebraic relations. These steps
are quite difficult to automate in a general
problem-solving context. However, if we
know beforehand the types of problems
that will be encountered, if the problem
language is simple enough, and if no
superfluous information has been pro-
vided, then we can write a program that
solves such word problems by looking for
“key words” (see Box 4-7).

Heuristic Search

One form of reasoning is to search
through all possible alternatives for a
solution to a problem. We often use this
approach in our daily lives. For example,
we misplace an object and search from
location to location in an attempt to find
it. Note that we do not blindly explore
everywhere, rather we only search in the
most probable locations for it. Problems
are often amenable to solution by search,
provided that there is some organized way
of ruling out alternatives that have little
probability of being a successful solution.
Many Al techniques are based on heuris-

107

ADDITIONAL FORMALISMS FOR REASONING

BOX 4-7 Solving Algebraic Word Problems by Computer

The STUDENT program, developed by Bobrow in the
late 1960s [Bobrow 68], solves algebraic word problems
phrased in natural language. STUDENT sweeps through
the input statements several times, carrying out a differ-
ent transformation on each pass until suitable algebraic
equations are obtained. The equations are then solved.

The words and phrases of the problem are consid-
ered to be in one of three classes:

Variables. Words that name objects. One important
problem that has to be dealt with is how to deter-
mine when two different strings refer to the same
variable (e.g., at one point the problem might state
“...John’s money” while at another point the
problem might ask “. . .how much is Tom’s money
and how much is John’s.”)

Substituters. These are words and phrases that are
replaced to obtain a more standard representation,
e.g., “twice” is replaced by “2 times.”

Operators. These are words or linguistic forms that
represent functions. One simple operator is “plus”
which indicates that the two variables surrounding
it are to be added.

An appreciation for the procedures used can best
be gained from a printout of the various passes made by
the program on a typical problem:

The original problem to be solved is:

(THE SUM OF LOIS’ SHARE OF SOME MONEY
AND BOB’S SHARE IS $4.50.

LOIS” SHARE IS TWICE BOB’S. FIND BOB’S AND
LOIS’ SHARE.)

After substitutions the problem becomes:

(SUM LOIS’ SHARE OF SOME MONEY AND BOB’S
SHARE IS 4.50 DOLLARS. LOIS’ SHARE IS 2 TIMES
BOB’S. FIND BOB'’S AND LOIS’ SHARE.)

After words have been tagged by function, the
problem is:

((SUM/OP) LOIS’ SHARE (OF/OP) SOME MONEY
AND BOB'’S SHARE IS 4.5 DOLLARS (PERIOD/
DELIMITER) LOIS’ SHARE IS 2 (TIMES/OP. 1) BOB’S
(PERIOD/DELIMITER) (FIND/QUESTIONWORD)
BOB’S AND LOIS” SHARE (PERIOD/DELIMITER)

Converted to simple sentences:

((SUM/OP) LOIS’ SHARE (OF/OP) SOME MONEY
AND BOB’S SHARE IS 4.5 DOLLARS (PERIOD/
DELIMITER)

(LOIS’” SHARE IS 2 (TIMES/OP 1) BOB’S (PERIOD/
DELIMITER)

((FIND/QUESTION WORD) BOB’S AND LOIS’
SHARE (PERIOD/DELIMITER)

Converted to equation form:

(EQUAL (LOIS’ SHARE) (TIMES 2 (BOB’S)))
(EQUAL (PLUS (LOIS’ SHARE OF SOME MONEY)
(BOB’S SHARE)) 4.5 DOLLARS)

However, these equations were insufficient to find a
solution. The program then assumes:

((BOB’S) IS EQUAL TO (BOB’S SHARE))

((LOIS’ SHARE) IS EQUAL TO (LOIS’ SHARE OF
SOME MONEY))

A solution can then be obtained:
(BOB’S IS 1.5 DOLLARS)
(LOIS” SHARE IS 3 DOLLARS)

Note that since the system could only make a partial
match on the name of the variables, it assumed that a
partial match, e.g., BOB’s to BOB’s SHARE, was equiva-
lent to a complete match. This allowed a solution to be
obtained.

Thus, STUDENT is a system for dealing with a
restricted class of problems, but it is very effective in this
limited domain.

108

REASONING AND PROBLEM SOLVING

tic search procedures, rule-of-thumb tech-
niques that direct the search process to
the more attractive candidates for solu-
tion. Procedures that search for valid
proof sequences, discussed in various
parts of this chapter, are typically con-
trolled by heuristic rules.’

Programming Systems that Facilitate
Reasoning and Problem Solving

Conventional programming languages
require the user to specify.procedures
that are to be carried out on the data.
The flow of control, and the tests to be
performed must be explicitly described.
However, programming systems have also
been designed to accept nonprocedural
“programs,” i.e., there are systems that
permit the user to state his goal or intent,
and the built-in mechanisms of the system
attempt to devise procedures to attain
these goals. Such systems are often writ-
ten in programming languages that facili-
tate writing programs whose purpose is to
reason and solve problems.

A formal algorithm for carrying
out a reasoning procedure could be
implemented in any one of the many pro-
gramming languages that provide symbol
storage, matching, combining of strings
or lists, and some type of conditional
branching operation. Al problem solving
programs are more concerned with ma-
nipulating strings of symbols, e.g., rear-
ranging symbols or substituting one
symbol for another, than with numerical
computation, e.g., multiplying two num-
bers together. Special languages designed

The subject of heuristic search techniques is dis-
cussed extensively in Nilsson [Nilsson 71] and in
Pearl [Pearl 84].

for Al programming have therefore been
developed—the most popular being LISP
and its dialects. A brief description of
LISP is given in Appendix 4-1. In addi-
tion, many Al problems have the charac-
teristic that after a certain amount of
progress is made toward a solution, a
dead end is reached, and the program
must “backtrack,” returning certain vari-
ables to their original state. This requires
much bookkeeping activity that is extrane-
ous to the “logic flow” of the solution for
the given problem. The logic-based lan-
guage PROLOG, described in Appendix
4-1, provides deductive procedures and
automatic backtracking.

In a typical program, even one writ-
ten in LISP or PROLOG, the flow of
control and the utilization of data are
specified by the program’s code, but in
“pattern-directed inference systems”
(PDIS), the processing modules are acti-
vated by patterns in the input data or in
the “working storage.” A module is inac-
tive until a certain data pattern or situa-
tion exists, at which point a response is
made. The module’s activity typically
consists of adding or deleting data in the
working store. Such a system is “data
driven” rather than “program driven,”
and “programming” in such a system
consists of specifying the pattern to be
matched by each module and the corre-
sponding action to be taken.

The system is controlled by software
that handles the tasks of pattern match-
ing, monitoring database changes, and
carrying out the actions specified by the
active modules. Typically, the control
structure of the system is given, and the
investigator supplies the specifications of
the modules.

An important type of PDIS is the

109
ADDITIONAL FORMALISMS FOR REASONING

“rule-based” or “production” system,
discussed further in Chapter 7, in which
each module is a rule that has a left-hand
side containing the pattern templates that
must be satisfied, and a right-hand side
that specifies the actions to be carried
out. Because the rules are kept separate
from the control structures, it is possible
to modify rules without requiring any
programming changes to the rest of the
system. The OPS-5 production language
presented in Appendix 4-1 is an example
of a rule-based system. A typical rule is of
the form [(A AND B)—C], which specifies
that if both A and B appear in the input
or working storage, then C will be entered
into the working storage. Entering a new
fact or assertion by satisfaction of the left-
hand side of a rule is called “forward
chaining” or “antecedent driven” reason-
ing. It is also possible to interpret the
same rule as “if we want to establish C,
then it is first necessary to establish both
A and B.” This is known as “backward
chaining” or “consequent driven” reason-
ing. Backward chaining is often used to
set up a goal tree that directs the search
for needed data items.

Practical production systems consist
of many rules, typically several hundred to
a few thousand, and have been applied to
a variety of applications, most notably in
the form of “expert systems” (see Chapter
7). Systems such as OPS-5 depart from
the “pure” PDIS by providing features
that permit the programmer to exercise a
considerable degree of control over the
processing.

Common-Sense Reasoning

The reasoning techniques that we have
dealt with in this chapter use representa-

tions of numerical quantities and prop-
ositions, i.e., formalisms based on the
concept of number and on the algebra of
sets. However, we have not yet discussed
another type of reasoning used by people;
their impressive ability to reason using
common-sense theories of the world—
their everyday beliefs about what the
world is like. Such reasoning appears to
be qualitative in nature. For example,
consider the reasoning used in answering
the following question: “What happens if
we turn on the water tap in the bathtub,
with the plug in the tub?”’ We reason as
follows. For some time the level of the
water will rise, until it reaches the top of
the tub. The water then flows over the
sides of the tub, and covers the bathroom
floor. After the bathroom floor is covered
to some level, the water will flow to other
rooms and will leak into the floor, drop-
ping onto any room below. If some of the
water finally escapes from the house, and
it is cold enough outside, the water may
freeze, possibly into icicle-shaped forms.

Devising a qualitative theory of liquid
behavior, and developing an associated
reasoning formalism is extremely difficult,
since one must first deal with a coherent
body of water, then, as it overflows, some
of the water separates from the main
body, forming a new body of water on the
floor, followed by the conversion to indi-
vidual drops as it falls into the room be-
low. Somehow the formalism has to deal
with the creation of new objects from
old, the qualitative physics of water flow,
and the interaction of water with gravity
forces, physical surfaces, temperature of
the environment, etc.

Some of the issues that arise in trying
to represent and reason about common-
sense knowledge are as follows:

110

REASONING AND PROBLEM SOLVING

Representing common-sense knowledge.
In order for an intelligent entity to
deal with everyday things, it must
have a database consisting of descrip-
tions of these things. The database
would have to include descriptions of
general spatial properties, the behav-
ior of materials and liquids, and have
a “naive” understanding of topics
such as physics, botany, zoology,
ecology, etc. For example, the data-
base would have to capture the prop-
erties of water, including properties
when it is still, slowly moving, or en-
ergetically moving. The behavior in
each of these activity states depends
on whether the water is flowing on a
surface, contained, or unsupported.
In addition, the formulation must
consider whether the water is in bulk
form or divided (as in a mist), and the
time-history of the situation.

A collection of papers describing
efforts to formalize common-sense
knowledge is contained in Hobbs
[Hobbs 85].

Qualitative reasoning. A special type of
reasoning seems to be involved in
dealing with everyday objects. Al-
though the real world is continuous
to our senses, a person does not have
to possess continuous representa-
tions, such as those typically provided
by mathematics and physics, to deal
with this world. It seems that people
deal with the world by treating it
qualitatively using only a few values
for any of the variables, e.g., very big,
big, medium-sized, small, very small.
Similar quantizations may be em-
‘ployed for nearness, strength of

forces, weights, etc. Reasoning based
on this type of vague quantization
seems to be adequate for solving
everyday problems, for being able to
tell how something works, or using
something in a way for which it was
not intended, e.g., using a fallen tree
as a seat. Formalisms for qualitative
physics and common-sense reasoning
about causality are described in

De Kleer [De Kleer 84] and Kuipers
[Kuipers 84].

Relevance. Given a real-world situation,
how can a reasoning system deter-
mine which other objects will have a
significant interaction with the cur-
rent object of interest? We are (again)
faced with the relevance problem in
trying to determine what aspects of
what objects, in the whole universe,
should enter the reasoning process.*

PROBLEM SOLVING AND
THEOREM PROVING

Previous sections described a variety of
reasoning techniques; this section will
discuss how these techniques can be used
to solve problems. Basically, the approach
is to:

(a) Represent the concepts, relation-
ships, and constraints of the task
environment in the formalism re-
quired by the problem solver.

(b) Apply the solution techniques me-
chanically by operating on the repre-
sentations; the “meaning” of the

5The problem of relevance is a vital part of the
gestalt psychologist view of problem solving as
originally formulated by Max Wertheimer
[Wertheimer 61].

111
PROBLEM SOLVING AND THEOREM PROVING

expressions is neither required nor
used by the problem solver.

The power of any general problem
solving approach is that a large number
of interesting problems can be cast into
some common form. However, converting
the problem to this form is often the main
step in obtaining a solution. Once the
problem is in the required form, the role
of the computer can generally be viewed
as equivalent to searching a decision (or
game) tree to find a required node or best
path.

At the present time there are many
classes of problems that (for practical
reasons) cannot be put into the form
required by existing machine-based gen-
eral problem solvers. Some examples are:
scene analysis problems, in which the
machine must describe or understand a
real-world scene; language understanding
problems; and problems for which all the
relevant conditions cannot be specified,
e.g., artistic creation.

Representing the Problem

To illustrate the nature of the representa-
tion issue for the various general problem
solving approaches, we will use a classic
example, the monkey/bananas problem
(the M/B problem):

“A monkey and a box are in a room,
and some bananas are hanging from the
ceiling, just out of reach of the monkey.
What should he do to get the bananas?”

Given just this statement of the prob-
lem, a person readily identifies the perti-
nent operators concerned with moving the
monkey, pushing the box, standing on the
box, and finally, reaching for the bananas.

A person ignores other possible opera-
tions such as the monkey throwing the
box, kicking the wall, scratching himself,
etc. Thus, when we present a mechanical
problem solver with only the “relevant”
operations, we are greatly simplifying the
problem solving effort required. How,
then, might the problem be presented

to a general problem solving program?
The initial conditions are clear:

The bananas are at location L. The
monkey is at location X. The box is
at location Y.

The basic operations available could
be indicated as follows without giving
away the solution:

The monkey can walk from location x
to location y.

If the monkey and the box are at
location x, the monkey can push the
box from location x to location y, or
he can climb the box.

If the monkey can reach the bananas,
he can grab them.

The crucial question that now arises
is: how can we specify reachability of the
bananas? In a neutral way we might say:

The bananas are 6 feet off the floor.
The reach of the monkey is 5 feet.
The box is 2 feet high.

If the monkey stands on the box his
reach will be extended by the height
of the box.

An alternative formulation, and one
that gives the problem away is:

If the monkey stands on the box his
reach is within the height of the
bananas.

112

REASONING AND PROBLEM SOLVING

An even more blatant form is:

If the box is under the bananas and
the monkey stands on the box, then
he can reach the bananas.

We will show how the problem can be rep-
resented for the most blatant form of the
problem statement using the predicate
calculus, the PROLOG logic program-
ming language, OPS-5 (a production rule
system), and the general problem solver
(GPS) formalism. The intent is to illus-
trate the nature of these formalisms in a
simple problem situation. Each of the
approaches must deal with the frame
problem, i.e., the problem of knowing
what things in the world change as a
result of an action. For example, if the
monkey was at location b and moves to
location ¢, a reasoning system must deter-
mine what objects have changed their
location (e.g., the monkey’s pants, but not
necessarily the box he was standing on).

The Predicate Calculus
Representation for the
Monkey/Bananas (M/B) Problem

The representation for a predicate calcu-
lus approach to the monkey/bananas
problem is given in Appendix 4-2, as
described in Nilsson [Nilsson 71b]. For his
exposition, Nilsson simplifies the problem
by ignoring the need for the monkey to go
to and remain with the box, and we will
follow his example.

The frame problem is handled by
using the concept of state, e.g., the box
is considered to be at a certain location,
b, in a particular state, s,: AT(box, b,s).
“States” and “objects” are represented by

state variables and object variables, re-
spectively. Relations between objects, and
properties of states and actions are indi-
cated using “situational fluents” which are
functions that include states among their
arguments, and whose result is also a
state. An operation carried out on an
object can be viewed as changing it from
one state to another. For example, if the
monkey climbs the box, we can consider
it to be in a new state of “on-boxness.”
Given a time sequence of operations car-
ried out on an object, we can say that the
various operators caused the object to
transition from state to state. The proof
procedure must find the sequence of
operators that will convert the initial state
in which the monkey does not have the
bananas to the state in which he does.
This final state is given in terms of the
sequence of states that produced it, thus
indicating the sequence of operations that
must be used to obtain the end result. A
good proof procedure will avoid blind
alleys and explore only paths that seem
promising.

The initial state is described by
-ONBOX(s0), the monkey is not on the
box at the initial state s0. The bananas
are at location C. The question now posed
is “does there exist a state such that the
monkey has the bananas?,” or formally,
(EXISTS s)HAS__BANANAS(s). The
predicate calculus solution using resolu-
tion, is given [Nilsson 71b] as

HAS__BANANAS[GRASP(CLIMB__
BOX(PUSH__BOX(C,s0))].

Note the role of the state variable in de-
scribing the sequence of operators:

1. Pushing the box to C starting in
initial state, sO, causes the new state

113

PROBLEM SOLVING AND THEOREM PROVING

PUSH__BOX(C,s0), and we can call
the new state s1.

2. The CLIMB__BOX operator then
causes a new state, CLIMB__
BOX(s1), which we call s2.

. GRASP(s2) results in a new state s3.

4. Finally, HAS__BANANAS(s3) is the

desired solution.

w

The predicate calculus expression that
describes the effect of GRASP provides
most of the solution, since the problem
solver is specifically told that the monkey
should be on the box and the box should
be at the location of the bananas in order
for the monkey to grasp the bananas. The
“solution” is the sequence of operations
that will satisfy the needed conditions for
GRASP.

PROLOG Representation of the
M/B Problem

The PROLOG representation of the
monkey/bananas problem is given in
Appendix 4-2. The frame problem is han-
dled by retracting old and asserting new
database items, e.g., at(monkey,b) is re-
tracted when the monkey moves to ¢, and
at(monkey,c) is asserted. The order of
statements in the program is unimportant,
except when two rules deal with the same
goal (then, the first one encountered will
be used). However, the order of terms
within statements is crucial, since the
analysis of the right-hand side proceeds
from left to right. Thus, if we set up the
overall goal in the following manner,

hasbananas :- at(bananas,X),
move(box,X), move(monkey,X),
onbox (X).

we are stating that wherever the bananas
happen to be located, that should also

be the location of the box. The system
will first instantiate the value of X for
at(bananas,X). It will then have the ideal
goal when it attempts to process the next
clause, at(box,X), since it will force the
location of the box to be at the same
location as the bananas. If we were to
reverse the terms,

hasbananas:-
move(box,X), at(bananas,X), etc.,

the move(box,X) goal will cause a non-
productive and semi-infinite search as
the system tries all possible values of X.
Notice also, that in the hasbananas
top-level goal, the use of the same vari-
able forces the onbox operation to be
carried out only under the bananas. This
prevents the monkey from getting on the
box every time his location was the same
as the box. Many such subtle “cheats” are
scattered throughout the program.

Production Rule (OPS-5)
Representation for the M/B Problem

A production rule representation of the
monkey/bananas problem, using OPS-5, is
given in Appendix 4-2. The frame prob-
lem is handled by the “remove” and the
“make” operations. A set of production
rules is used for GO, PUSH, CLIMBON,
and GRAB, that cause the monkey to
move, push the box, climb on the box,
and grab the bananas, respectively. Note
that the set of rules for PUSH forces the
monkey to move the box to where the
bananas are. The rule says that if the
monkey and the box are at location 1 and
the bananas are at location 2, then make
location 2 the location of the monkey and
the box. The GO and PUSH rules occur
before the CLIMBON rule, and therefore

REASONING AND PROBLEM SOLVING

114

set things up so that although CLIMBON
is satisfied, these other rules take priority
until the monkey and the box are under
the bananas. CLIMBON is thus prevented
from firing before the appropriate situa-
tion is obtained, avoiding the embarrass-
ing outcome of a monkey trapped on the
box, but not under the bananas, with no
operator to remove him. The careful
arrangement of the rules can be thought
of as a way of implicitly programming the
desired state sequence. Because the be-
havior of the system can be quite sensitive
to the order of the rules, the designer may
have to program the system by entering
special conditions to keep certain rules
from firing at the “wrong” time. For a
complete (70 pages) exposition of how the
M/B problem can be handled in OPS-5,
see Brownston [Brownston 85].

General Problem Solver
Representation for the M/B problem

The general problem solver (GPS) [Ernst
69] was a system developed in the 1960s
in which problem solving is carried out by
reducing the differences between the
current state and a goal state, an ap-
proach known as “means-ends analysis.”
To use GPS on a problem, it is necessary
to specify the objects and the operators
for transforming the objects. An initial
state and a goal state are also specified.
The specificiations must include how the
differences between states are to be mea-
sured, and how the procedures to be used
relate to state differences. “Programming”
in GPS consists of providing these specifi-
cations.

The representation for the GPS ap-
proach to the monkey/bananas problem is

given in Appendix 4-2. This formulation
was originally presented by Ernst and
Newell [Ernst 69]. The task environment
includes the operators to be used
(CLIMB, WALK, MOVE__BOX, and
GET__BANANAS), the “pretest” condi-
tions for their actuation, and the effects of
the operators. The “differences” that must
be considered between the present state
of the world and what one would like it to
be are given, along with the difficulty of
reducing each difference. Finally, the
specific task is given, including the ulti-
mate goal and the initial state.

Probably the most significant infor-
mation given is the quantification of the
difficulty of reducing each difference. This
is the implicit control information that
enables the system to solve the problem.
Since the difference between the goal
state and contents of the monkey’s hand
is indicated as the most difficult problem,
GPS tries to eliminate that difference, and
it must create a subgoal to accomplish
this. Since the next most difficult differ-
ence is associated with the location of the
box, it attempts to satisfy this subgoal.
Notice that the box being under the ba-
nanas is a specific pretest for getting the
bananas into the monkey’s hand. The box
location goal is satisfied by causing the
monkey to move the box to the desired
location. The monkey’s place pretest
indicates that the monkey must be on the
box in order for the monkey to get the
bananas. This then causes the monkey to
climb onto the box. Note that without the
given difference ordering, the monkey
would climb the box whenever he was at
the box. If a way of climbing down was
provided, then the monkey would cycle
at this point.

115
PROBLEM SOLVING AND THEOREM PROVING

Formalisms or Reasoning Systems?

In the above examples, we have illustrated
that the M/B problem can be solved in
each of the major deductive formalisms
previously discussed. It was also noted
that a valid solution would not be ob-
tained if there were slight alterations in
how the problem was presented, or in
how the operators were defined and or-
dered. It is clear that these deductive
formalisms are not “reasoning systems” in
the full sense of this term, (see the defini-
tion of reasoning in the introduction to
this chapter), but rather a framework for
problem solving in which human under-
standing and intervention is still a neces-
sary ingredient. The human must “bias”
the mapping of the problem into the
selected formalism so that the “syntactic”
transforms invoked by the formalism
operate in a highly constrained search
space known to contain the desired an-
swer. The pigeon and the banana prob-

lem, an amusing analog to the monkey/
bananas problem taken from the field of
psychological experimentation, is pre-
sented in Box 4-8.

Relating Reasoning Formalisms
to the Real World

Formal systems for reasoning are con-
structed to achieve specific goals such as
completeness and consistency. Because of
the means used to achieve these goals,
there will often be a mismatch between
the formal system and the type of expres-
sions and reasoning used by people. For
example, a formal system will assign
“true” to the implication “If the moon

is made of Swiss cheese, then France is
a country,” since this is of the logical
form “false implies true.” However, most
people expect there to be a relationship
between the two parts of the implication,
and would consider this example inane.
Even the conjunction AND does not

BOX 4-8 The Pigeon and The Banana Problem

nor jumped toward it. The pigeons were able to solve the
feeding problem; they pushed a box placed at the edge
of the cage until they could climb onto it and peck at the
banana.

Several other pigeons were trained to peck at the
banana but were not taught to climb onto the box; to
climb and peck but not push the box; and to climb,
peck, and push the box, but not toward a target. These
birds also learned not to jump or fly toward the banana.
But none of them could solve the feeding problem.

The successful birds had to be given all the explicit
steps needed to solve the problem; they were only re-
quired to put together the correct sequence.

We have indicated the various ways in which the design-
ers had to give away the solution to allow their programs
to solve the monkey/bananas problem. The following
study concerning problem solving by pigeons (Nature,
March 1, 1984), shows that what we had been calling the
monkey/bananas problem was actually the pigeon and
the banana problem.

The researchers first trained four pigeons to push a
box toward a green spot at the base of a cage wall. The
birds did not push when the spot was removed. Next, the
animals were trained to climb onto a box and peck at a
banana placed overhead. Each bird was occasionally
placed alone with the banana until the bird neither flew

116

REASONING AND PROBLEM SOLVING

translate directly to the logical form; e.g.,
in the sentence “John AND Mary are a
happy couple,” “couple” cannot apply to
John or Mary individually. (We cannot
conclude that John is happy AND Mary is
happy.)

There are many real-world concepts
about causality, imagined or fictitious
events, verb tenses, imperative forms, and
modal forms, to name only a few, that are
readily expressed in natural language and
are reasoned about by people, but are
difficult to capture in any of our existing
formalisms.

DISCUSSION

We have described the nature of “prob-

lems,” and formalisms for reasoning about

problems. The difficulty of converting
even well-posed problems into a suitable
formalism has been indicated; the difficul-
ties of converting ill-posed problems are
even more overwhelming. Indeed, one
might consider intelligent behavior as the
ability to strip away nonessential elements
from a problem to allow application of a
suitable problem-solving approach.

This chapter has concentrated on the
problem-solving machinery once the prob-
lem representation process has been
carried out. In a way, this is like looking
under the lamppost for an object that has
been lost at night somewhere else. Unfor-
tunately, we are forced into this stance
because most of the Al work in mecha-
nized reasoning has dealt with the formal
(proof) machinery, and not with the auto-
matic problem conversion process.

There is still much controversy con-
cerning the role of logic and deductive
infererice in common-sense reasoning.

One view is that logic can be used for
analysis of knowledge, but not for reason-
ing by intelligent agents. The other view
claims that logic is the only approach that
offers: (1) an assured procedure for deriv-
ing new facts from known or assumed
truths, (2) the ability to say that an exis-
tentially quantified proposition is true
without knowing exactly what object
makes it true, and (3) the ability to reason
by cases.

It was shown that the logic represen-
tation can be thought of as providing a
language for making assertions about the
world; various deductive formalisms can
then operate on this representation to
answer questions, devise plans, and solve
problems. However, the computational
feasibility of the deductive process is
strongly dependent on the way that the
assertions are expressed, and the nature
of the external guidance that has been
provided. Combinatorial explosion must
be avoided, since all of the formalisms
have a worst case computational cost that
increases exponentially with the number
of initial assertions.

Although there are various strategies
incorporated into theorem provers to
improve the efficiency of the proof-finding
process, there are no effective purely
syntactic mechanisms that can direct an
automatic proof system to select only
those statements that are relevant, but
still adequate, to obtain the desired proof.
If we have a large database, many unpro-
ductive paths are typically pursued, and
an enormous number of inappropriate
deductions carried out.

In a very important sense, deductive
systems have to be “programmed” if they
are to avoid the necessity for the equiva-

117
APPENDIX 4-1

lent of exhaustive search: the user must
understand, and supply to the system,
some approximation to the solution of the
problem to be solved. There is thus an
equivalence between what has been called
the “automatic programming problem,”
and automatic problem solving by deduc-

tive systems. Since very little progress has
been made in finding a general solution to
the automatic programming problem, we
should not expect currently available
deductive systems to be capable of func-
tioning autonomously as general problem
solvers.

Appendixes

4-1

Al Programming Languages

The LISP Programming Language

In programming computers for artificial intelligence
applications, one is often required to represent arbitrary
objects and the relationships among them. This is in
contrast to other computer applications where numerical
computation is the main theme. The LISP language,
designed in 1958 by John McCarthy of Stanford Univer-
sity, has become the primary language used in AL (Some
of the present-day variants include INTERLISP,
FRANZLISP, MACLISP, COMMONLISP, and
ZETALISP.) Simple lists, such as (object] object2 ob-
ject3), and more complicated structures, such as

object,
\object,,

object;

object; object,

can be uniformly represented. LISP commands permit
the programmer to extract elements from lists, to com-
bine lists in various ways, and to carry out mathematical
and logical operations. A conditional branching function
and facilities for extensive data structure manipulation
are also provided.

One characteristic of LISP that is often puzzling to
the novice is that procedural knowledge is expressed as
a composition of nested functions. Rather than having a
program consisting of a series of sequential steps, as in
most conventional languages, in LISP the desired opera-
tions are expressed in the form of a single complex
function that is composed of simpler functions. Also,
much use is made of recursion in which the function
calls itself, This is illustrated in the following LISP pro-
gram for factorial.

118 |
REASONING AND PROBLEM SOLVING

(Define
(factorial (Lambda (N)

(cond ((zerop N) 1)

(T (times N (factorial (sub1 N)

A more complex problem programmed in LISP is given
on the following page.

There are many reasons for the success of LISP: it
was the first available programming language having the
needed flexibility for Al problems, and it became the
language of choice in university Al centers. However, a
more important reason is that excellent programming
environments were developed for the language, consist-
ing of powerful sets of highly integrated editing and
debugging tools. An important feature of these environ-
ments was that LISP code was interpreted and the pro-
grammer could see the results of executing a portion of
such code immediately, without having to go through a
tedious compilation process. Thus, LISP provided an
interactive environment in which all data and functions
could be inspected or modified by the programmer. An
error in a function or data object could be corrected,
and the correction tested, without the need to recompile
the program. It is LISP’s interactive environment that
allows massive programs to be developed one “layer” at
a time.

Another useful feature is the dynamic allocation of
storage: intermediate results from subsidiary functions
are passed on to the calling function, but are not re-
tained after they are used. Thus, the system can auto-
matically recover the memory storage that was used in
obtaining the intermediate results, freeing program-
mers from the responsibility for detailed memory
management.

Finally, the LISP language syntax is quite simple: a
LISP program is a binary tree. This uniformity of syntax
and functions permits a LISP program to examine other
LISP programs, and to produce additional LISP pro-
grams that can be executed.

A recent contribution to the popularity of LISP is
the development of personal work stations based on this
language. These “LISP machines” have good graphics,

;define a function

;factorial is the name of the
;function, and the argument is N
;if N=0, then result=1 and return
;otherwise, N *factorial(N-1)

;close with required number of
;right parentheses

powerful computational capabilities, and can be net-
worked to other machines so that results and programs
can be shared.

The Tower of Hanoi Problem in LISP. The Tower of
Hanoi problem is a good example of the use of recursion
and of the type of thinking that goes into representing a
problem in the LISP language. We are given three pegs,
LEFT, MIDDLE, and RIGHT and N disks of decreasing
size on the LEFT peg.

LEFT MIDDLE RIGHT

=

The problem is to move the disks one at a time from the
LEFT peg to the RIGHT peg without putting a larger
disk on a smaller disk. The MIDDLE peg can be used as
an intermediate storage location when required. The
basic approach is to assume that we can get the top N-1
disks to an intermediate peg. We now can place the
remaining large disk on the RIGHT peg. The problem is
then to move the N-1 disks to the RIGHT peg. This can
be accomplished by repeating the original procedure,
i.e., using a recursive approach.

The LISP solution uses a function HANOI(N,
SOURCE, DESTINATION, OTHER), where N is the
number of disks, SOURCE (where a disk is to be taken
from), DESTINATION (where the disks removed from
SOURCE are to be placed), and OTHER (the current
intermediate storage location). SOURCE, DESTINA-
TION, and OTHER take on the values LEFT, RIGHT,
and MIDDLE, in any order. For example, HANOI(1,
MIDDLE, LEFT, RIGHT) indicates that a disk is to be
removed from MIDDLE and placed on LEFT.

Note 1 says that if we can somehow move N-1 disks
from SOURCE to some intermediate peg, OTHER, then
(Note 2) the remaining disk, the Nth disk, can be moved

119
APPENDIX 4-1

The actual LISP program is:

(HANOI
[LAMBDA (N SOURCE DESTINATION OTHER)
(COND
(EQPN 1)

(PRIN1 “MOVE THE DISK ON")

(PRIN1 SOURCE)

(PRIN1 “TO™)

(PRIN1 DESTINATION)
)

;i N=1

;message to user to move
;disk from the current

;value of SOURCE to the
scurrent value of DESTINATION

(T (HANO! (SUB1 N) SOURCE OTHER DESTINATION) ;Note 1

(HANOI 1 SOURCE DESTINATION OTHER)

;Note 2

(HANOI (SUB1 N) OTHER DESTINATION SOURCE) ;Note 3

)
)

from SOURCE to DESTINATION. Then (Note 3) we
now transfer the N-1 disks from OTHER to DESTINA-
TION using the original SOURCE peg for intermediate
storage.

The sequence of operations of the program for the
case of 3 disks is shown in Fig. 4-3. The reader is en-
couraged to work through the LISP program to see how
the recursion “unwinds.”

The PROLOG Programming Language

Although one can express a problem in predicate cal-
culus and then remove the resulting quantifiers using
techniques shown previously, an attractive alternative is
to express the logical expressions directly in a quantifier-
free clausal form. This is the approach adopted for the
programming logic language PROLOG [Clocksin 81].
The motivation for such “logic programming” is that
programs will be easier to write (and to read) than pro-
grams in a procedural language, since they do not re-
quire an explicit statement about how things are to be
done, but are more like a specification of what the pro-
gram should achieve.

The PROLOG clausal form is a restricted subset of
the standard form, having the advantage that simple and
efficient theorem provers have been developed for it. For
some sentences the standard form allows a more eco-
nomical and natural expression than the PROLOG form.
See Kowalski [Kowalski 79] for a comparison.

PROLOG programs consist of (1) declarations of
facts about objects and their relationships, (2) rules that
define objects and their relationships, and (3) questions
about objects and their relationships. A period follows

LEFT MIDDLE RIGHT

The top N-1 disks have
been moved to the OTHER peg.
Now the largest disk is

i moved to the DESTINATION peg,
—L—and the problem has been

reduced to moving the two
disks from the CENTER to
the DESTINATION peg.

The largest disk on the CENTER
has now been brought to the
DESTINATION peg.

The solution.

FIGURE 4-3
Solution of the Tower of Hanoi Problem.

120

REASONING AND PROBLEM SOLVING

every statement in PROLOG. Some examples of PRO-
LOG expressions are given below.

Facts: Some examples of facts in PROLOG are:
likes(mary,john).; valuable(gold).; owns(john,gold).;
and father(john,mary). Any number of arguments
can be used in a fact. To the system, a fact is of
the form a(b,c,d, . . .); the mnemonics are merely
an aid to the programmer. The programmer must
decide what any of the fact expressions mean,

e.g., valuable(gold) could mean that a specific
piece of gold is valuable, or that in general the min-
eral gold is valuable.

Questions: Once we have some facts, we can ask
questions about them. Thus, the question
?- owns(mary,book). causes PROLOG to look in the
database of facts for that fact. If owns(mary,book)
is in the database, the system answers “yes,” other-
wise it responds “no.” _

Variables: If we want to ask “Who does John like,” we
express this using a variable, e.g. ?likes(iohn,X). If
the database contains likes(john,flowers)., PROLOG
will respond with X = flowers. The variable X is
now “instantiated” to have the value “flowers.”

Conjunctions: We can ask “Is there anything that
both John and Mary like” by using the expression
“?-likes(mary,X),likes(john,X)., where the comma
between the facts stands for the conjunction
AND. PROLOG first finds an entry of the form
likes(mary,something)., and instantiates X to “‘some-
thing.” The system then tries to find an entry in the
database: likes(john,something). If no such entry is
found, then the system backtracks and tries to find
another fact that satisfies “likes(mary,X).” If it finds
one, then a new value of X is instantiated and the
system tries to find “likes(john,X)” for the new
value of X. All of this backtracking is performed
automatically by the system.

Rules: Rules have the form “(consequence) IF (condi-
tions),” meaning that a certain consequence follows
if the conditions hold. For example “likes(john,X)
IF likes(X,wine)” indicates that John likes any X, IF
X likes wine. Using the PROLOG notation B:- A for
B IF A, the relationship “sisterof(X,Y)” can be
defined as:

sisterof(X,Y) :- female(X),parents(X,m,f),parents(Y,m,f).

which says that X is the sister of Y if X is female
and if X and Y have the same parents.

Built-in predicates: PROLOG has a set of built-in
predicates that provide the programmer a way of
expressing control information about how the proof
is to be carried out. This is necessary because
without such mechanisms PROLOG would spend
unacceptable amounts of time trying to carry out
proof procedures that are not fruitful. (For exam-
ple, the “cut” symbol written “!”, that allows the
programmer to indicate to the system which pre-
vious choices it need not consider again when it
backtracks through the chain of satisfied goals.)

A simple PROLOG program is given below, along
with a target question and a trace of how the program
carried out the deduction. Note that each rule can read
both in a declarative way and a procedural way. Thus the
user can make declarative statements that the system
can use in a procedural manner. Both the declarative
and procedural interpretations are given only for the first
of the two rules.

% Rule 1

% declarative: C is a descendant of B

% if C is an offspring of B.

% procedural: To determine that C

% is a descendant of B

% determine that C is an offspring of B

descendant (B,C) :-

offspring(B,C)

% Rule 2

% To determine that C is a descen-
% dant of B,

% determine both that C is an off-

% spring of D

descendant(B,D).% AND that D is a descendant of B

descendant(B,C) :-

offspring(D,C),

offspring(abraham,ishmael). % This is the database
offspring(abrahamiisaac). % of offspring data
offspring(isaac,esau).

offspring(isaac,jacob).

The following trace shows how the question “is
esau a descendant of abraham?” is processed. “Call”
indicates a rule is to be invoked in an attempt to answer
a question or achieve a subgoal. The return is either a
“failure,” or a successful “exit” with the instantiated

121

APPENDIX 4-1

variable indicated. The numbered lines indicate the
“depth” of the portion of the proof being worked on.
For example, line (4) is examining whether isaac is a
descendant of abraham, and this then requires that the
proof of isaac being an offspring of abraham (5) first be
established. The control of the system is goal driven,
i.e., the system proceeds from rule to rule as needed to
satisfy subgoals. When there is a failure, the system
automatically backtracks or tries an additional rule
related to the current goal.

| - descendant(abraham,esau).
We are asking if esau is
a descendant of abraham
(1) Call : descendant(abraham,esau) ?
(2) Call : offspring(abraham,esau) ?
(2) Fail : offspring(abraham,esau)
Can’t be established by first rule,
so now try 2nd rule, 1st part
(3) Call : offspring(__119,esau) ?
119 is an i.d. number that PROLOG
has used to designate a variable.
(3) Exit : offspring(isaac,esau)
Finds that esau is offspring of isaac
(4) Call : descendant(abraham,isaac) ?
Now work on 2nd part of 2nd rule
(5) Call : offspring(abraham,isaac) ?

Determine if isaac was offspring of abraham

(5) Exit : offspring(abraham,isaac)
From database, he was
(4) Exit : descendant(abraham,isaac)
From first rule, isaac is a descendant
of abraham
(1) Exit : descendant(abraham,esau)
Since both conditions of 2nd rule are
satisfied, esau is a descendant of abraham
yes
Therefore answer is “yes”

OPS-5: A Programming Language for
Production Systems

OPS-5 [Forgy 77] is a language for writing production
systems programs. If the goal (condition) portion of a
rule is satisfied, then the “action” portion causes some
change to occur in working memory. One can store
items in working memory using the “make” command.
“Remove” is used to remove items, and “modify” to

change items. Thus the fact that a block named blockl
has the color “red” is added to working memory by

(make block
name block1
color red)

A typical production rule would be written:

(p find-colored-block ;p denotes production
(goal ;if there is a goal which
status active ;is active to find
object block ;a block
color <z>) ;of a certain color
(block ;and there is a block
color <z> ;of that color
name <block>) ;with a certain name

—_—

(make result pointer <block>)
;then enter a pointer in
;working storage that
;indicates the name of the
;block that satisfies the goal.
(modify status satisfied)
;and change the goal marking
;to satisfied

)
This says that

IF in the working memory there is an item known as
a goal, and if that goal is to find a block of a certain
color, and if there is also an item in working mem-
ory describing a block of that color.

THEN make an item called a “result” that points to
the block and change the goal item to indicate that
it is now satisfied. (The pointer result can then be
used by any other rules requiring a block of that
color.)

An OPS-5 program consists of a set of such produc-
tion rules and stored items. The system is activated when
new items appear in working memory that cause certain
rules to be activated. The activated rules add, delete,
and modify items in the memory to cause further activity.
Production rule programming requires a different way of
thinking than conventional procedural programming.

122
REASONING AND PROBLEM SOLVING

4-2
The Monkey/Bananas Problem

The Predicate Calculus Formulation
The following predicates and operators are given as part of the predicate calculus formulation of the M/B problem
[Nilsson 71a]:

Predicates
ONBOX(s), monkey is on the box in state s
AT(box,b,s), box is at location b in state s,
HAS__BANANAS(s), monkey has bananas in state s
Operators
(It is important to remember that each operator returns a new state value)
GRASP(s), the state attained when grasping bananas in state s,
CLIMB__BOX(s), the state attained when the monkey climbs box in state s,
PUSH__BOX(x,s), the state attained when the monkey pushes box to location x starting in state s.

The preconditions and effects of operators are expressed in the predicate calculus notation:
(It is assumed that the monkey and the box are never separated.)

PUSH__BOX(x,s): If the monkey isn’t on the box, in the state s, then the box and the monkey will be at location x in
the new state attained by applying PUSH__BOX to state s.

(ALL x ALL s)[-ONBOX(s) = AT(box, x, PUSH__ BOX(x,s))]

CLIMB__BOX: The monkey will be on the box in the state attained by applying the operator CLIMB_BOX to the
state s. Note that the argument of ONBOX is a new state, CLIMB_BOX(s).

(ALL s)[ONBOX(CLIMB__BOX(s))]

GRASP: If the monkey is on the box and the box is at C (the location of the bananas) in state s, then the monkey
will get the bananas in the state attained by applying GRASP to state s.

(ALL s)[(ONBOX(s) AND AT(box,c,s) = HAS__BANANAS(GRASP(s))]

In addition, it must be stated explicitly that the position of the box does not change when the monkey climbs on the
box.

(ALL x ALL s)[AT(box,x,s) = AT(box,x,CLIMB__BOX(s))]
As described in the text, the predicate calculus solution using the above formulation is:
HAS_BANANAS[GRASP(CLIMB__BOX(PUSH__ BOX(C,S0))].

This solution, and its conversion to a plan that could be used by the monkey to obtain the bananas is described in Nils-
son [Nilsson 71a).

123
APPENDIX 4-2

The Monkey/Bananas Problem in PROLOG

The PROLOG formulation for the monkey/bananas problem is shown below; see text for additional comments. The
initial conditions are shown first, followed by the rules.

offbox. %these are the given initial conditions.
at(bananas,c). %lower case characters are constants.
at(monkey,a). %thus, a,b,c are constants that represent
at(box,b). %fixed locations of the monkey, the box, and the bananas.
hasbananas :- %this is the top level goal. It states
at(bananas,B), %that the monkey has the bananas when
move(box,B), %ethe box and the mornkey have been moved
move(monkey,B), %to the same location as the bananas,
onbox(B). %and the monkey is on the box.
move(monkey,B) :- %to achieve the goal of moving the monkey
(at(monkey,B); %to B, either the monkey is already at B, or
at(monkey,C), %the monkey is at C and we should establish
goto(C,B)). %goto(C,B) that moves him from C to B.
mave(box,B) :- %to achieve the goal of the box at B
(at(box,B); %either the box is already at B or
at(box,C), %the box is at C, and we should establish

pushbox(C,B)). %pushbox to move the box from C to B.

goto(B,C) :- %to get the monkey from B to C, either
(at(monkey(C)); %he is already at C, or he is off the box,
offbox, “

retract(at{monkey,B)), %and we then retract his former location
assert(at(monkey,Q))). %and assert his new one.

pushbox(B,C) :- %to push the box from B to C,
offbox, %the monkey must be off the box,
at(box,B), %the box must be at B
move(monkey,B), %the monkey must be at B,
retract(at(monkey,B)), %and we then retract the previous
retract(at(box,B)), %locations of the box and the monkey,
assert(at(monkey,C)), %and assert the new ones.
assert(at(box,C)).

climbbox(B) :- %to establish climbbox,
offbox, %establish that the monkey is off the box,
move(box,B), %move the box to B,
at(monkey,B), %establish that the monkey is at B

retract(offbox). % retract offbox.

124
REASONING AND PROBLEM SOLVING

onbox(B) :- %this merely says that if we establish
climbbox(B). %climbbox, we establish onbox. This
%statement could be eliminated by replacing
%onbox by climbbox in all the other statements.

A trace of the operations that occur when we ask to establish hasbananas is given below. The numbers shown on
the left refer to depth levels of search, and the numbers such as __85 represent the labels of temporary variables used by
the system:

| ?- hasbananas. top goal
(1) 0 Call : hasbananas ?
(2) 1 Call : at(bananas,__85) ?
(2) 1 Exit : at(bananas,c) at(bananas,c) established
(3) 1 Call : move(box,c) ? trying to move the box to ¢
(@) 2 Call : at(box,c) ?
(4) 2 Fail : at(box,c)
(5) 2 Call : at(box,__102) ?

(5) 2 Exit : at(box,b) *

(6) 2 Call : pushbox(b,c) ? pushbox(b,c) needed to
satisfy move(box,b)

(7) 3 Call : offbox ? trying to satisfy pushbox

(7) 3 Exit : offbox

(8) 3 Call : at(box,b) ?

(8) 3 Exit : at(box,b)

(9) 3 Call : move(monkey,b) ? has to move the monkey to b
(10) 4 Call : at(monkey,b) ?

(10) 4 Fail : at(monkey,b)

(11) 4 Call : at(monkey,__143) ?

(11) 4 Exit : at(monkey,a)

(12) 4 Call : goto(a,b) ? using goto to move the monkey
(13) 5 Call : at(monkey(b)) ?

(13) 5 Fail : at(monkey(b))

(14) 5 Call : offbox ?

(14) 5 Exit : offbox establishes that offbox is true
(15) 5 Call : retract(at(monkey,a)) ?

(15) 5 Exit : retract(at(monkey,a))

(16) 5 Call : assert(at(monkey,b)) ?

(16) 5 Exit : assert(at(monkey,b))

(12) 4 Exit : goto(a,b)

(9) 3 Exit : move(monkey,b) monkey moved to box at b
(17) 3 Call : retract(at(monkey,b)) ?

(17) 3 Exit : retract(at(monkey,b))

(18) 3 Call : retract(at(box,b)) ?

(18) 3 Exit : retract(at(box,b))

(19) 3 Call : assert(at(monkey,c)) ?

(19) 3 Exit : assert(at(monkey,c))

(20) 3 Call : assert(at(box,c)) ?

125
APPENDIX 4-2

(20) 3 Exit : assert(at(box,c))

(6) 2 Exit : pushbox(b,c)

(3) 1 Exit : move(box,c) box moved to ¢
(21) 1 Call : move(monkey,c) ?

(22) 2 Call : at{monkey,c) ?

(22) 2 Exit : at(monkey,c)

(21) 1 Exit : move(monkey,c)

(23) 1 Call : onbox(c) ? establishing onbox

(24) 2 Call : climbbox(c) ? establishing climbbox

(25) 3 Call : offbox ? verifying that monkey is off box
(25) 3 Exit : offbox verified monkey off box

(26) 3 Call : move(box,c) ?

(RQ7) 4 Call : at(box,c) ? verifying that box is at ¢

(27) 4 Exit : at(box,c)

(26) 3 Exit : move(box,c)

(28) 3 Call : at(monkey,c) ? verifying that monkey is at ¢
(28) 3 Exit : at(monkey,c)

(29) 3 Call : retract(offbox) ?

(29) 3 Exit : retract(offbox)

(24) 2 Exit : climbbox(c) monkey can climbbox

(23) 1 Exit : onbox(c)

(1) 0 Exit : hasbananas monkey has bananas
yes

The Production Rule Formulation

In the OPS-5 production rule formalism, a set of productions is used, each of which specifies the items that can appear
in working storage, and the actions that will result when these items actually do appear. If more than one production is
satisfied by items in working storage, then the production highest on the list will be activated. Thus, the ordering of the

productions is important.
In the production rule approach to the monkey/bananas problem, the initial contents of working storage are:

Initial: goal working, at monkey r, at box b, at banana s, on monkey floor

This says that a goal is being worked on, the monkey is at r, the box is at b, the bananas are at s, and the monkey

is on the floor.
\

The set of productions are:

g0
((goal working) ;if we are still working on a goal, |

(at monkey <loc1>) ;eoal, and the monkey is in loc1,
(at box (<loc2> < > <loctl >)) ;:and the box is at loc2 not equal to loct,

(on monkey floor) ;and the monkey is on the floor

——
(remove 2) ;remove from working storage the “

(make at monkey <loc2>)) ;fact that monkey is at loct, and replace monkey location with loc2

126

REASONING AND PROBLEM SOLVING

push
((goal working)
(at monkey <loc1>)
(at box <loct1>)
(at banana (<loc2> <> <loc1>))
(on monkey floor)
—_—
(remove 2)
(remove 3)
(make at monkey <loc2>)
(make at box <loc2>))

climbon
((goal working)
(at monkey <loc1>)
(at box <loc1>)
(on monkey floor)
—_
(remove 4)
(make on monkey box))

grab
((goal working)

(at banana <loc1>)

(at box <loc1>)

(at monkey <loc1>)

(on monkey box)
_—

(remove 1)

(remove 2)

(make monkey has banana))

;if monkey is at loc1 and the box
;is at the same location

;and the banana is not at loc1
;and the monkey is on the floor

;remove ws entry for monkey location
;remove ws entry for box location
;enter into ws that monkey is at loc2
;and so is the box

;if the monkey is at loct,
;and the box is at loc1
;and the monkey is on the floor

;delete fact that monkey is on
;floor, and add to ws the fact that monkey
;is now on box

;if the banana is at loc1

;and so is the box,

;and so is the monkey,

;and the monkey is on the floor

;g0al has been satisfied
;banana has been removed
;enter result in ws

The sequence of working memory states is:

after go: goal working, at monkey b, at box b, at banana s, on monkey floor

after push: goal working, at monkey s, at box s, at banana s, on monkey floor

after climbon: goal working, at monkey s, at box s, at banana s, on monkey box

after grab: at monkey s, at box s, on monkey box, has monkey banana

127
APPENDIX 4-2

General Problem Solver Representation

In the GPS approach to the monkey/bananas problem, we are given a task environment that specifies the set of places,
the operators, the “differences,” the difference ordering, and the task. These are as follows:

|. Task Environment
A. Miscellaneous: the set of places on the floor = (place1, place2, under the bananas)

B. Operators
1. CLIMB

Pretest: The monkey’s place is the same as that of the box

Result: The monkey’s place becomes on the box.
2. WALK

Variable: x is in the set of places
Result: the monkey’s place becomes x.
3. MOVE_BOX

Variable: x is the set of places

Pretests: the monkey’s place is in the set of places
the monkey’s place is the box’s place

Results: The monkey’s place becomes x
The box’s place becomes x

(Note: the difference ordering discussed below keeps the monkey from being on the box at this point. Thus, one can
omit the test for the monkey being on the floor to move the box.)

4. GET__BANANAS
Pretests: The box’s place is under the bananas
The monkey’s place is on the box
Results: The contents of the monkey’s hand is “bananas”

C. Differences (this indicates the kinds of difference that one can have between what is and what should be. For
exarmnple, the monkey’s place may be different than the desired monkey’s place.)

D1 is the monkey’s place
D2 is the box’s place
D3 is the contents of the monkey’s hand

D. Difference ordering (this indicates the order of difficulty in reducing a difference)

D3 is more difficult to reduce than is D2 which is more difficult to reduce than D1 (Thus, it is more difficult

to take care of the difference of the monkey’s hand being empty, than it is to change the difference involved
with the monkey’s location.)

1. Specific Task
A. TOP GOAL: Transform the Initial OBl into the Desired OBJ
{i.e. take the situation described by Initial OBJ and somehow attain the Desired OBJ)

128
REASONING AND PROBLEM SOLVING

B. Objects
1. Initial OBJ
a. The monkey’s place is placel
b. The box’s place is place2
c. The contents of the monkey’s hand is “empty”

2. Desired OBJ
The contents of the monkey’s hand is “bananas”

GPS will first note that there is a difference to be reduced with respect to the contents of the monkey’s hand when the
Initial OBJ is compared to the Desired OBJ. There is no way of achieving this reduction directly, since the pretests for
GET__BANANAS are not satisfied. In trying to satisfy these preconditions, GPS will find differences between what is
and what should be, and guided by the difference ordering, GPS will choose the next difference to eliminate. The pro-
gram tries to eliminate the more difficult differences before trying the simpler ones. The various WALK, MOVE__BOX,
and CLIMB operators will have to be exercised before the GET__BANANAS operator can be invoked.

