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PREFACE

Three dimensional scene analysis has reached a turning point. Though re-
searchers have been investigating object recognition and scene understanding
since the late 1960’s, a new excitement can be felt in the field. I attribute
this to four converging activities: (1) the increasing popularity and suc-
cesses of stereo and active range sensing systems, (2) the set of emerging
tools and competences concerned with three dimensional surface shape and
its meaningful segmentation and description, (3) Marr’s attempt to place
three dimensional vision into a more integrated and scientific context and
(4) Brooks’ demonstration of what a more intelligent three dimensional scene
understander might entail. It is the convergence of these that has led to the
problem considered in this book: “Assuming that we have easily accessible
surface data and can segment it into useful patches, what can we then do
with it?”. The work presented here takes an integrated view of the problems
and demonstrates that recognition can actually be done.

The central message of this book is that surface information can greatly
simplify the image understanding process. This is because surfaces are the
features that directly link perception to the objects perceived (for normal
“camera-like” sensing) and because they make explicit information needed
to understand and cope with some visual problems (e.g. obscured features).

Hence, this book is as much about a style of model-based three dimen-
sional scene analysis as about a particular example of that style. That style
combines surface patches segmented from the three dimensional scene de-
scription, surface patch based object models, a hierarchy of representations,
models and recognitions, a distributed network-based model invocation pro-
cess, and a knowledge-based model matcher. Part of what I have tried to do
was show that these elements really do fit together well – they make it easy to
extend the competence of current vision systems without extraordinary com-
plications, and don’t we all know how fragile complicated computer-based
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processes are?
This book is an organic entity – the research described started in 1982

and earlier results were reported in a PhD thesis in 1985. Since then, re-
search has continued under the United Kingdom Alvey program, replacing
weak results and extending into new areas, and most of the new results are
included here. Some of the processes are still fairly simple and need further
development, particularly when working with automatically segmented data.
Thus, this book is really just a “progress report” and its content will continue
to evolve. In a way, I hope that I will be able to rewrite the book in five to ten
years, reporting that all problems have been solved by the computer vision
community and showing that generic three dimensional object recognition
can now be done. Who knows?

The book divides naturally into three parts. Chapters three to six de-
scribe the model independent scene analysis. The middle chapters, seven
and eight, describe how objects are represented and selected, and thus how
one can pass from an iconic to a symbolic scene representation. The final
chapters then describe our approach to geometric model-based vision – how
to locate, verify and understand a known object given its geometric model.

There are many people I would like to thank for their help with the work
and the book. Each year there are a few more people I have had the pleasure
of working and sharing ideas with. I feel awkward about ranking people by
the amount or the quality of the help given, so I will not do that. I would
rather bring them all together for a party (and if enough people buy this
book I’ll be able to afford it). The people who would be invited to the party
are: (for academic advice) Damal Arvind, Jon Aylett, Bob Beattie, Li Dong
Cai, Mike Cameron-Jones, Wayne Caplinger, John Hallam, David Hogg, Jim
Howe, Howard Hughes, Zi Qing Li, Mark Orr, Ben Paechter, Fritz Seytter,
Manuel Trucco, (and for help with the materials) Paul Brna, Douglas Howie,
Doug Ramm, David Robertson, Julian Smart, Lincoln Wallen and David
Wyse and, of course, Gaynor Redvers-Mutton and the staff at John Wiley &
Sons, Ltd. for their confidence and support.

Well, I take it back. I would particularly like to thank Mies for her love,
support and assistance. I’d also like to thank the University of Edinburgh, the
Alvey Programme, my mother and Jeff Mallory for their financial support,
without which this work could not have been completed.

Bob Fisher 1989
Postscript
With the advances in technology, I am pleased to now add the book to the
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web. Much of the content is a bit dated; however I think that the sections on:
Making Complete Surface Hypotheses (Chapter 4), Surface Clusters (Chap-
ter 5), Model Invocation (Chapter 8), Feature Visibility Analysis (Section
9.3) and Binding Subcomponents with Degrees of Freedom (Section 9.4.4)
still have something offer researchers.

In addition, it may be interesting for beginning researchers as a more-or-
less complete story, rather than the compressed view that you get in confer-
ence and journal papers.

I offer many thanks to Anne-Laure Cromphout who helped with the
preparation of this web version.

Bob Fisher March 2004



Chapter 1

An Introduction to Recognition
Using Surfaces

The surface is the boundary between object and non-object and is the usual
source and limit of perception. As such, it is the feature that unifies most
significant forms of non-invasive sensing, including the optical, sonar, radar
and tactile modalities in both active and passive forms. The presence of the
surface (including its location) is the primary fact. Perceived intensity is
secondary – it informs on the appearance of the surface as seen by the viewer
and is affected by the illumination and the composition of the surface.

Grimson, in his celebrated book “From Images to Surfaces: A Compu-
tational Study of the Human Early Visual System” [77], described an ele-
gant approach to constructing a surface representation of a scene, starting
from a stereo pair of intensity images. The approach, based substantially on
Marr’s ideas [112], triangulated paired image features (e.g. edge fragments)
to produce a sparse depth image, and then reconstructed a complete surface,
giving a dense depth image. Though this is not the only way to acquire such
a surface description, (e.g. laser ranging and structured light are practical
alternatives), there have been only a few attempts at exploiting this rich data
for object recognition.

Previous research in object recognition has developed theories for recog-
nizing simple objects completely, or complex objects incompletely. With the
knowledge of the “visible” surfaces of the scene, the complete identification
and location of more complex objects can be inferred and verified, which
is the topic of this book. Starting from a full surface representation, we
will look at new approaches to making the transformation from surfaces to
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objects. The main results, as implemented in the IMAGINE I program,
are:

• Surface information directly provides three dimensional cues for surface
grouping, leading to a volumetric description of the objects in the scene.

• Structural properties can be directly estimated from the three dimen-
sional data, rather than from two dimensional projections.

• These properties plus the generic and structural relationships in the
model base can be used to directly invoke models to explain the data.

• Using surfaces as both the model and data primitive allows direct pre-
diction of visibility relationships, surface matching, prediction and anal-
ysis of occlusion and verification of identity.

• Moderately complex non-rigidly connected structures can be thoroughly
recognized, spatially located and verified.

1.1 Object Recognition

The following definition is proposed:

Three dimensional object recognition is the identification of a
model structure with a set of image data, such that geometrically
consistent model-to-data correspondences are established and the
object’s three dimensional scene position is known. All model fea-
tures should be fully accounted for – by having consistent image
evidence either supporting their presence or explaining their ab-
sence.

Hence, recognition produces a symbolic assertion about an object, its
location and the use of image features as evidence. The matched features
must have the correct types, be in the right places and belong to a single,
distinct object. Otherwise, though the data might resemble those from the
object, the object is improperly assumed and is not at the proposed location.

Traditional object recognition programs satisfy weaker versions of the
above definition. The most common simplification comes from the assump-
tion of a small, well-characterized, object domain. There, identification can
be achieved via discrimination using simply measured image features, such
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as object color or two dimensional perimeter or the position of a few linear
features. This is identification, but not true recognition (i.e. image under-
standing).

Recognition based on direct comparison between two dimensional image
and model structures – notably through matching boundary sections – has
been successful with both grey scale and binary images of flat, isolated,
moderately complicated industrial parts. It is simple, allowing geometric
predictions and derivations of object location and orientation and tolerating
a limited amount of noise. This method is a true recognition of the objects –
all features of the model are accounted for and the object’s spatial location
is determined.

Some research has started on recognizing three dimensional objects, but
with less success. Model edges have been matched to image edges (with
both two and three dimensional data) while simultaneously extracting the
position parameters of the modeled objects. In polyhedral scenes, recognition
is generally complete, but otherwise only a few features are found. The limits
of the edge-based approach are fourfold:

1. It is hard to get reliable, repeatable and accurate edge information from
an intensity image.

2. There is much ambiguity in the interpretation of edge features as shadow,
reflectance, orientation, highlight or obscuring edges.

3. The amount of edge information present in a realistic intensity image
is overwhelming and largely unorganizable for matching, given current
theories.

4. The edge-based model is too simple to deal with scenes involving curved
surfaces.

Because of these deficiencies, model-based vision has started to exploit the
richer information available in surface data.

Surface Data

In the last decade, low-level vision research has been working towards
direct deduction and representation of scene properties – notably surface
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depth and orientation. The sources include stereo, optical flow, laser or
sonar range finding, surface shading, surface or image contours and various
forms of structured lighting.

The most well-developed of the surface representations is the 21
2
D sketch

advocated by Marr [112]. The sketch represents local depth and orientation
for the surfaces, and labels detected surface boundaries as being from shape
or depth discontinuities. The exact details of this representation and its ac-
quisition are still being researched, but its advantages seem clear enough.
Results suggest that surface information reduces data complexity and inter-
pretation ambiguity, while increasing the structural matching information.

The richness of the data in a surface representation, as well as its immi-
nent availability, offers hope for real advances beyond the current practical
understanding of largely polyhedral scenes. Distance, orientation and image
geometry enable a reasonable reconstruction of the three dimensional shape
of the object’s visible surfaces, and the boundaries lead to a figure/ground
separation. Because it is possible to segment and characterize the surfaces,
more compact symbolic representations are feasible. These symbolic struc-
tures have the same relation to the surface information as edges currently do
to intensity information, except that their scene interpretation is unambigu-
ous. If there were:

• reasonable criteria for segmenting both the image surfaces and models,

• simple processes for selecting the models and relating them to the data
and

• an understanding of how all these must be modified to account for
factors in realistic scenes (including occlusion)

then object recognition could make significant advances.

The Research Undertaken

The goal of object recognition, as defined above, is the complete matching
of model to image structures, with the concomitant extraction of position
information. Hence, the output of recognition is a set of fully instantiated
or explained object hypotheses positioned in three dimensions, which are
suitable for reconstructing the object’s appearance.
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The research described here tried to attain these goals for moderately
complex scenes containing multiple self-obscuring objects. To fully recognize
the objects, it was necessary to develop criteria and practical methods for:

• piecing together surfaces fragmented by occlusion,

• grouping surfaces into volumes that might be identifiable objects,

• describing properties of three dimensional structures,

• selecting models from a moderately sized model base,

• pairing model features to data features and extracting position esti-
mates and

• predicting and verifying the absence of model features because of vari-
ations of viewpoint.

The approach requires object models composed of a set of surfaces ge-
ometrically related in three dimensions (either directly or through subcom-
ponents). For each model SURFACE, recognition finds those image surfaces
that consistently match it, or evidence for their absence (e.g. obscuring struc-
ture). The model and image surfaces must agree in location and orientation,
and have about the same shape and size, with variations allowed for partially
obscured surfaces. When surfaces are completely obscured, evidence for their
existence comes either from predicting self-occlusion from the location and
orientation of the model, or from finding closer, unrelated obscuring surfaces.

The object representation requires the complete object surface to be seg-
mentable into what would intuitively be considered distinct surface regions.
These are what will now be generally called surfaces (except where there is
confusion with the whole object’s surface). When considering a cube, the
six faces are logical candidates for the surfaces; unfortunately, most natural
structures are not so simple. The segmentation assumption presumes that
the object can be decomposed into rigid substructures (though possibly non-
rigidly joined), and that the rigid substructures can be uniquely segmented
into surfaces of roughly constant character, defined by their two principal
curvatures. It is also assumed that the image surfaces will segment in corre-
spondence with the model SURFACEs, though if the segmentation criteria is
object-based, then the model and data segmentations should be similar. (The
SURFACE is the primitive model feature, and represents a surface patch.)
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Of course, these assumptions are simplistic because surface deformation and
object variations lead to alternative segmentations, but a start must be made
somewhere.

The three models used in the research are: a trash can, a classroom chair,
and portions of a PUMA robot. The major common feature of these objects
is the presence of regular distinct surfaces uncluttered by shape texture, when
considered at a “human” interpretation scale. The objects were partly chosen
for experimental convenience, but also to test most of the theories proposed
here. The models are shown in typical views in Chapter 7. Some of the
distinctive features of each object and their implications on recognition are:

• trash can:

* laminar surfaces – surface grouping difficulties

* rotational symmetry – surface segmentation and multiple recogni-
tions

• chair:

* convex and concave curved surfaces (seat back) – surface grouping
difficulties

* thin cylindrical surfaces (legs) – data scale incompatible with model
scale

• robot:

* surface blending – non-polyhedral segmentation relationships

* non-rigidly connected subcomponents – unpredictable reference frame
relationships and self-occlusions

These objects were viewed in semi-cluttered laboratory scenes that con-
tained both obscured and unobscured views (example in the next section).
Using an intensity image to register all data, nominal depth and surface ori-
entation values were measured by hand at about one hundred points. Values
at other nearby points in the images were calculated by interpolation. Ob-
scuring and shape segmentation boundaries were selected by hand to avoid
unresolved research problems of segmentation, scale and data errors. No fully
developed processes produce these segmentations yet, but several processes



7

are likely to produce them data in the near future and assuming such seg-
mentations were possible to allowed us to concentrate on the primary issues
of representation and recognition.

1.2 An Overview of the Research

This section summarizes the work discussed in the rest of the book by pre-
senting an example of IMAGINE I’s surface-based object recognition [68].
The test image discussed in the following example is shown in Figure 1.1.
The key features of the scene include:

• variety of surface shapes and curvature classes,

• solids connected with rotational degrees-of-freedom,

• partially and completely self-obscured structure,

• externally obscured structure,

• structure broken up by occlusion and

• intermingled objects.

Recognition is based on comparing observed and deduced properties with
those of a prototypical model. This definition immediately introduces five
subtasks for the complete recognition process:

• finding the structures that have the properties,

• acquiring the data properties,

• selecting a model for comparison,

• comparing the data with the model structures and properties, and

• discovering or justifying any missing structures.

The deduction process needs the location and orientation of the object
to predict obscured structures and their properties, so this adds:

• estimating the object’s location and orientation.
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Figure 1.1: Test Scene
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This, in turn, is based on inverting the geometric relationships between data
and model structures, which adds:

• making model-to-data correspondences.

The remainder of this section elaborates on the processes and the data
flow dependencies that constrain their mutual relationship in the complete
recognition computation context. Figure 1.2 shows the process sequence de-
termined by the constraints, and is discussed in more detail below.

Surface Image Inputs

Recognition starts from surface data, as represented in a structure called
a labeled, segmented surface image (Chapter 3). This structure is like Marr’s
21

2
D sketch and includes a pointillistic representation of absolute depth and

local surface orientation.
Data segmentation and organization are both difficult and important.

Their primary justifications are that segmentation highlights the relevant
features for the rest of the recognition process and organization produces, in
a sense, a figure/ground separation. Properties between unrelated structure
should not be computed, such as the angle between surface patches on sep-
arate objects. Otherwise, coincidences will invoke and possibly substantiate
non-existent objects. Here, the raw data is segmented into regions by bound-
ary segments labeled as shape or obscuring. Shape segmentation is based
on orientation, curvature magnitude and curvature direction discontinuities.
Obscuring boundaries are placed at depth discontinuities. These criteria seg-
ment the surface image into regions of nearly uniform shape, characterized
by the two principal curvatures and the surface boundary. As no fully devel-
oped processes produce this data yet, the example input is from a computer
augmented, hand-segmented test image. The segmentation boundaries were
found by hand and the depth and orientation values were interpolated within
each region from a few measured values.

The inputs used to analyze the test scene shown in Figure 1.1 are shown
in Figures 1.3 to 1.6. Figure 1.3 shows the depth values associated with
the scene, where the lighter values mean closer points. Figure 1.4 shows the
cosine of the surface slant for each image point. Figure 1.5 shows the obscur-
ing boundaries. Figure 1.6 shows the shape segmentation boundaries. From
these pictures, one can get the general impression of the rich data available
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Figure 1.3: Depth Values for the Test Scene

and the three dimensional character of the scene.

Complete Surface Hypotheses

Image segmentation leads directly to partial or complete object surface
segments. Surface completion processes (Chapter 4) reconstruct obscured
portions of surfaces, when possible, by connecting extrapolated surface bound-
aries behind obscuring surfaces. The advantage of this is twofold: it provides
data surfaces more like the original object surface for property extraction
and gives better image evidence during hypothesis construction. Two pro-
cesses are used for completing surface hypotheses. The first bridges gaps in
single surfaces and the second links two separated surface patches. Merged
surface segments must have roughly the same depth, orientation and surface
characterization. Because the reconstruction is based on three dimensional
surface image data, it is more reliable than previous work that used only two
dimensional image boundaries. Figure 1.7 illustrates both rules in showing
the original and reconstructed robot upper arm large surface from the test
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Figure 1.4: Cosine of Surface Slant for the Test Scene

Figure 1.5: Obscuring Boundaries for the Test Scene
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Figure 1.6: Shape Segmentation Boundaries for the Test Scene

image.

Surface Clusters

Surface hypotheses are joined to form surface clusters, which are blob-like
three dimensional object-centered representations (Chapter 5). The goal of
this process is to partition the scene into a set of three dimensional solids,
without yet knowing their identities. Surface clusters are useful (here) for
aggregating image features into contexts for model invocation and matching.
They would also be useful for tasks where identity is not necessary, such as
collision avoidance.

A surface cluster is formed by finding closed loops of isolating bound-
ary segments. The goal of this process is to create a blob-like solid that
encompasses all and only the features associated with a single object. This
strengthens the evidence accumulation used in model invocation and limits
combinatorial matching during hypothesis construction. Obscuring and con-
cave surface orientation discontinuity boundaries generally isolate solids, but
an exception is for laminar objects, where the obscuring boundary across the
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Figure 1.7: Original and Reconstructed Robot Upper Arm Surface
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front lip of the trash can (Figure 1.8) does not isolate the surfaces. These
criteria determine the primitive surface clusters. A hierarchy of larger surface
clusters are formed from equivalent depth and depth merged surface clusters,
based on depth ordering relationships. They become larger contexts within
which partially self-obscured structure or subcomponents can be found. Fig-
ure 1.8 shows some of the primitive surface clusters for the test scene. The
clusters correspond directly to primitive model ASSEMBLYs (which repre-
sent complete object models).

Three Dimensional Feature Description

General identity-independent properties (Chapter 6) are used to drive
the invocation process to suggest object identities, which trigger the model-
directed matching processes. Later, these properties are used to ensure that
model-to-data surface pairings are correct. The use of three dimensional
information from the surface image makes it possible to compute many object
properties directly (as compared to computing them from a two dimensional
projection of three dimensional data).

This task uses the surfaces and surface clusters produced by the segmen-
tation processes. Surface and boundary shapes are the key properties for
surfaces. Relative feature sizes, spatial relationships and adjacency are the
properties needed for solid recognition. Most of the measured properties
relate to surface patches and include: local curvature, absolute area, elon-
gation and surface intersection angles. As an example, Table 1.1 lists the
estimated properties for the robot shoulder circular end panel (region 26 in
Figure 3.10).

Surface-Based Object Representation

The modeled objects (Chapter 7) are compact, connected solids with
definable shapes, where the complete surfaces are rigid and segmentable into
regions of constant local shape. The objects may also have subcomponents
joined by interconnections with degrees-of-freedom.

Identification requires known object representations with three compo-
nents: a geometric model, constraints on object properties, and a set of
inter-object relationships.
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Figure 1.8: Some Surface Clusters for the Test Scene
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Table 1.1: Properties of Robot Shoulder End Panel

PROPERTY ESTIMATED TRUE

maximum surface curvature 0.0 0.0

minimum surface curvature 0.0 0.0

absolute area 165 201

relative area 0.24 0.25

surface size eccentricity 1.4 1.0

adjacent surface angle 1.47 1.57

number of parallel boundaries 1 1

boundary curve length 22.5 25.1

boundary curve length 25.3 25.1

boundary curvature 0.145 0.125

boundary curvature 0.141 0.125

number of straight segments 0 0

number of arc segments 2 2

number of equal segments 1 1

number of right angles 0 0

boundary relative orientation 3.14 3.14

boundary relative orientation 3.14 3.14
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The SURFACE patch is the model primitive, because surfaces are the pri-
mary data units. This allows direct pairing of data with models, comparison
of surface shapes and estimation of model-to-data transformation parame-
ters. SURFACEs are described by their principal curvatures with zero, one
or two curvature axes, and by their extent (i.e. boundary). The segmen-
tation ensures that the shape (e.g. principal curvatures) remains relatively
constant over the entire SURFACE.

Larger objects (called ASSEMBLYs) are recursively constructed from
SURFACEs or other ASSEMBLYs using coordinate reference frame transfor-
mations. Each structure has its own local reference frame and larger struc-
tures are constructed by placing the subcomponents in the reference frame
of the aggregate. Partially constrained transformations can connect subcom-
ponents by using variables in the attachment relationship. This was used for
the PUMA robot’s joints. The geometric relationship between structures is
useful for making model-to-data assignments and for providing the adjacency
and relative placement information used by verification.

The three major object models used in this analysis are the PUMA robot,
chair and trash can. (These models required the definition of 25 SURFACEs
and 14 ASSEMBLYs.) A portion of the robot model definition is shown
below.

Illustrated first is the SURFACE definition for the robot upper arm large
curved end panel (uendb). The first triple on each line gives the starting
endpoint for a boundary segment. The last item describes the segment as a
LINE or a CURVE (with its parameters in brackets). PO means the segmen-
tation point is a boundary orientation discontinuity point and BO means the
boundary occurs at an orientation discontinuity between the surfaces. The
next to last line describes the surface type with its axis of curvature and radii.
The final line gives the surface normal at a nominal point in the SURFACE’s
reference frame.

SURFACE uendb =

PO/(0,0,0) BO/LINE

PO/(10,0,0) BO/CURVE[0,0,-22.42]

PO/(10,29.8,0) BO/LINE

PO/(0,29.8,0) BO/CURVE[0,0,-22.42]

CYLINDER [(0,14.9,16.75),(10,14.9,16.75),22.42,22.42]

NORMAL AT (5,15,-5.67) = (0,0,-1);



19

Illustrated next is the rigid upperarm ASSEMBLY with its SURFACEs
(e.g. uendb) and the reference frame relationships between them. The first
triple in the relationship is the (x, y, z) translation and the second gives the
(rotation, slant, tilt) rotation. Translation is applied after rotation.

ASSEMBLY upperarm\= =

uside AT ((-17,-14.9,-10),(0,0,0))

uside AT ((-17,14.9,0),(0,pi,pi/2))

uendb AT ((-17,-14.9,0),(0,pi/2,pi))

uends AT ((44.8,-7.5,-10),(0,pi/2,0))

uedges AT ((-17,-14.9,0),(0,pi/2,3*pi/2))

uedges AT ((-17,14.9,-10),(0,pi/2,pi/2))

uedgeb AT ((2.6,-14.9,0),(0.173,pi/2,3*pi/2))

uedgeb AT ((2.6,14.9,-10),(6.11,pi/2,pi/2));

The ASSEMBLY that pairs the upper and lower arm rigid structures into
a non-rigidly connected structure is defined now. Here, the lower arm has an
affixment parameter that defines the joint angle in the ASSEMBLY.

ASSEMBLY armasm =

upperarm AT ((0,0,0),(0,0,0))

lowerarm AT ((43.5,0,0),(0,0,0))

FLEX ((0,0,0),(jnt3,0,0));

Figure 1.9 shows an image of the whole robot ASSEMBLY with the sur-
faces shaded according to surface orientation.

Property constraints are the basis for direct evidence in the model in-
vocation process and for identity verification. These constraints give the
tolerances on properties associated with the structures, and the importance
of the property in contributing towards invocation. Some of the constraints
associated with the robot shoulder end panel named “robshldend” are given
below (slightly re-written from the model form for readability). The first
constraint says that the relative area of the robshldend in the context of a
surface cluster (i.e. the robot shoulder) should lie between 11% and 40%
with a peak value of 25%, and the weighting of any evidence meeting this
constraint is 0.5.

UNARYEVID 0.11\ < relative\_area < 0.40 PEAK 0.25 WEIGHT 0.5;

UNARYEVID 156.0 < absolute\_area < 248.0 PEAK 201.0 WEIGHT 0.5;
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Figure 1.9: Shaded View of Robot Model
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UNARYEVID 0.9 < elongation < 1.5 PEAK 1.0 WEIGHT 0.5;

UNARYEVID 0 < parallel\_boundary\_segments < 2 PEAK 1 WEIGHT 0.3;

UNARYEVID 20.1 < boundary\_length < 40.0 PEAK 25.1 WEIGHT 0.5;

UNARYEVID .08 < boundary\_curvature < .15 PEAK .125 WEIGHT 0.5;

BINARYEVID 3.04 < boundary\_relative\_orientation(edge1,edge2)

< 3.24 PEAK 3.14 WEIGHT 0.5;

Rather than specifying all of an object’s properties, it is possible to specify
some descriptive attributes, such as “flat”. This means that the so-described
object is an instance of type “flat” – that is, “surfaces without curvature”.
There is a hierarchy of such descriptions: the description “circle” given be-
low is a specialization of “flat”. For robshldend, there are two descriptions:
circular, and that it meets other surfaces at right angles:

DESCRIPTION OF robshldend IS circle 3.0;

DESCRIPTION OF robshldend IS sapiby2b 1.0;

Relationships between objects define a network used to accumulate in-
vocation evidence. Between each pair of model structures, seven types of
relationship may occur: subcomponent, supercomponent, subclass, super-
class, descriptive, general association and inhibition. The model base defines
those that are significant to each model by listing the related models, the
type of relationship and the strength of association. The other relationship
for robshldend is:

SUPERCOMPONENT OF robshldend IS robshldbd 0.10;

Evidence for subcomponents comes in visibility groups (i.e. subsets of
all object features), because typically only a few of an object’s features are
visible from any particular viewpoint. While they could be deduced compu-
tationally (at great expense), the visibility groups are given explicitly here.
The upperarm ASSEMBLY has two distinguished views, differing by whether
the big (uendb) or small (uends) curved end section is seen.

SUBCGRP OF upperarm = uside uends uedgeb uedges;

SUBCGRP OF upperarm = uside uendb uedgeb uedges;

Model Invocation
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Model invocation (Chapter 8) links the identity-independent processing
to the model-directed processing by selecting candidate models for further
consideration. It is essential because of the impossibility of selecting the
correct model by sequential direct comparison with all known objects. These
models have to be selected through suggestion because: (a) exact individual
models may not exist (object variation or generic description) and (b) object
flaws, sensor noise and data loss lead to inexact model-to-data matchings.

Model invocation is the purest embodiment of recognition – the inference
of identity. Its outputs depend on its inputs, but need not be verified or
verifiable for the visual system to report results. Because we are interested
in precise object recognition here, what follows after invocation is merely
verification of the proposed hypothesis: the finding of evidence and ensuring
of consistency.

Invocation is based on plausibility, rather than certainty, and this notion
is expressed through accumulating various types of evidence for objects in
an associative network. When the plausibility of a structure having a given
identity is high enough, a model is invoked.

Plausibility accumulates from property and relationship evidence, which
allows graceful degradation from erroneous data. Property evidence is ob-
tained when data properties satisfy the model evidence constraints. Each
relevant description contributes direct evidence in proportion to a weight
factor (emphasizing its importance) and the degree that the evidence fits the
constraints. When the data values from Table 1.1 are associated with the
evidence constraints given above, the resulting property evidence plausibility
for the robshldend panel is 0.57 in the range [-1,1].

Relationship evidence arises from conceptual associations with other struc-
tures and identifications. In the test scene, the most important relationships
are supercomponent and subcomponent, because of the structured nature of
the objects. Generic descriptions are also used: robshldend is also a “circle”.
Inhibitory evidence comes from competing identities. The modeled relation-
ships for robshldend were given above. The evidence for the robshldend
model was:

• property: 0.57

• supercomponent (robshould): 0.50

• description (circle, sapiby2b): 0.90
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• inhibition: none

No inhibition was received because there were no competing identities with
sufficiently high plausibility. All evidence types are combined (with weight-
ing) to give an integrated evidence value, which was 0.76.

Plausibility is only associated with the model being considered and a
context; otherwise, models would be invoked for unlikely structures. In other
words, invocation must localize its actions to some context inside which all
relevant data and structure must be found. The evidence for these structures
accumulates within a context appropriate to the type of structure:

• individual model SURFACEs are invoked in a surface hypothesis con-
text,

• SURFACEs associate to form an ASSEMBLY in a surface cluster con-
text, and

• ASSEMBLYs associate in a surface cluster context.

The most plausible context for invoking the upper arm ASSEMBLY model
was blob 1 in Figure 1.8, which is correct.

The invocation computation accumulates plausibility in a relational net-
work of {context} × {identity} nodes linked to each other by relationship
arcs and linked to the data by the property constraints. The lower level
nodes in this network are general object structures, such as planes, positive
cylinders or right angle surface junctions. From these, higher level object
structures are linked hierarchically. In this way, plausibility accumulates
upwardly from simple to more complex structures. This structuring pro-
vides both richness in discrimination through added detail, and efficiency of
association (i.e. a structure need link only to the most compact levels of sub-
description). Though every model must ultimately be a candidate for every
image structure, the network formulation achieves efficiency through judi-
cious selection of appropriate conceptual units and computing plausibility
over the entire network in parallel.

When applied to the full test scene, invocation was generally successful.
There were 21 SURFACE invocations of 475 possible, of which 10 were cor-
rect, 5 were justified because of similarity and 6 were unjustified. There were
18 ASSEMBLY invocations of 288 possible, of which 10 were correct, 3 were
justified because of similarity and 5 were unjustified.
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Hypothesis Construction

Hypothesis construction (Chapter 9) aims for full object recognition, by
finding evidence for all model features. Invocation provides the model-to-
data correspondences to form the initial hypothesis. Invocation thus elimi-
nates most substructure search by directly pairing features. SURFACE cor-
respondences are immediate because there is only one type of data element
– the surface. Solid correspondences are also trivial because the matched
substructures (SURFACEs or previously recognized ASSEMBLYs) are also
typed and are generally unique within the particular model. All other data
must come from within the local surface cluster context.

The estimation of the ASSEMBLY and SURFACE reference frames is one
goal of hypothesis construction. The position estimate can then be used for
making detailed metrical predictions during feature detection and occlusion
analysis (below).

Object orientation is estimated by transforming the nominal orientations
of pairs of model surface vectors to corresponding image surface vectors.
Pairs are used because a single vector allows a remaining degree of rota-
tional freedom. Surface normals and curvature axes are the two types of
surface vectors used. Translation is estimated from matching oriented model
SURFACEs to image displacements and depth data. The spatial relation-
ships between structures are constrained by the geometric relationships of the
model and inconsistent results imply an inappropriate invocation or feature
pairing.

Because of data errors, the six degrees of spatial freedom are represented
as parameter ranges. Each new model-to-data feature pairing contributes
new spatial information, which helps further constrain the parameter range.
Previously recognized substructures also constrain object position.

The robot’s position and joint angle estimates were also found using a
geometric reasoning network approach [74]. Based partly on the SUP/INF
methods used in ACRONYM [42], algebraic inequalities that defined the
relationships between model and data feature positions were used to compile
a value-passing network. The network calculated upper and lower bounds
on the (e.g.) position values by propagating calculated values through the
network. This resulted in tighter position and joint angle estimates than
achieved by the vector pairing approach.
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Table 1.2: Measured and Estimated Spatial Parameters

PARAMETER MEASURED ESTIMATED
X 488 (cm) 487 (cm)
Y 89 (cm) 87 (cm)
Z 554 (cm) 550 (cm)

Rotation 0.0 (rad) 0.04 (rad)
Slant 0.793 (rad) 0.70 (rad)
Tilt 3.14 (rad) 2.97 (rad)

Joint 1 2.24 (rad) 2.21 (rad)
Joint 2 2.82 (rad) 2.88 (rad)
Joint 3 4.94 (rad) 4.57 (rad)

Table 1.2 lists the measured and estimated location positions, orientations
and joint angles for the robot. The test data was obtained from about 500
centimeters distance. As can be seen, the translations were estimated well,
but the rotations were more inaccurate. This was because of:

• insufficient surface evidence to better constrain the position of individ-
ual ASSEMBLYs, and

• inadequacies in the geometric reasoning method, when integrating mul-
tiple ASSEMBLYs with degrees-of-freedom.

Once position is estimated, a variety of model-driven processes contribute
to completing an oriented hypothesis. They are, in order:

1. infer back-facing SURFACEs

2. infer tangential SURFACEs

3. predict visibility of remaining SURFACEs

4. search for missing visible SURFACEs

5. bind rigidly connected ASSEMBLYs

6. bind non-rigidly connected ASSEMBLYs

7. explain some incorrectly segmented SURFACEs
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Figure 1.10: Predicted Angle Between Robot Upper and Lower Arms

8. validate externally obscured structure

Hypothesis construction has a “hierarchical synthesis” character, where
data surfaces are paired with model SURFACEs, surface groups are matched
to ASSEMBLYs and ASSEMBLYs are matched to larger ASSEMBLYs. The
three key constraints on the matching are: localization in the correct im-
age context (i.e. surface cluster), correct feature identities and consistent
geometric reference frame relationships.

Joining together two non-rigidly connected subassemblies also gives the
values of the variable attachment parameters by unifying the respective ref-
erence frame descriptions. The attachment parameters must also meet any
specified constraints, such as limits on joint angles in the robot model. For
the robot upper and lower arm, the joint angle jnt3 was estimated to be
4.57, compared to the measured value of 4.94. Figure 1.10 shows the pre-
dicted upper and lower arms at this angle.
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Missing features, such as the back of the trash can, are found by a model-
directed process. Given the oriented model, the image positions of unmatched
SURFACEs can be predicted. Then, any surfaces in the predicted area that:

• belong to the surface cluster,

• have not already been previously used and

• have the correct shape and orientation

can be used as evidence for the unpaired model features.
Accounting for missing structure requires an understanding of the three

cases of feature visibility, predicting or verifying their occurrence and show-
ing that the image data is consistent with the expected visible portion of the
model. The easiest case of back-facing and tangent SURFACEs can be pre-
dicted using the orientation estimates with known observer viewpoint and the
surface normals deduced from the geometric model. A raycasting technique
(i.e. predicting an image from an oriented model) handles self-obscured front-
facing SURFACEs by predicting the location of obscuring SURFACEs and
hence which portions of more distant SURFACEs are invisible. Self-occlusion
is determined by comparing the number of obscured to non-obscured pixels
for the front-facing SURFACEs in the synthetic image. This prediction also
allows the program to verify the partially self-obscured SURFACEs, which
were indicated in the data by back-side-obscuring boundaries. The final fea-
ture visibility case occurs when unrelated structure obscures portions of the
object. Assuming enough evidence is present to invoke and orient the model,
occlusion can be confirmed by finding closer unrelated surfaces responsible
for the missing image data. Partially obscured (but not self-obscured) SUR-
FACEs are also verified as being externally obscured. These SURFACEs are
noticed because they have back-side-obscuring boundaries that have not been
explained by self-occlusion analysis.

The self-occlusion visibility analysis for the trash can in the scene is given
in Table 1.3. Minor prediction errors occur at edges where surfaces do not
meet perfectly.

Verifying missing substructure is a recursive process and is easy given the
definition of the objects. Showing that the robot hand is obscured by the un-
related trash can decomposes to showing that each of the hand’s SURFACEs
are obscured.

Figure 1.11 shows the found robot model as predicted by the orienta-
tion parameters and superposed over the original intensity image. Though
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Table 1.3: Predicted Trash Can Visibility

VISIBLE OBSC’D TOTAL
SURFACE PIXELS PIXELS PIXELS VISIBILITY
outer front 1479 8 1487 full
outer back 1 1581 1582 back-facing
outer bottom 5 225 230 back-facing
inner front 0 1487 1487 back-facing
inner back 314 1270 1584 partial-obsc
inner bottom 7 223 230 full-obsc

the global understanding is correct, the predicted position of the lower arm is
somewhat away from its observed position because of cumulative minor rota-
tion angle errors from the robot’s base position. In analysis, all features were
correctly paired, predicted invisible or verified as externally self-obscured.
The numerical results in Table 1.2 also show good performance.

Identity Verification

The final step in the recognition process is verification (Chapter 10),
which helps ensure that instantiated hypotheses are valid physical objects
and have the correct identity. A proper, physical, object is more certain if
all surfaces are connected and they enclose the object. Correct identification
is more likely if all model features are accounted for, the model and corre-
sponding image surface shapes and orientations are the same, and the model
and image surfaces are connected similarly. The constraints used to ensure
correct SURFACE identities were:

• approximately correct size

• approximately correct surface shape

For solids they were:

• no duplicated use of image data

• all predicted back-facing SURFACEs have no data
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Figure 1.11: Estimated Position of Verified Robot
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• all adjacent visible model SURFACEs are adjacent in data

• all subfeatures have correct placement and identity

• all features predicted as partially self-obscured during raycasting are
observed as such (i.e. have appropriate obscuring boundaries)

In the example given above, all correct object hypotheses passed these
constraints. The only spurious structures to pass verification were SUR-
FACEs similar to the invoked model or symmetric subcomponents.

To finish the summary, some implementation details follow. The IMAG-
INE I program was implemented mainly in the C programming language
with some PROLOG for the geometric reasoning and invocation network
compilation (about 20,000 lines of code in total). Execution required about
8 megabytes total, but this included several 256*256 arrays and generous
static data structure allocations. Start-to-finish execution without graphics
on a SUN 3/260 took about six minutes, with about 45% for self-occlusion
analysis, 20% for geometric reasoning and 15% for model invocation. Many of
the ideas described here are now being used and improved in the IMAGINE
II program, which is under development.

The completely recognized robot is significantly more complicated than
previously recognized objects (because of its multiple articulated features,
curved surfaces, self-occlusion and external occlusion). This successful com-
plete, explainable, object recognition was achieved because of the rich infor-
mation embedded in the surface data and surface-based models.

Recognition Graph Summary

The recognition process creates many data structures, linked into a graph
whose relationships are summarized in Figure 1.12. This figure should be
referred to while reading the remainder of this book.

At the top of the diagram, the three bubbles “surface depth and orienta-
tion data”, “image region labels” and “boundary and labels” are the image
data input. The boundary points are linked into “boundary segments” which
have the same label along their entire length. “Image region nodes” represent
the individual surface image regions with their “enclosing boundary nodes”,
which are circularly linked boundary segments. “Adjacency nodes” link ad-
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Figure 1.12: Summary of Data Structure Relationships
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jacent region nodes and also link to “description nodes” that record which
boundary separates the regions.

The “image region nodes” form the raw input into the “surface nodes”
hypothesizing process. The “surface nodes” are also linked by “adjacency
nodes” and “enclosing boundary nodes”. In the description phase, proper-
ties of the surfaces are calculated and these are also recorded in “description
nodes”. Surface shape is estimated and recorded in the “surface shape de-
scriptors”.

The surface cluster formation process aggregates the surfaces into groups
recorded in the “surface cluster nodes”. These nodes are organized into a
“surface cluster hierarchy” linking larger enclosing or smaller enclosed surface
clusters. The surface clusters also have properties recorded in “description
nodes” and have an enclosing boundary.

Invocation occurs in a plausibility network of “invocation nodes” linked
by the structural relations given by the “models”. Nodes exist linking model
identities to image structures (surface or surface cluster nodes). The invoca-
tion nodes link to each other to exchange plausibility among hypotheses.

When a model is invoked, a “hypothesis node” is created linking the model
to its supporting evidence (surface and surface cluster nodes). Hypotheses
representing objects are arranged in a component hierarchy analogous to that
of the models. Image region nodes link to the hypotheses that best explain
them.

This completes our overview of the recognition process and the following
chapters explore the issues raised here in depth.



Chapter 2

Object Recognition from
Surface Information

Intuitively, object recognition is the isolation and identification of structure
from the midst of other detail in an image of a scene. It is also the assignment
of a symbol to a group of features with the implication that those features
could only belong to an object designated by that symbol. Hence, when we
say we perceive (recognize) “John”, we assert that there is a person named
“John”, who accounts for all the perceived features, and that this person is
at the specified location in the given scene.

When described like this, object recognition seems little different from
a general concept-matching paradigm. So, what distinguishes it as a vision
problem? The answer lies in the types of data, its acquisition, the viewer-to-
object geometry, the image projection relationship and the representations of
structures to be recognized. This research addresses several aspects of how
to perceive structure [166] visually:

• What are some of the relevant structures in the data?

• How is their appearance transformed by the visual process?

• How are they represented as a set of models?

• How are the models selected?

• How is the model-to-data correspondence established?

33
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Visual recognition involves reasoning processes that transform between
internal representations of the scene, linking the lower levels of image descrip-
tion to the higher levels of object description. The transformations reflect
both the relationships between the representations and the constraints on
the process. The most important constraints are those based on the physical
properties of the visual domain and the consequent relationships between
data elements.

Vision does have aspects in common with other cognitive processes –
notably model invocation and generalization. Invocation selects candidate
models to explain sets of data, a task that, in function, is no different from
selecting “apple” as a unifying concept behind the phrase “devilish fruit”.
Invocation makes the inductive leap from data to explanation, but only in
a suggestive sense, by computing from associations among symbolic descrip-
tions. Generalization also plays a big role in both recognition and other
processes, because one needs to extract the key features, and gloss over the
irrelevant ones, to categorize a situation or object.

The first half of this chapter considers the problem of recognition in gen-
eral, and the second half discusses previous approaches to recognition.

2.1 The Nature of Recognition

Visual recognition (and visual perception) has received considerable philo-
sophical investigation. Three key results are mentioned, as an introduction
to this section.

(1) Perception interprets raw sensory data. For example, we interpret a
particular set of photons hitting our retina as “green”. As a result, perception
is an internal phenomenon caused by external events. It transforms the
sensory phenomena into a reference to a symbolic description. Hence, there is
a strong “linguistic” element to recognition – a vocabulary of interpretations.
The perception may be directly related to the source, but it may also be a
misinterpretation, as with optical illusions.

(2) Interpretations are directly dependent on the theories about what
is being perceived. Hence, a theory that treats all intensity discontinuities
as instances of surface reflectance discontinuities will interpret shadows as
unexplained or reflectance discontinuity phenomena.

(3) Identity is based on conceptual relations, rather than purely physical
ones. An office chair with all atoms replaced by equivalent atoms or one



35

that has a bent leg is still a chair. Hence, any object with the appropriate
properties could receive the corresponding identification.

So, philosophical theory implies that recognition has many weaknesses:
the interpretations may be fallacious, not absolute and reductive. In practice,
however, humans can effectively interpret unnatural or task-specific scenes
(e.g. x-ray interpretation for tuberculosis detection) as well as natural and
general ones (e.g. a tree against the sky). Moreover, almost all humans are
capable of visually analyzing the world and producing largely similar descrip-
tions of it. Hence, there must be many physical and conceptual constraints
that restrict interpretation of both raw data as image features, and the re-
lation of these features to objects. This chapter investigates the role of the
second category on visual interpretation.

How is recognition understood here? Briefly, recognition is the production
of symbolic descriptions. A description is an abstraction, as is stored object
knowledge. The production process transforms sets of symbols to produce
other symbols. The transformations are guided (in practice) by physical,
computational and efficiency constraints, as well as by observer history and
by perceptual goals.

Transformations are implementation dependent, and may be erroneous,
as when using a simplified version of the ideal transformation. They can also
make catastrophic errors when presented with unexpected inputs or when
affected by distorting influences (e.g. optical, electrical or chemical). The
notion of “transformation error” is not well founded, as the emphasis here is
not on objective reality but on perceptual reality, and the perceptions now
exist, “erroneous” or otherwise. The perceptions may be causally initiated by
a physical world, but they may also be internally generated: mental imagery,
dreams, illusions or “hallucinations”. These are all legitimate perceptions
that can be acted on by subsequent transformations; they are merely not
“normal” or “well-grounded” interpretations.

Normal visual understanding is mediated by different description types
over a sequence of transformations. The initial representation of a symbol
may be by a set of photons; later channels may be explicit (value, place or
symbol encoded), implicit (connectionist) or external. The communication
of symbols between processes (or back into the same process) is also subject
to distorting transformations.

In part, identity is linguistic: a chair is whatever is called a chair. It is also
functional – an object has an identity only by virtue of its role in the human
world. Finally, identity implies that it has properties, whether physical or
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mental. Given that objects have spatial extension, and are complex, some
of the most important properties are linked to object substructures, their
identity and their placement.

An identification is the attribution of a symbol whose associated proper-
ties are similar to those of the data, and is the output of a transformation.
The properties (also symbols) compared may come from several different pro-
cesses at different stages of transformation. Similarity is not a well defined
notion, and seems to relate to a conceptual distance relationship in the space
of all described objects. The similarity evaluation is affected by perceptual
goals.

This is an abstract view of recognition. The practical matters are now
discussed: what decisions must be made for an object recognition system to
function in practice.

Descriptions and Transformations

This research starts at the 21
2
D sketch, so this will be the first description

encountered. Later transformations infer complete surfaces, surface clusters,
object properties and relationships and object hypotheses, as summarized in
Chapter 1.

As outlined above, each transformation is capable of error, such as in-
correctly merging two surfaces behind an obscuring object, or hypothesizing
a non-existent object. Moreover, the model invocation process is designed
to allow “errors” to occur, as such a capability is needed for generic object
recognition, wherein only “close” models exist. Fortunately, there are many
constraints that help prevent the propagation of errors.

Some symbols are created directly from the raw data (e.g. surface prop-
erties), but most are created by transforming previously generated results
(e.g. using two surfaces as evidence for hypothesizing an object containing
both).

Object Isolation

Traditionally, recognition involves structure isolation, as well as identifi-
cation, because naming requires objects to be named. This includes denoting
what constitutes the object, where it is and what properties it has. Unfor-
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tunately, the isolation process depends on what is to be identified, in that
what is relevant can be object-specific. However, this problem is mitigated
because the number of general visual properties seems to be limited and there
is hope of developing “first pass” grouping techniques that could be largely
autonomous and model independent. (These may not always be model inde-
pendent, as, for example, the constellation Orion can be found and declared
as distinguished in an otherwise random and overlapping star field.) So, part
of a sound theory of recognition depends on developing methods for isolating
specific classes of objects. This research inferred surface groupings from local
intersurface relationships.

The Basis for Recognition

Having the correct properties and relationships is the traditional basis for
recognition, with the differences between approaches lying in the types of evi-
dence used, the modeling of objects, the assumptions about what constitutes
adequate recognition and the algorithms for performing the recognition.

Here, surface and structure properties are the key types of evidence, and
they were chosen to characterize a large class of everyday objects. As three
dimensional input data is used, a full three dimensional description of the
object can be constructed and directly compared with the object model. All
model feature properties and relationships should be held by the observed
data features, with geometric consistency as the strongest constraint. The
difficulty then arises in the construction of the three dimensional description.
Fortunately, various constraints exist to help solve this problem.

This research investigates recognizing “human scale” rigidly and non-
rigidly connected solids with uniform, large surfaces including: classroom
chairs, most of a PUMA robot and a trash can. The types of scenes in which
these objects appear are normal indoor somewhat cluttered work areas, with
objects at various depths obscuring portions of other objects.

Given these objects and scenes, four groups of physical constraints are
needed:

• limitations on the surfaces and how they can be segmented and char-
acterized,

• properties of solid objects, including how the surfaces relate to the
objects bounded by them,
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• properties of scenes, including spatial occupancy and placement of ob-
jects and

• properties of image formation and how the surfaces, objects and scenes
affect the perceived view.

Definition of Recognition

Recognition produces a largely instantiated, spatially located, described
object hypothesis with direct correspondences to an isolated set of image
data. “Largely instantiated” means that most object features predicted by
the model have been accounted for, either with directly corresponding image
data or with explanations for their absence.

What distinguishes recognition, in the sense used in this book, is that it
labels the data, and hence is able to reconstruct the image. While the object
description may be compressed (e.g. a “head”), there will be an associated
prototypical geometric model (organizing the properties) that could be used
to recreate the image to the level of the description. This requires that
identification be based on model-to-data correspondences, rather than on
summary quantities such as volume or mass distribution.

One problem with three dimensional scenes is incomplete data. In partic-
ular, objects can be partially obscured. But, because of redundant features,
context and limited environments, identification is still often possible. On
the other hand, there are also objects that cannot be distinguished without a
more complete examination – such as an opened versus unopened soft drink
can. If complete identification requires all properties to be represented in the
data, any missing ones will need to be justified. Here, it is assumed that all
objects have geometric models that allow appearance prediction. Then, if
the prediction process is reasonable and understands physical explanations
for missing data (e.g. occlusion, known defects), the model will be consistent
with the observed data, and hence be an acceptable identification.

Criteria for Identification

The proposed criterion is that the object has all the right properties and
none of the wrong ones, as specified in the object model. The properties will
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include local and global descriptions (e.g. surface curvatures and areas), sub-
component existence, global geometric consistency and visibility consistency
(i.e. what is seen is what is expected).

Perceptual goals determine the properties used in identification. Unused
information may allow distinct objects to acquire the same identity. If the
generic chair were the only chair modeled, then all chairs would be classified
as the generic chair.

The space of all objects does not seem to be sufficiently disjoint so that
the detection of only a few properties will uniquely characterize them. In
some model bases, efficient recognition may be possible by a parsimonious
selection of properties, but redundancy adds the certainty needed to cope
with missing or erroneous data, as much as the extra data bits in an error
correcting code help disperse the code space.

Conversely, a set of data might implicate several objects related through
a relevant common generalization, such as (e.g.) similar yellow cars. Or,
there may be no physical generalization between alternative interpretations
(e.g., as in the children’s joke Q:“What is grey, has four legs and a trunk?”
A:“A mouse going on a holiday!”).

Though the basic data may admit several interpretations, further associ-
ated properties may provide finer identifications, much as ACRONYM [42]
used additional constraints for class specialization.

While not all properties will be needed for a particular identification,
some will be essential and recognition should require these when identifying
an object. One could interpret a picture of a soft drink can as if it were the
original, but this is just a matter of choosing what properties are relevant.
An observation that is missing some features, such as one without the label
on the can, may suggest the object, but would not be acceptable as a proper
instance.

There may also be properties that the object should not have, though
this is a more obscure case. In part, these properties may contradict the
object’s function. Some care has to be applied here, because there are many
properties that an object does not have and all should not have to be made
explicit. No “disallowed” properties were used here.

Most direct negative properties, like “the length cannot be less than 15
cm” can be rephrased as “the length must be at least 15 cm”. Properties
without natural complements are less common, but exist: “adjacent to” and
“subcomponent of” are two such properties. One might discriminate between
two types of objects by stating that one has a particular subcomponent,
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and that the other does not and is otherwise identical. Failure to include
the “not subcomponent of” condition would reduce the negative case to a
generalization of the positive case, rather than an alternative. Examples of
this are: a nail polish dot that distinguishes “his and her” toothbrushes or a
back support as the discriminator between a chair and a stool.

Recognition takes place in a context – each perceptual system will have
its own set of properties suitable for discriminating among its range of ob-
jects. In the toothbrushes example, the absence of the mark distinguished
one toothbrush in the home, but would not have been appropriate when
still at the factory (among the other identical, unmarked, toothbrushes).
The number and sensitivity of the properties affects the degree to which
objects are distinguished. For example, the area-to-perimeter ratio distin-
guishes some objects in a two dimensional vision context, even though it is
an impoverished representation. This work did not explicitly consider any
context-specific identification criteria.

The above discussion introduces most of the issues behind recognition,
and is summarized here:

• the goals of recognition influence the distinguishable objects of the
domain,

• the characterization of the domain may be rich enough to provide
unique identifications even when some data is missing or erroneous,

• all appropriate properties should be necessary, with some observed and
the rest deduced,

• some properties may be prohibited and

• multiple identifications may occur for the same object and additional
properties may specialize them.

2.2 Some Previous Object Recognition Sys-

tems

Three dimensional object recognition is still largely limited to blocks world
scenes. Only simple, largely polyhedral objects can be fully identified, while
more complicated objects can only be tentatively recognized (i.e. evidence
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for only a few features can be found). There are several pieces of research
that deserve special mention.

Roberts [139] was the founder of three dimensional model-based scene
understanding. Using edge detection methods, he analyzed intensity images
of blocks world scenes containing rectangular solids, wedges and prisms. The
two key descriptions of a scene were the locations of vertices in its edge de-
scription and the configurations of the polygonal faces about the vertices.
The local polygon topology indexed into the model base, and promoted ini-
tial model-to-data point correspondences. Using these correspondences, the
geometric relationship between the model, scene and image was computed.
A least-squared error solution accounted for numerical errors. Object scale
and distance were resolved by assuming the object rested on a ground plane
or on other objects. Recognition of one part of a configuration introduced
new edges to help segment and recognize the rest of the configuration.

Hanson and Riseman’s VISIONS system [83] was proposed as a complete
vision system. It was a schema-driven natural scene recognition system act-
ing on edge and multi-spectral region data [82]. It used a blackboard system
with levels for: vertices, segments, regions, surfaces, volumes, objects and
schemata. Various knowledge sources made top-down or bottom-up addi-
tions to the blackboard. For the identification of objects (road, tree, sky,
grass, etc.) a confidence value was used, based on property matching. The
properties included: spectral composition, texture, size and two dimensional
shape. Rough geometric scene analysis estimated the base plane and then
object distances knowing rough object sizes. Use of image relations to give
rough relative scene ordering was proposed. Besides the properties, schemata
were the other major object knowledge source. They organized objects likely
to be found together in generic scenes (e.g. a house scene) and provided
conditional statistics used to direct the selection of new hypotheses from the
blackboard to pursue.

As this system was described early in its development, a full evaluation
can not be made here. Its control structure was general and powerful, but its
object representations were weak and dependent mainly on a few discriminat-
ing properties, with little spatial understanding of three dimensional scenes.

Marr [112] hypothesized that humans use a volumetric model-based ob-
ject recognition scheme that:

• took edge data from a 21
2
D sketch,

• isolated object regions by identifying obscuring contours,
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• described subelements by their elongation axes, and objects by the local
configuration of axes,

• used the configurations to index into and search in a subtype/subcomponent
network representing the objects, and

• used image axis positions and model constraints for geometric analysis.

His proposal was outstanding in the potential scope of recognizable ob-
jects, in defining and extracting object independent descriptions directly
matchable to three dimensional models (i.e. elongation axes), in the sub-
type and subcomponent model refinement, and in the potential of its invo-
cation process. It suffered from the absence of a testable implementation,
from being too serial in its view of recognition, from being limited to only
cylinder-like primitives, from not accounting for surface structure and from
not fully using the three dimensional data in the 21

2
D sketch.

Brooks [42], in ACRONYM, implemented a generalized cylinder based
recognizer using similar notions. His object representation had both sub-
type and subcomponent relationships. From its models, ACRONYM derived
visible features and relationships, which were then graph-matched to edge
data represented as ribbons (parallel edge groups). ACRONYM deduced
object position and model parameters by back constraints in the prediction
graph, where constraints were represented by algebraic inequalities. These
symbolically linked the model and position parameters to the model relation-
ships and image geometry, and could be added to incrementally as recogni-
tion proceeded. The algebraic position-constraint and incremental evidence
mechanism was powerful, but the integration of the constraints was a time-
consuming and imperfect calculation.

This well developed project demonstrated the utility of explicit geometric
and constraint reasoning, and introduced a computational model for generic
identification based on nested sets of constraints. Its weakness were that it
only used edge data as input, it had a relatively incomplete understanding of
the scene, and did not really demonstrate three dimensional understanding
(the main example was an airplane viewed from a great perpendicular height).

Faugeras and his group [63] researched three dimensional object recog-
nition using direct surface data acquired by a laser triangulation process.
Their main example was an irregular automobile part. The depth values
were segmented into planar patches using region growing and Hough trans-
form techniques. These data patches were then combinatorially matched to
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model patches, constrained by needing a consistent model-to-data geometric
transformation at each match. The transformation was calculated using sev-
eral error minimization methods, and consistency was checked first by a fast
heuristic check and then by error estimates from the transformation estima-
tion. Their recognition models were directly derived from previous views of
the object and record the parameters of the planar surface patches for the
object from all views.

Key problems here were the undirected matching, the use of planar patches
only, and the relatively incomplete nature of their recognition – pairing of
a few patches was enough to claim recognition. However, they succeeded in
the recognition of a complicated real object.

Bolles et al. [36] used light stripe and laser range finder data. Surface
boundaries were found by linking corresponding discontinuities in groups of
stripes, and by detecting depth discontinuities in the range data. Matching
to models was done by using edge and surface data to predict circular and
hence cylindrical features, which were then related to the models. The key
limitation of these experiments was that only large (usually planar) surfaces
could be detected, and so object recognition could depend on only these
features. This was adequate in the limited industrial domains. The main
advantages of the surface data was that it was absolute and unambiguous,
and that planar (etc.) model features could be matched directly to other
planar (etc.) data features, thus saving on matching combinatorics.

The TINA vision system, built by the Sheffield University Artificial Intel-
ligence Vision Research Unit [134], was a working stereo-based three dimen-
sional object recognition and location system. Scene data was acquired in
three stages: (1) subpixel “Canny” detected edges were found for a binocular
stereo image pair, (2) these were combined using epipolar, contrast gradient
and disparity gradient constraints and (3) the three dimensional edge points
were grouped to form straight lines and circular arcs. These three dimen-
sional features were then matched to a three dimensional wire frame model,
using a local feature-focus technique [35] to cue the initial matches. They
eliminated the incorrect model-to-data correspondences using pairwise con-
straints similar to those of Grimson and Lozano-Perez [78] (e.g. relative
orientation). When a maximal matching was obtained, a reference frame
was estimated, and then improved by exploiting object geometry constraints
(e.g. that certain lines must be parallel or perpendicular).

A particularly notable achievement of this project was their successful
inference of the wire frame models from multiple known views of the object.
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Although the stereo and wire frame-based techniques were suited mainly for
polyhedral objects, this well-engineered system was successful at building
models that could then be used for object recognition and robot manipula-
tion.

More recently, Fan et al. [61] described range-data based object recogni-
tion with many similarities to the work in this book. Their work initially
segments the range data into surface patches at depth and orientation dis-
continuities. Then, they created an attributed graph with nodes representing
surface patches (labeled by properties like area, orientation and curvature)
and arcs representing adjacency (labeled by the type of discontinuity and
estimated likelihood that the two surfaces are part of the same object). The
whole scene graph is partitioned into likely complete objects (similar to our
surface clusters) using the arc likelihoods. Object models were represented
by multiple graphs for the object as seen in topologically distinct viewpoints.
The first step of model matching was a heuristic-based preselection of likely
model graphs. Then, a search tree was formed, pairing compatible model
and data nodes. When a maximal set was obtained, and object position was
estimated , which was used to add or reject pairings. Consistent pairings
then guided re-partitioning of the scene graph, subject to topological and
geometric consistency.

Rosenfeld [142] proposed an approach to fast recognition of unexpected
(i.e. fully data driven) generic objects, based on five assumptions:

1. objects were represented in characteristic views,

2. the key model parts are regions and boundaries,

3. features are characterized by local properties,

4. relational properties are expressed in relative form (i.e. “greater then”)
and

5. all properties are unidimensional and unimodal.

A consequence of these assumptions is that most of the recognition processes
are local and distributed, and hence can be implemented on an (e.g.) pyra-
midal processor.

This concludes a brief discussion of some prominent three dimensional
object recognition systems. Other relevant research is discussed where ap-
propriate in the main body of the book. Besl and Jain [23] gave a thorough
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review of techniques for both three dimensional object representation and
recognition.

2.3 Recognition Approaches

This section summarizes the four traditional approaches to object recogni-
tion, roughly in order of discriminating power. Most recognition systems use
several techniques.

Property Based Identification

When enough model properties are satisfied by the data, recognition oc-
curs. The properties may be scene location, orientation, size, color, shape
or others. The goal is unique discrimination in the model base, so judicious
choice of properties is necessary. Duda and Hart’s [55] analysis of an office
scene typified this. Other examples include Brice and Fennema [41], who
classified regions by their boundary shape and defined object identity by a
group of regions with the correct shapes, and Adler [3], who ranked matches
by success at finding components meeting structural relationships and sum-
mary properties. Property comparison is simple and efficient, but is not
generally powerful enough for a large model base or subtle discriminations.
The problem is always – “which properties?”.

Property matchers often use pattern recognition based discrimination
methods, implemented as sequential property comparison, decision trees or
distance based classifiers. These are straightforward, but do not easily allow
complicated recognition criteria (e.g. geometric or relational) without prior
calculation of all potential properties, and treat objects at a single level of
representation.

Given that properties are often continuous valued, and subject to error,
a distance metric is often used to evaluate the match (e.g. [161]). If the
properties fit a statistical distribution, then a probabilistic classifier can be
used (e.g. [56]).

Grammatical and Graph Matching
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Here, recognition is achieved when a particular grouping of data is struc-
turally identical to a similar model pattern. This usually expresses relation-
ships between image features, such as edges or regions, but may also refer to
relationships in three dimensional data. This method requires evaluation of
the match between individual features.

For objects with primitive distinguishable features that have fixed rela-
tionships (geometric or topological), two general methods have been devel-
oped. The first is the syntactic method (e.g. [115, 46]). Valid relationships
are embodied in grammar rules and recognition is done by parsing the data
symbols according to these rules. Rosenfeld [140] presented a typical example
of this matching method by using web grammars for analyzing two dimen-
sional patterns. The main applications of grammatical techniques have been
in fingerprint [117], circuit diagram, chromosome and texture analysis. A
variation on this method uses rules to recognize specific features (e.g. vege-
tation in an aerial image [119] or urban building scenes [123]).

The second general matching technique is graph matching, where the
goal is to find a pairing between subsets of the data and model graphs.
Two key techniques are subgraph isomorphism and maximal clique finding
in association graphs [18]. Barrow and Popplestone [16] used a subgraph
matching between their data and model graphs. Ambler et al. [8] recognized
by using a maximal clique method in an association graph between data and
models. Combinatorial explosion can be controlled by using a hierarchy of
structures [17] and Turner [161] exploited this method procedurally in his
hierarchical synthesis matcher.

One advantage of graph matching is that it is well understood and pro-
duces understandable results through symbol matching, formal definition
and computationally analyzable machinery. Unfortunately, graph methods
tend to be NP-complete and are not practical unless the graph size is small.
Matching would be more efficient if geometric predictions were used, allow-
ing direct comparison instead of the complete matching that general graph
matching algorithms require. Another disadvantage is that three dimen-
sional scenes have changing viewpoints and occlusion, which distorts and
fragments object descriptions (unless multiple graphs are used for alterna-
tive viewpoints).

Heuristic match criteria are still needed for comparing nodes and arcs, and
for ranking subgraph matches. Barrow and Popplestone [16] used a heuristic
weighting to evaluate the satisfaction of a subgraph match, including a factor
that favored larger matches. Ambler et al. [8] used similarity of properties
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and relations between regions in a two dimensional parts scene. Nevatia and
Binford [121] evaluated matches based on components found and parameter
comparisons for the primitives.

Geometric Matching

Here, the geometric relationships in the model, initial object location
knowledge and image feature geometry combine to allow direct matching.
Roberts [139], Freuder [75], Marr [112] and others argued that partial match-
ing of image data to object models could be used to constrain where other
features were and how to classify them. Locating this data then further con-
strained the object’s geometric location as well as increasingly confirmed its
identity.

Adler [3] used a top-down control regime to predict image location in two
dimensional scenes, and explained data lost because of occlusion. Freuder [75]
described a two dimensional recognition program that used active reasoning
to recognize a hammer in image region data. The program used image models
to obtain suggestions about what features to look for next and advice on
where to find the features.

Matching may be almost totally a matter of satisfying geometric criteria.
The advantage of geometric matching is that the matching criteria are usually
clear and geometric models allow directed comparisons. One might require
that the accumulated error between predicted and observed features be below
a threshold. For example, Faugeras and Hebert [63] used the model-to-
data surface pairings that passed a geometric consistency measure and had
minimum transformation estimation error.

Roberts [139] estimated the transformation from selected model points
to image points. Transformation errors exceeding a threshold implied a bad
match. Ikeuchi [96] recognized and oriented objects by computationally ro-
tating extended gaussian images until good correspondences were achieved.
Hogg [91] improved positional estimates using search over a bounded pa-
rameter space. The estimates were used to predict the position of edge
points, and the number of verified edge points was used evaluate the esti-
mates. Ballard and Tanaka [15] used a connectionist method for deducing a
polyhedral object’s reference frame given network linkages specified by geo-
metric constraints. This follows Ballard’s work [12] on extracting component
parameters from intrinsic images by using Hough transform techniques.
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Correct geometry is a strong constraint on an object’s identity. Its lim-
itations include the need for pairing the appropriate structures, control of
combinatorial matching and integration with other matchables, such as struc-
tural properties and relationships.

Constraint Satisfaction

Implicit in the above methods are certain constraints that the data must
satisfy. These constraints may apply to individual features, or to groups of
features, or to relationships between features. Some researchers have tried
to generalize the constraints by making them explicit. Matching algorithms
can use direct search, graph matching (where the constraints specify the node
and arc match criteria) or relaxation. Relaxation algorithms can apply to
discrete symbol labelings [162], probabilistic labelings ([172, 141, 22, 62]) or
a combination of the two [19]. Barrow and Tenenbaum [19] used adjacency
and homogeneity constraints to deduce identity in office scenes using height,
intensity and orientation data. Hinton [86] formulated the substructure iden-
tity problem as a relaxation problem, with the goal of maximizing credibility
subject to model constraints.

Nevatia and Binford [121] matched models using connectivity relation-
ships between generalized cylinder primitives in the model and data to con-
strain correspondences. In ACRONYM [42], an object was identified by
maximal refinement in a specialization lattice consistent with both the model
constraints and image data. The refinement was by constraint satisfaction,
where the constraints mainly applied to feature sizes and relationships. Con-
straint satisfaction was checked by inequality testing.

The constraint satisfaction approach encompasses the other methods de-
scribed above. The ability of a constraint to be general is a real advantage,
particularly when representing ranges of numerical values. Its weakness is it
requires the choice of constraints that efficiently and adequately discriminate
without rejection of minor undistinguished variants.

Most systems use a combination of the methods to recognize objects in
more sophisticated scenes. For example, ACRONYM’s [42] matching algo-
rithm looked for subgraph isomorphisms between the picture graph, repre-
senting located image features, and the prediction graph, which was a pre-
compilation of the object models. This graph tried to represent the likely
sizes and intercomponent relationships between primitives, as seen in typical
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views of the object. A node or arc match required not only local, but also
global satisfaction of constraints such as requiring all features to have the
same reference frame.

The goal of most algorithms (but not ACRONYM’s) was to use local con-
straints to produce global consistency. The difficulty with these pure meth-
ods is that they excessively simplify and ignore most of the global structural
relationships between nameable object features.

Matching algorithms generally follow a combinatorial tree-search approach,
where each new level in the tree pairs a new data feature to a model feature.
Full tree expansion is usually prevented by using constraints to remove bad
expansions (e.g. those coming from predictions of positions). For example,
Faugeras and Hebert [63] and Grimson and Lozano-Perez [78] successfully
used local relative position constraints to prune the search tree dramatically.

An improvement on the above basic methods is hierarchical recognition,
in which objects are structured into levels of representation, and recognition
matches components at the same level. Turner [161], Ambler et al. [8] and
Fisher [66] used a bottom-up “hierarchical synthesis” process [145] and Adler
[3] used top-down model directed analysis.

Final Comments

This completes a quick review of the philosophical and historical back-
ground to the research, and we now proceed to look at the research itself.



Chapter 3

Surface Data as Input for
Recognition

Choosing surface data as the foundation for a theory of object recognition is
not without controversy, particularly given its unsuitability for all domains
and applications. None the less, it is justified in scenes where knowledge
of the three dimensional scene structure is important, as discussed in this
chapter.

3.1 The Labeled Segmented Surface Image

The labeled segmented surface image is the primary data input for the recog-
nition processes described in this book. Each of these terms is discussed in
greater detail below, but, by way of introduction, a surface image is a dense
pointillistic two-dimensional image representation, whose geometry arises
from a projective transformation of the three dimensional scene, and whose
content describes properties of the visible surfaces in the scene. Segmentation
partitions the surface into regions of uniform properties (namely curvature
and continuity) and identifies the type of boundary between surface regions
(e.g. whether obscuring or shape).

Surface Images

Surface images are an iconic representation similar in structure to tra-

50



51

ditional intensity images, except that they record surface properties, such
as absolute depth and surface orientation in the camera coordinate system.
The positional relationship between the scene and the image is described by
projective geometry. In this way, surface images are a subset of intrinsic
images [20], except that here the information is solely related to the surface
shape, and not to reflectance. This eliminates surface markings, shadows,
highlights, image flow, shading and other illumination and observer depen-
dent effects from the information (which are also important, but are not
considered here).

A second similar representation is Marr’s 21
2
D sketch [112]. This repre-

sents mainly surface orientation, depth and labeled boundaries with region
groupings. As his work was unfinished, there is controversy over the precise
details of his proposal.

There are several forms of redundancy in this information (e.g. surface
orientation is derivable from distance), but here we are more concerned with
how to use the information than how it was acquired or how to make it robust.

Segmentation

The surface image is segmented into significant regions, resulting in a
set of connected boundary segments that partition the whole surface image.
What “significant” means has not been agreed on (e.g. [166, 107]), and little
has been written on it in the context of surface representations. For the
purposes of this research, it means surface image regions corresponding
to connected object surface regions with approximately uniform
curvature and not otherwise terminated by a surface shape discon-
tinuity. Here, “uniform curvature” means that the principal curvatures are
nearly constant over the region. The goal of this segmentation is to pro-
duce uniform regions whose shape can be directly compared to that of model
SURFACEs.

The proposed criteria that cause this segmentation are:

D obscuring boundaries – points where a depth discontinuity occurs,

C1 surface orientation boundaries – points where a surface orientation dis-
continuity occurs,

C2m curvature magnitude boundaries – where a discontinuity in surface
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curvature exceeds a scale-related threshold, and

C2d curvature direction boundaries – where the direction of surface curva-
ture has a discontinuity. This includes the change from concave to
convex surfaces.

For surfaces, the curvature rules must apply in both principal directions of
curvature. The idea is that a surface region should be split when the intrinsic
character of the surface changes. The problem of how the boundary is found
is left unsolved (here).

These four criteria are probably just minimum constraints. The first rule
is obvious because, at a given scale, surface portions separated by depth
should not be in the same segment. The second rule applies at folds in sur-
faces or where two surfaces join. Intuitively, the two sections are considered
separate surfaces, so they should be segmented. The third and fourth rules
are less intuitive and are illustrated in Figures 3.1 and 3.2. The first ex-
ample shows a cross section of a planar surface changing into a uniformly
curved one. Neither of the first two rules applies, but a segmentation near
point X is clearly desired. However, it is not clear what should be done
when the curvature changes continuously. Figure 3.2 shows a change in the
curvature direction vector that causes segmentation as given by the fourth
rule. Descriptions D, C1, C2m and C2d are sensitive to changes in scale and
description D depends on the observer’s position.

These criteria segment surfaces into patches of the six classes illustrated
in Figure 3.3. The class labels can then be used as symbolic descriptions of
the surface.

Figure 3.4 shows the segmentation of a sausage image. The segmentation
produces four object surfaces (two hemispherical ends, a nearly cylindrical
“back”, and a saddle surface “belly”) plus the background planar surface.
The segmentation between the back and belly occurs because the surface
changes from ellipsoidal to hyperboloidal. These segments are stable to mi-
nor changes in the sausage’s shape (assuming the same scale of analysis is
maintained), and are members of the six surface classes. Figure 3.10 shows
the surface patches produced by the segmentation criteria for the test scene.

The segmented sausage can be represented by the graph of Figure 3.5.
Here, the nodes represent the surfaces and are labeled by the surface class,
curvature values and nominal orientations. The links denote adjacency.
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Figure 3.1: Segmentation at Curvature Magnitude Change in 2D

Figure 3.2: Segmentation at Curvature Direction Change in 2D
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Figure 3.3: The Six Curvature Classes
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Figure 3.4: Segmentation of a Sausage

The theoretical grounds for these conditions and how to achieve them
are not settled, but the following general principles seem reasonable. The
segmentation should produce connected regions of constant character with
all curvature magnitudes roughly the same and in the same direction. Fur-
ther, the segmentations should be stable to viewpoint and minor variations
in object shape, and should result in unique segmentations. Because the
criteria are object-centered, they give unique segmentation, independent of
viewpoint. As we can also apply the criteria to the models, model invo-
cation (Chapter 8) and matching (Chapter 9) are simplified by comparing
similar corresponding features. The examples used in this book were chosen
to be easily and obviously segmentable to avoid controversy. Thus, image
and model segmentations will have roughly corresponding surface regions,
though precisely corresponding boundaries are not required.

Scale affects segmentation because some shape variations are insignificant
when compared to the size of objects considered. In particular, less pro-
nounced shape segmentations will disappear into insignificance as the scale
of analysis grows. No absolute segmentation boundaries exist on free-form
objects, so criteria for a reasonable segmentation are difficult to formulate.
(Witkin [165] has suggested a stability criterion for scale-based segmentations
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Figure 3.5: Representing the Segmented Sausage (from Figure 3.4)
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of one dimensional signals.)
This does not imply that the segmentation boundaries must remain con-

stant. For some ranges of scale, the sausage’s boundaries (Figure 3.4) will
move slightly, but this will not introduce a new segmented surface. Invoca-
tion and matching avoid the boundary movement effects by emphasizing the
spatial relationships between surfaces (e.g. adjacency and relative orienta-
tion) and not the position of intervening boundaries.

Some research into surface segmentation has occurred. Brady et al. [40]
investigated curvature-based local descriptions of curved surfaces, by con-
structing global features (i.e. regions and lines of curvature) from local
properties (i.e. local principal curvatures). Besl [24] started with similar
curvature properties to seed regions, but then used numerical techniques to
fit surface models to the data (e.g. to ellipsoidal patches) and grow larger
patches. This work was particularly effective. Hoffman and Jain [90] clus-
tered surface normals to produce three types of patches (planar, convex and
concave). Patches were linked by four types of boundary (depth disconti-
nuity, orientation discontinuity, tesselation and null). Null and tesselation
boundaries were later removed to produce larger patches.

Following on from Besl’s work, Cai [43] has been investigating multiple
scale segmentation of surface patches from range data. He used a modified
diffusion smoothing process to blend the features and then forms surface
patches from region growing based on local principal curvature estimates.
Large features that remain over several scales are selected to form a stable
representation. Figure 3.6 shows an intermediate stage of the segmentation
of a face, where the positive ellipsoidal regions are shown in white, hyper-
boloidal regions are grey and negative ellipsoidal regions are black. Though
there is still considerable research on segmentation to be done, features such
as these are suitable for recognition with a coarse scale model.

Labeling

With the segmentation processes described above, the boundary labeling
problem becomes trivial. The purpose of the labeling is to designate which
boundaries result from the shape segmentations, and which result from occlu-
sion. The type of a shape segmentation boundary is probably not important,
as scale affects the labeling, so it is not used. However, the different types are
recorded for completeness and the shape of the boundary helps to identify
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Figure 3.6: Partial Segmentation of Range Data of a Face

particular surfaces.
Occlusion boundaries are further distinguished into the boundary lying

on a closer obscuring surface and that lying on a distant surface. All shape
discontinuity boundaries are labeled as convex, concave or crack.

Inputs Used in the Research

Because the geometry of the surface image is the same as that of an
intensity image, an intensity image was used to prepare the initial input.
From this image, all relevant surface regions and labeled boundaries were
extracted, by hand, according to the criteria described previously. The ge-
ometry of the segmenting boundaries was maintained by using a registered
intensity image as the template. Then, the distances to and surface orien-
tations of key surface points were recorded at the corresponding pixel. The
labeled boundaries and measured points were the inputs into the processes
described in this book.

The surface orientation was recorded for each measured point, and a single
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measurement point was sufficient for planar surfaces. For curved surfaces,
several points (6 to 15) were used to estimate the curvature, but it turned out
that not many were needed to give acceptable results. As the measurements
were made by hand, the angular accuracy was about 0.1 radian and distance
accuracy about 1 centimeter.

Those processes that used the surface information directly (e.g. for com-
puting surface curvature) assumed that the distance and orientation infor-
mation was dense over the whole image. Dense data values were interpolated
from values of nearby measured points, using a 1/R2 image distance weight-
ing. This tended to flatten the interpolated surface in the region of the data
points, but had the benefit of emphasizing data points closest to the test
point. A surface approximation approach (e.g. [77]) would have been better.
The interpolation used only those points from within the segmented surface
region, which was appropriate because the regions were selected for having
uniform curvature class.

We now show the input data for the test scene in greater detail. Figure
1.1 showed the original test scene and Figure 1.4 showed the depth informa-
tion coded so dark means further away. Figure 3.7 shows the y component of
the unit surface normal. Here, brighter means more upward facing. Figure
1.5 showed the occlusion label boundaries. Figure 3.8 shows the orientation
discontinuity label boundaries and Figure 3.9 shows the curvature disconti-
nuity boundary. Figure 3.10 shows the identifier assigned to each region and
the overall segmentation boundaries.

The Region Graph

The labeled, segmented surface image was represented as a graph, because
it was compact and easily exploited key structural properties of the data.
These are:

1. Regions are connected sets of surface points.

2. Boundary segments are connected sets of boundary points.

3. All points in one boundary segment have the same label.

4. Every region is totally bounded by a connected chain of boundary seg-
ments.
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Figure 3.7: Test Scene y Component of Surface Orientation

Figure 3.8: Test Scene Orientation Discontinuity Label Boundaries
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Figure 3.9: Test Scene Curvature Discontinuity Label Boundary

Figure 3.10: Test Scene Surface Data Patches with Region Identifiers
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5. If one region is the front side of an obscuring boundary, the adjacent
region is the back side.

The resulting graph structure used nodes for the surface image regions and
boundaries, and the links represented adjacency. The properties of this graph
are:

1. Region nodes represent complete image regions.

2. Boundary nodes represent complete boundary segments.

3. Chains of boundary nodes represent connecting boundary segments.

4. Region nodes link to chains of boundary nodes that isolate them from
other regions.

5. Region nodes corresponding to adjacent regions have adjacency links.

The computation that makes this transformation is a trivial boundary
tracking and graph linking process. No information is lost in the transforma-
tions between representations, because of explicit linking back to the input
data structures (even if there is some loss of information in the generalization
at any particular level). The only interesting point is that before tracking,
the original segmented surface image may need to be preprocessed. The orig-
inal image may have large gaps between identified surface regions. Before
boundary tracking, these gaps have to be shrunk to single pixel boundaries,
with corresponding region extensions. (These extensions have surface ori-
entation information deleted to prevent conflicts when crossing the surface
boundaries.) This action was not needed for the hand segmented test cases
in this research.

3.2 Why Use Surfaces for Recognition?

It was Marr, who, in advocating the 21
2
D sketch as an intermediate represen-

tation [112], brought surfaces into focus. Vision is obviously a complicated
process, and most computer-based systems have been incapable of coping
with both the system and scene complexity. The importance of Marr’s pro-
posal lies in having a reconstructed surface representation as a significant
intermediate entity in the image understanding process. This decision laid
the foundation for a theory of vision that splits vision into those processes
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that contribute to the creation of the 21
2
D sketch and those that use its

information.
A considerable proportion of vision research is currently involved in gen-

erating the 21
2
D sketch (or equivalent surface representations). This work

addresses the problem of what to do after the sketch is produced and some
justifications for and implications of using this surface information are dis-
cussed in the sections below.

From What Sources Can We Expect to Get Surface Information?

The research presented here is based on the assumption that there will
soon be practical means for producing surface images. Several promising re-
search areas suggest that this is likely, though none of the processes described
here are “perfected” yet.

Direct laser ranging (e.g. [122, 98, 143]) computes surface depth by mea-
suring time of flight of a laser pulse or by signal phase shift caused by path
length differences. The laser is scanned over the entire scene, producing a
depth image. Sonar range finding gives similar results in air, but has lower
resolution and has problems because of surface specularity.

Structured illumination uses controlled stimulation of the environment to
produce less ambiguous interpretations. One well known technique traces
the scene with parallel light stripes ([147, 5, 133, 150, 127, 36]). The three
dimensional coordinates of individual points on the stripes can be found by
triangulation along the baseline between the stripe source and sensor. Addi-
tionally, this technique highlights distinct surfaces, because all stripes lying
on the same surface will have a similar character (e.g. all lines parallel), and
usually the character will change radically at occlusion or orientation discon-
tinuity boundaries. Analysis of stripe patterns may give further information
about the local surface shape. Variations of this technique use a grey-code
set of patterns (e.g. [97]) or color coding ([99, 37]) to reduce the number of
projected patterns.

A second technique uses one or more remotely sensed light spots. By
knowing the emitted and received light paths, the object surface can be
triangulated, giving a depth image ([101, 132, 63]). The advantage of using
a spot is then there is no feature correspondence problem.

Besl [25] gives a thorough and up-to-date survey of the techniques and
equipment available for range data acquisition.
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Stereo is becoming a more popular technique, because it is a significant
biological process ([112, 113]) and its sensor system is simple and passive. The
process is based on finding common features in a pair of images taken from
different locations. Given the relationship between the camera coordinate
frames, the feature’s absolute location can be calculated by triangulation.

One major difficulty with this technique is finding the common feature in
both images. Biological systems are hypothesized to use (at least) paired
edges with the same sign, and from the same spatial frequency channel
([112, 113]). Other systems have used detected corners or points where signif-
icant intensity changes take place ([54, 118]). More recently, researchers have
started using trinocular (etc) stereo (e.g. [125]), exploiting a second epipo-
lar constraint to reduce search for corresponding features and then produce
more reliable pairings.

Another difficulty arises because stereo generally only gives sparse depth
values, which necessitates surface reconstruction. This topic has only re-
cently entered investigation, but some work has been done using a variety of
assumptions (e.g. [77, 158, 31]).

The relative motion of the observer and the observed objects, causes
characteristic flow patterns in an intensity image. These patterns can be
interpreted to acquire relative scene distance, surface orientation, rigid scene
structure and obscuring boundaries (in the viewer’s coordinate system), though
there is ambiguity between an object’s distance and velocity. From local
changing intensity patterns, it is possible to estimate the optic flow (e.g. fol-
lowing [94, 120, 85]), from which one can then estimate information about
the objects in the scene and their motion (e.g. [136], [49, 106, 138]).

Shading, a more esoteric source of shape information well known to
artists, is now being exploited by visual scientists. Horn [93] elaborated
the theoretical structure for solving the “shape from shading” problem, and
others (e.g. [167, 129]) successfully implemented the theory for reasonably
simple, uniform surfaces. The method generally starts from a surface func-
tion that relates reflectance to the relative orientations of the illumination,
viewer and surface. From this, a system of partial differential equations is
derived showing how local intensity variation is related to local shape vari-
ation. With the addition of boundary, surface continuity and singular point
(e.g. highlight) constraints, solutions can be determined for the system of
differential equations.

A major problem is that the solution relies on a global resolution of con-
straints, which seems to require a characterized reflectance function for the
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whole surface in question. Unfortunately, few surfaces have a reflectance
function that meets this requirement, though Pentland [129] has shown rea-
sonable success with some natural objects (e.g. a rock and a face), through
making some assumptions about the surface reflectance. There is also a prob-
lem with the global convex/concave ambiguity of the surface, which arises
when only shading information is available, though Blake [32] has shown how
stereo correspondence on a nearby specular point can resolve the ambiguity.
For these reasons, this technique may be best suited to only qualitative or
rough numerical analyses.

Variations of this technique have used multiple light sources ([50, 163])
or polarized light [105]. Explicit surface descriptions (e.g. planar, cylindri-
cal) have been obtained by examining iso-intensity contours [161] and fitting
quadratic surfaces [45] to intensity data.

Texture gradients are another source of shape information. Assuming
texture structure remains constant over the surface, then all variation in ei-
ther scale ([152, 130]) or statistics ([164, 124]) can be ascribed to surface slant
distortion. The measure of compression gives local slant and the direction of
compression gives local tilt; together they estimate local surface orientation.

The final source of orientation and depth information comes from global
shape deformation. The technique relies on knowledge of how appearance
varies with surface orientation, how certain patterns create impressions of
three dimensional structure, and what constraints are needed to reconstruct
that structure. Examples of this include reconstructing surface orientation
from the assumption that skew symmetry is slant distorted true symmetry
[100], from maximizing the local ratio of the area to the square of the perime-
ter [38], from families of space curves interpreted as geodesic surface markings
[154], from space curves as locally circular arcs [21], and from characteris-
tic distortions in known object surface boundary shapes [66]. Because this
information relies on higher level knowledge of the objects, these techniques
probably would not help the initial stages of analysis much. However, they
may provide supporting evidence at the later stages.

There are variations in the exact outputs of each of these techniques, but
many provide the required data and all provide some form of useful three
dimensional shape information. Further, some attributes may be derivable
from measured values (e.g. orientation by locally differentiating depth).

How Can We Use Surface Information?
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As the segmentation criteria are object-centered, the segments of the
surface image will directly correspond to model segments, especially since
boundaries are mainly used for rough surface shape alignments. Making
these symbolic correspondences means that we can directly instantiate and
verify object models, which then facilitates geometric inversions of the image
formation process.

Surface orientation can then be used to simplify the estimation of the
object’s orientation. Given the model-to-data patch correspondences, pairing
surface normals leaves only a single rotational degree-of-freedom about the
aligned normals. Estimating the object’s translation is also much simpler
because the three dimensional coordinates of any image point (relative to the
camera) can be deduced from its pixel position and its depth value. Hence,
the translation of a corresponding model point can be directly calculated.

All together, the surface information makes explicit or easily obtainable
five of the six degrees-of-freedom associated with an individual surface point
(though perhaps imprecisely because of noise in the surface data and prob-
lems with making precise model-to-data feature correspondences).

Depth discontinuities make explicit the ordering relationships with more
distant surfaces. These relationships help group features to form contexts
for model invocation and matching, and help verify potential matches, hence
simplifying and strengthening the recognition process.

Surface orientation allows calculation of the surface shape class (e.g. pla-
nar, singly-curved or doubly-curved), and correction of slant and curvature
distortions of perceived surface area and elongation. The relative orientations
between structures give strong constraints on the identity of their superobject
and its orientation. Absolute distance measurements allow the calculation of
absolute sizes.

How Can Surface Data Help Overcome Current Recognition Prob-
lems?

Recognizing real three dimensional objects is still difficult, in part because
of difficulties with selecting models, matching complicated shapes, dealing
with occlusion, feature description, reducing matching complexity and coping
with noise. Surface information helps overcome all of these problems, as
discussed below.
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Selecting the correct model from the model database requires a descrip-
tion of the data suitable for triggering candidates from the model base.
Since descriptions of the model features are given in terms of their three
dimensional shapes, describing data features based on their three dimen-
sional shapes reduces the difficulties of comparison, and hence leads to more
successful model invocation.

Most current recognition programs have not progressed much beyond
recognizing objects whose shapes are largely block-like. One cause of this
has been a preoccupation with orientation discontinuity boundaries, which,
though easier to detect in intensity images, are noticeably lacking on many
real objects. Using the actual surfaces as primitives extends the range of
recognizable objects. Faugeras and Hebert [63] demonstrated this by using
planar patch primitives to successfully detect and orient an irregularly shaped
automobile part.

Viewed objects are often obscured by nearer objects and the ensuing loss
of data causes recognition programs to fail. Surface images provide extra
information that help overcome occlusion problems. For example, occlusion
boundaries are explicit, and thus denote where relevant information stops.
Moreover, the presence of a closer surface provides evidence for why the
information is missing, and hence where it may re-appear (i.e. on the “other
side” of the obscuring surface).

Surface patches are less sensitive to fragmentation, because pixel connec-
tivity extends in two dimensions. Describing the surfaces is also more robust,
because (usually) more pixels are involved and come from a more compact
area. Globally, connectivity (i.e. adjacency) of surfaces is largely guaranteed,
and slight variations will not affect description. Hence, the topology of the
major patches should be reliably extracted.

Establishing model-to-data correspondences can be computationally ex-
pensive. Using surface patches helps reduce the expense in two ways: (1)
there are usually fewer surface patches than, for example, the boundary seg-
ments between them and (2) patch descriptions are richer, which leads to
selecting fewer locally suitable, but globally incorrect model-to-data feature
pairings (such as those that occur in edge-based matching algorithms).

Noise is omnipresent. Sensor imperfections, quantization errors, random
fluctuations, surface shape texture and minor object imperfections are typi-
cal sources of data variation. A surface image segment is a more robust data
element, because its size leads to reduced data variation (assuming O(n2)
data values as compared with O(n) for linear features). This contrasts with
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linear feature detection and description processes, in which noise can cause
erroneous parameter estimates, loss of connectivity or wandering.

Why Not Use Other Representations?

There are three alternative contenders for the primary input data repre-
sentation: edges, image regions and volumes.

Edges have been used extensively in previous vision systems. The key
limitations of their use are:

• ambiguous scene interpretation (i.e. whether caused by occlusion, shad-
ows, highlights, surface orientation discontinuities or reflectance changes),

• ambiguous model interpretation (i.e. which straight edge of length 10
could it be?),

• loss of data because of noise or low contrast, and

• image areas free from edges also contain information (e.g. shading).

While these limitations have not deterred research using edge-based recogni-
tion, considerable difficulties have been encountered.

Image regions are bounded segments of an intensity image. Their mean-
ing, however, is ambiguous and their description is not sufficiently related
to three dimensional objects. For example, Hanson and Riseman [84] and
Ohta [123] segmented green image regions for tree boughs using color, yet
there is no reason to assume that trees are the only green objects in the
scene nor that contiguous green regions belong to the same object. Further,
the segmentations lose all the detailed structure of the shape of the bough,
which may be needed to identify the type of tree. They augmented the rough
classification with general context relations, which assisted in the interpre-
tation of the data. While this type of general information is important and
useful for scene analysis, it is often insufficiently precise and object-specific
for identification, given current theories of image interpretation.

Volumetric primitives seem to be useful, as discussed by Marr [112] and
Brooks [42] in their advocation of generalized cylinders. These solids are
formed by sweeping a cross-section along an axis and represent elongated
structures well. For volumes with shapes other than something like general-
ized cylinders (e.g. a head), the descriptions are largely limited to explicit
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space-filling primitives, which is insufficiently compact, nor does it have the
power to easily support appearance deductions.

The generalized cylinder approach also leads to problems with relating
volumetric features to observed visible surface data, because there is no sim-
ple transformation from the surface to the solid under most representations.
Marr [112] showed that generalized cylinders were a logical primitive because
these are the objects with planar contour generators from all points of view
(along with a few other conditions) and so are natural interpretations for
pairs of extended obscuring boundaries. Unfortunately, few objects meet the
conditions. Moreover, this transformation ignored most of the other informa-
tion available in the 21

2
D sketch, which is too useful to be simply thrown away.

Final Comments

This completes a quick review of why surface information is useful, how
one might obtain the data, and how it might be segmented for use. The next
chapter starts to use the data for the early stages of scene analysis.



Chapter 4

Making Complete Surface
Hypotheses

The first step in the interpretation of surface information is the formation
of surface hypotheses, which groups surface image regions to form complete
surfaces of the unidentified objects. This is the first important transforma-
tion from image-based data to object-based data. Further, it reduces data
complexity by representing one or more surface regions by a single symbolic
entity.

If segmentation has been successful, then the surface image regions should
closely correspond to the visible portions of the object’s surface patches.
Three problems may cause the patches to not correspond closely:

1. A data patch may correspond to several object surface patches, because
of segmentation failure.

2. The object surface patch may be fragmented into several data patches,
because of segmentation failure.

3. The object surface patch may be fragmented or smaller because of
occlusion.

The first two problems are a concern for segmentation and are not considered
closely here, though some corrective action is possible once a model has been
selected (e.g. a predicted model SURFACE can be used to guide splitting or
merging of patches). The third problem is the main concern of this chapter,
which shows that the most common cases of occlusion can be overcome with
the surfaces largely reconstructed.

70
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Because of the pervasiveness of occlusion in natural scenes, this recon-
struction is necessary. Reconstructed surfaces can only be hypothetical but,
by the surface segmentation assumptions (Chapter 3), there are no extreme
surface or boundary shape variations in a single segment. As many natural
object boundaries exhibit surface smoothness over moderate distances (at
appropriate scales), reconstruction should be possible. This is even more
likely with most man-made objects.

Some research has tried to overcome occlusion directly by using visible
cues. Guzman [81] used paired TEE junctions to signal the presence of oc-
clusion and locate which two dimensional image regions should be connected.
Adler [3] also used TEE information to infer depth ordering between scene
features. The key problem is detection of occlusion, and their work relied
on the use of TEE detections, which show where one surface boundary is
abruptly terminated by the obscuring boundary of a closer surface. Because
a fragmented obscured surface must have a pair of TEEs at the start and
end of the obscuring boundary (under normal circumstances), the detection
of a matched pair of TEEs suggests a likely occlusion boundary, and hence
where the invisible portion of the surface lies. In the research described here,
occlusion boundaries are directly labeled, so the occlusion cueing process
is no longer necessary. The TEEs are still useful for signaling where along
the occlusion boundary the obscured surfaces’ boundaries terminate. They
would also be useful for helping cope with missing, incorrect or ambiguous
data (e.g. when a correct boundary label is not available).

4.1 Reconstructing Obscured Surfaces

This process starts with the region graph described in Chapter 3. Initially,
the surface hypotheses are identical to the image regions. From these, larger
surface hypotheses are created based on surface extensions consistent with
presumed occlusions. While it is obviously impossible to always correctly
reconstruct obscured structure, often a single surface hypothesis can be cre-
ated that joins consistent visible surface parts. Figure 4.1 shows a simple
case of surface reconstruction.

In Figure 4.2, four cases of a singly obscured surface are shown, along with
the most reasonable reconstructions possible, where the boundary arrows
indicate an occlusion boundary with the object surface on the right of the
arrow and the obscuring surface on the left. In the first case, the original
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Figure 4.1: Surface Hypothesis Construction Process

surface boundaries meet when they are extended, and this is presumed to
reconstruct a portion of the surface. If the boundaries change their curvature
or direction, then reconstruction may not be possible, or it may be erroneous.
(Even if erroneous, the reconstructed surface may more closely approximate
the true surface than the original input.) The second case illustrates when
reconstruction does not occur, because the unobscured boundaries do not
intersect when extended. The third case shows an interior obscuring object
removed. The fourth case shows where the surface has been split by an
obscuring object and reconstructed. The label of the boundary extension
always remains back-side-obscuring, because it might participate in further
reconstructions.

What is interesting is that only three rules are needed for the reconstruc-
tion (see Figure 4.3). They are:

1. remove interior closer surfaces (Rule 1),

2. extend and connect boundaries on separate surface hypotheses to form
a single surface hypothesis (Rule 2), and

3. extend and connect boundaries on a single surface to make a larger
surface (Rule 3).

Rule 2 connects two separated surfaces if either extension of the bound-
aries intersect. The remaining portion of the obscuring boundary is discon-
nected to indicate no information about the obscured portion of the surface
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Figure 4.2: Four Occlusion Cases Reconstructed
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Figure 4.3: Surface Construction Processes
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Figure 4.4: Concave Boundaries also Delineate Obscured Regions

(until Rule 3). Rule 3 removes notches in surfaces by trying to find intersect-
ing extensions of the two sides of the notch. Repeated application of these
rules may be needed to maximally reconstruct the surface.

Reconstruction is attempted whenever surface occlusion is detected, which
is indicated by the presence of back-side-obscuring labeled boundaries. Con-
cave orientation discontinuity labelled boundaries may also mean occlusion.
In Figure 4.4, the base of the obscuring cylinder rests on the plane and so
has a concave shape boundary, which should be treated as part of the delin-
eation of the obscured region of the plane. (If the two objects were separated
slightly, an obscuring boundary would replace the concave boundary.) As the
concave boundary does not indicate which object is in front, it is assumed
that either possibility could occur.

Figure 4.5 shows a typical case where one surface sitting on another will
create a TEE junction, or connect to an obscuring boundary (as in Figure
4.4).

After finding the segments indicating occlusion, the points where recon-
struction can start need to be found. These are the ends of boundary seg-
ments that satisfy:

1. The endpoints must lie between obscured section boundaries (defined
above), and boundaries that definitely lie on the object surface (i.e.
convex or front-side-obscuring).

2. The endpoints must be at a TEE junction.
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Figure 4.5: TEE Junctions Delimit Reconstruction Concave Boundaries

3. The true object surface boundary must be the shaft of the TEE.

These points are illustrated in Figure 4.6.
For reconstruction, boundary segments must intersect when extended. As

intersecting three dimensional surface curves still intersect when projected
onto the image plane, extension and intersection is done only in two dimen-
sions, thus avoiding the problems of three dimensional curve intersection.
Extending the boundaries is done by estimating the curvature shortly be-
fore the terminating TEE and projecting the curve through the TEE. On
the basis of the boundary segmentation assumptions (Chapter 3), segments
can be assumed to have nearly constant curvature, so the extension process
is justified. Segments that intersect in two dimensions can then be further
tested to ensure three dimensional intersection, though this was not needed
when using the additional constraints given below. Further, because of nu-
merical inaccuracies in the range data, three dimensional intersection is hard
to validate.

To prevent spurious reconstructions that arise in complex scenes with
many obscuring objects, other constraints must be satisfied:

• If a portion of a surface is obscured, then that portion must be com-
pletely bounded by an appropriate type of boundary (as defined above).

• The ends of the unobscured portions of the surface boundary must be
joinable.

• The joined portions of surface must lie on the same side of the boundary
extension.
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Figure 4.6: Reconstruction Starts at a TEE Junction

• The obscured portions of a surface’s boundary can not intersect other
boundaries of the same surface. (This rules out obscured laminar sur-
face reconstructions, where the surface may cross underneath itself.)

• Reconnected surface fragments must have consistent depths, surface
orientations and curvatures (because surface shape segmentation en-
forces the shape consistency).

• Two reconnected surfaces must not be otherwise adjacent.

There are two outputs from the reconstruction process – the boundaries
and the surface itself. Because of the surface segmentation assumption, the
reconstructed surface shape is an extension of the visible surface’s shape. The
boundary is different because, in the absence of any knowledge of the object,
it is impossible to know exactly where the boundary lies. It is assumed
that the obscured portion of the boundary is an extension of the unobscured
portions, and continues with the same shape until intersection. The two cases
are shown in Figure 4.7. In case (a), a single segment extension connects the
boundary endpoints with the same curvature as the unobscured portions. In
case (b), the unobscured portions are extended until intersection.

The process may incorrectly merge surface patches because of coinciden-
tal alignments, though this is unlikely to occur because of the constraints of



78

Figure 4.7: Segment Extension Process

boundary intersection and labeling and surface shape compatibility. Hence,
the conservative approach to producing surface hypotheses would be to al-
low all possible surface reconstructions, including the original surface without
any extensions. This proliferates surface hypotheses causing combinatorial
problems in the later stages. So, the final surface hypotheses are made from
the maximally reconstructed surfaces only. If the reconstructed surface is
larger than the true surface, invocation may be degraded, but hypothesis
construction would continue because the surface extension is not used. Veri-
fication avoids this problem by using the original image regions as its input.

The Surface Hypothesis Graph

The region graph (Chapter 3) forms the initial input into the explicit
surface hypothesis process. The surface hypothesizing process makes the
following additions to the region graph to form the surface hypothesis graph:

1. Every surface hypothesis node links to a set of region nodes.

2. A surface node is linked to a chain of boundary nodes linking to bound-
ary segments that isolate the surface.

3. If two surface nodes have region nodes linked by adjacency nodes, then
the surface nodes are linked by adjacency nodes.
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Figure 4.8: Surface Hypotheses for the Test Scene

4.2 Examples from the Test Scenes

Figure 3.10 showed the initial image regions and Figure 4.8 shows the final
surface hypotheses formed by the processes described in this chapter (num-
bers in the picture are the surface index).

There are several instances of successful surface reconstructions. Figure
4.9 shows reconstruction of the robot upper arm side panel. The surface
merging operation has rejoined the two sections, and the boundary extension
has largely restored the missing section in the lower left corner. Because the
reconstruction is only suggestive, and because the leftmost boundary was
not observed as being curved, the reconstruction is a little generous and
slightly exceeds the actual surface. The right end of the panel could not be
reconstructed because of insufficient evidence for the true boundary, although
the labeling claimed it was obscured. Other valid reconstructions included
the block lying on the table and the two halves at the back of the trash can
(Figure 4.10). The latter is interesting because it was a curved surface, so
matching of surface shape had to account for the change in orientation. One
inappropriate merging occurred: the two top panels of the robot upper arm
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Figure 4.9: Observed and Reconstructed Upper Arm Surface

had their real join hidden behind the vertical gantry column. As they were
continuous, their orientation differed only slightly, and met all the occlusion
constraints, they were merged as well. The hypothesis construction process
expects this type of error, so it did not prove catastrophic.

These examples show that the obscured surface reconstructions are suc-
cessful, and Figure 4.8 shows that most reasonable surfaces are made.
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Figure 4.10: Observed and Reconstructed Trash Can Back Surface
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Figure 4.11: Unsuccessful Extensions

4.3 Discussion

The major problem with the surface reconstruction constraints is unsolvable
– one cannot reconstruct the invisible when the image is taken from a single
viewpoint. Some examples are seen in Figure 4.11. In the first case, the
extended segments never intersect, and in the second, extension creates a
larger, incorrect surface. Stereo or observer movement might help reconstruct
the surface, however. Feature regularity (such as symmetry) might also be
exploited to aid reconstruction. As the goal was to reconstruct enough to
allow the rest of recognition to proceed, a few failures should be acceptable.

Another obvious criticism is over performance when applied to rich nat-
ural images. Realistic images are likely to have missing or erroneous data,
such as for line labels or surface orientation, which is likely to degrade both
the quality and rate of performance. In short, the processes described in this
chapter seem fine for clear laboratory images, but it is hard to predict their
performance on natural scenes.
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Figure 4.12: Scale Based Extension Problems

Because segmentation criteria may break up or merge surfaces at differ-
ent scales, surface hypotheses need to allow for alternative representations
derived as a function of a locally relevant scale. These representations are
related but are not interchangeable, nor are they equivalent.

Scale also affects surface reconstruction, as can be seen in Figure 4.12.
The first figure shows the extension based on individual teeth of the gear,
whereas at the larger scale, the extension is based on the smoothed convex
envelope of the gears.

To avoid the problem of redundant hypothesis formation, only the recon-
structed surface is kept. An alternative solution might isolate the description
of the surface, which is common to all hypotheses, from that of the boundary
of the surface.
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Final Comments

The test image shows that we can expect substantial occlusion in three
dimensional scenes. This chapter demonstrates that much of the lost infor-
mation can be inferred from the physical and modeling constraints, without
generating many errors or redundant hypotheses.



Chapter 5

Surface Clusters

A competent object recognition system needs a perceptual organization mech-
anism, to both indicate which image features are related and delimit the
object’s spatial extent. To help provide this mechanism, we developed [69]
a new intermediate representation, surface clusters, lying between the seg-
mented surface image and the model-based three dimensional object hypothe-
ses. This chapter describes their role in the IMAGINE I system.

5.1 Why Surface Clusters?

A surface cluster is a set of surface patches isolated by suitable boundaries.
The goal of the surface cluster formation process is to produce a volumetric
image representation for portions of the scene that might be identifiable three
dimensional objects. There are three motivations for this:

1. the creation of a volumetric intermediate representation suitable for
identity-independent operations,

2. the focusing of attention on an object and its associated image features
and

3. the reduction of search complexity through structuring the image fea-
tures.

The first motivation for a surface cluster is a competence issue – sur-
face clusters are new representations that bridge the conceptual distance
between the segmented surface image and the object. The point is to create

85



86

an “unidentified, but distinct” object interpretation associated with sets of
image features – a volumetric representation describing solid objects with ap-
proximate spatial relationships but without identifications. With this struc-
ture, the key image understanding representations now become (following
Marr [112]): image – primal sketch – 21

2
D sketch – surface clusters – objects.

The grouping creates a good starting point for further interpretation; it is a
form of figure/ground separation for solid objects.

Such representations are needed for unidentifiable objects to allow inter-
mediate levels of image interpretation even when full identification is not
achieved, whether because of faults or lack of models in the database. Pos-
sible application areas include vehicle navigation, collision avoidance, object
tracking or grasping.

The second motivation is to partition the image features into activity
contexts for the later stages of recognition. This will help to focus scene
understanding to make more obvious the interpretation of a group of image
features and how they are matched with a model. By eliminating irrele-
vant and unrelated image features, it should be easier to identify and verify
objects, since only features belonging to a single object will be present.

The “context” aspect of surface clusters is exploited by model invoca-
tion (Chapter 8) and hypothesis construction (Chapter 9). Model invocation
requires contexts within which to accumulate evidence to hypothesize mod-
els, and surface clusters are ideal for invoking the volumetric models (the
ASSEMBLY – see Chapter 7). To help fully instantiate an ASSEMBLY hy-
pothesis, it may be necessary to search for additional evidence. Because AS-
SEMBLY invocation has occurred in a surface cluster context, any additional
structural evidence should also come from the context. Thus, processing has
been focused to a distinct region of the image.

The final motivation for creating these aggregations is one of performance
– eliminating unrelated image features produces an immediate reduction in
the complexity of the scene analysis. The whole interpretation has been
reduced to a set of smaller independent problems, which is necessary given
the quantity of data in an image.

A casual mathematical analysis supports this point. Here, we are mainly
concerned with intersurface relationships (i.e. relative surface orientation
and matching data surfaces to model SURFACEs). Since every surface on
an object has a relationship to every other surface on the object, an object
with N visible surfaces has O(N2) relationships. If there are A objects in the
scene, each with B visible surfaces, there will be AB total visible surfaces.
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So, initially, the analysis complexity is O((AB)2). However, if the surface
cluster process succeeds in partitioning the image into the A objects, then
the complexity is reduced to O(AB2). For typical scenes, a nominal value
for A is 20, so this can lead to a substantial improvement in performance.

5.2 Theory of Surface Clusters

The goal of the surface cluster formation process is to isolate the visible
portion of each distinct three dimensional object’s surface, so that later stages
of the scene analysis can associate a model with the surface cluster.

The primary input into the process is the set of surface hypotheses pro-
duced as output of the processes described in Chapter 4. The surface hy-
potheses are linked by adjacency, and relative surface orientation at the
boundaries is known.

The output of the process is a set of surface clusters hierarchically linked
by inclusion, with each consisting of a set of surface patches. Though the
surface cluster is not closed (i.e. it is missing the back side), it defines a solid
bounded in front by the visible surfaces.

The surface cluster formation process is closely linked to the model struc-
ture known as the ASSEMBLY, which is defined in Chapter 7. The ASSEM-
BLY is a model of a three dimensional solid and is composed of SURFACEs
or recursively defined subcomponents. Properties we would like the surface
cluster formation process to have are:

• Every model ASSEMBLY is wholly contained in at least one surface
cluster.

• There are surface clusters containing only a single primitive model AS-
SEMBLY.

• Only complete ASSEMBLYs are contained in surface clusters.

• There is a hierarchy of surface clusters corresponding to the hierarchy
of model ASSEMBLYs.

However, at this stage of image analysis, models are not available to help
segment the image, nor is the model base known. Hence, to achieve our
goal with these properties, two assumptions must be made about the model
structure independent of the actual models:
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• If a set of model SURFACEs is completely surrounded by a set of
concave or crack surface boundaries, then they are modeled as a distinct
ASSEMBLY.

• If two model SURFACEs are adjacent across a convex surface boundary,
then they are in the same model ASSEMBLY.

For example, a nose on a face, or a handle on a coffee cup would thus be in
separate ASSEMBLYs.

The process of creating the surface clusters has three steps:

1. Classify adjacent surface regions as connected or unconnected.

2. Form primitive surface clusters from connected groups of surfaces. (Prim-
itive surface clusters are those that cannot be split further.)

3. Merge primitive surface clusters to form larger surface clusters.

These steps are described in detail below.
The algorithm is conservative, in that it tries to avoid splitting the small-

est model ASSEMBLYs between surface clusters at the price of creating
clusters containing several ASSEMBLYs. Splitting an object between sev-
eral different surface clusters would be catastrophic because it asserts that
the segregated components are unrelated. Creating clusters larger than single
objects is mainly an annoyance, because the rest of the recognition process
then has more work to identify the objects.

Determining Surface Connectivity

The segmented surface image can be thought of as a graph, where the
nodes of the graph represent the surface patches and the arcs of the graph
represent surface adjacency. These arcs will be labeled as connecting or seg-
menting, according to criteria based on boundary type and configuration.
The connection criteria are simple and logical, except for a laminar surface
case (described shortly) and are based on obvious three dimensional proper-
ties of surface connectivity and object depth ordering. Splitting the graph at
segmenting boundaries partitions the scene into sets of connected surfaces –
forming the primitive surface clusters.
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We assume that the modeled objects are segmented into subcomponents
at chains of connected concave boundaries. As concave model boundaries are
observed as concave image boundaries, the latter are potentially segmenting.
In Figure 5.1 part (a), the concave boundary is truly segmenting.

Further, distinct objects are often on opposite sides of concave surface
orientation boundaries. For example, a block sitting on a table has concave
boundaries isolating it from the table. Nameable subcomponents of natural
objects often fit flushly with concave boundaries, as in the nose-to-face junc-
tion. Because the boundary is concave, it is indeterminate whether the two
surfaces are joined or merely in contact. Moreover, it is usually impossible to
tell which surface passes underneath the other past the point of the observed
concave boundary. So, the conservative approach suggests that this bound-
ary causes a segmenting arc. Assuming concave boundaries necessarily imply
segmentation leads to contradictions as seen in Figure 5.1 part (b), where
there is no reasonable shape boundary at point X to continue segmentation.
If there are other connections between the two surfaces that do not involve a
segmenting boundary, then the final surface cluster will include both surfaces.

A more complicated case occurs with crack-type boundaries. Here, two
surfaces may be coincidentally aligned, or part of a flush contact boundary
(as often occurs with revolute joints). Because of the ambiguity, it is assumed
that connectivity does not hold across crack-type joints.

Whenever one object sits in front of or on top of another, the intervening
boundary is always either concave or obscuring, as illustrated in Figure 5.2.
To complete the isolation of the cylinder in part (a) from the background
plane, a rule is needed to handle obscuring boundaries. As these usually
give no clues to the relation between opposing surfaces (other than being
depth separated), surfaces will usually be segmented across these, and so
segmenting arcs join the nodes representing these surfaces.

Connectivity holds across some obscuring boundaries. Disregarding co-
incidental alignments, the one exception found occurs when laminar objects
fold back on themselves, as illustrated in Figure 5.3. This figure shows a leaf
folded over and the two surfaces of a trash can. The arrows on the boundary
mean that it is an obscuring type boundary with (here) the front surface
lying to the left when looking along the boundary in the direction of the ar-
row. In both cases, the two surfaces are connected, even though an obscuring
boundary intervenes, and so here a connecting arc is used. Fortunately, this
case has a distinctive signature: the arrow vertices shown at the right side
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Figure 5.1: Concave Boundaries Provisionally Segment

Figure 5.2: Object Ordering Causes Concave and Obscuring Boundaries
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Figure 5.3: Connectivity Holds Across Some Obscuring Boundaries

of the figure are paradigmatic of the junction formed by a folding laminar
surface. Viewpoint analysis (by octant) shows that these are the only spe-
cial trihedral vertex label cases needed for two connected laminar surfaces.
Curved laminar surfaces are (here) treated locally as two connecting planar
laminar surfaces.

Two surfaces lying on opposite sides of convex boundaries ordinarily be-
long to the same object, though coincidental alignment may also produce
this effect. Hence, surfaces on opposite sides of convex boundaries cause
connecting arcs. A surface orientation boundary that is both concave and
convex in places is broken up by the curve segmentation assumptions. To
summarize, the constraints that specify the connectivity of surface patches
are:

• Connectivity holds across convex shape boundaries.

• Connectivity does not hold across concave and crack shape boundaries.

• Connectivity does not hold across obscuring boundaries, except when
the boundaries are configured as in Figure 5.3.

Forming Primitive Surface Clusters
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Primitive surface clusters are formed by collecting all surface patch nodes
that are directly or transitively connected in the graph, once all arcs are la-
beled as “segmenting” or “connecting”. Thus, image features that can only
belong to the same object lie in the same surface cluster, and features that
possibly belong to other objects do not lie in the cluster.

Depth Merged Surface Clusters

The goal of the surface cluster process is to associate all components of
an object in some surface cluster. All components of a model may not occur
in the same primitive surface cluster for several reasons:

• The object may consist of several subcomponents, each of which ap-
pears in smaller surface clusters.

• The object may fold back on itself, and thus be observed as two different
components separated by an obscuring boundary.

In the test image, the upper and lower robot arms lie in separate primitive
surface clusters, but the model ASSEMBLY joining them does not yet have
a surface cluster. Depth merged surface clusters are intended to provide the
context for complete objects.

This merging process is constrained by the following observation, referring
to Figure 5.4. If there are four surface clusters (A, B, C, and D), an object
might be wholly contained in only one of these, but it might also obscure itself
and be in more than one. Hence, reasonable groupings of surface clusters
containing whole objects are AB, AD, BC, BD, CD, ABC, ABD, ACD, BCD
and ABCD. AC is an unlikely grouping because there is no obvious relation
between them.

Merging all surfaces behind a given surface does not solve the problem.
If only surfaces ABC were present in the above scene, then merging behind
does not produce a containing surface cluster if the true object was ABC.
Similarly, the technique of merging all surfaces in front fails if both the object
and grouping were ACD. Neither of these processes individually produce the
correct clusters. To avoid this problem, a more combinatorial solution was
adopted.

Before the computational constraints for depth merging are given, one
refinement is necessary. Rather than considering depth merging for all sur-
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Figure 5.4: Depth Merging Example

face clusters, certain sets of surface clusters can be initially grouped into
equivalent depth surface clusters. These occur when either surface clusters
mutually obscure each other, or when there is no obvious depth relationship
(e.g. they lie across a concave surface boundary). An example of where two
surface clusters mutually obscure is with the robot lower arm and trash can
surface clusters in the test image. When these cases occur, all such primitive
surface clusters can be merged into a single equivalent depth surface clus-
ter. Thereafter, the combinatorial depth merging process only considers the
equivalent depth surface clusters.

The properties defining the equivalent depth clusters are:
Let:
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{P1, ...Pn} be the primitive surface clusters
front(Pi, Pj) means Pi is in front of Pj, which holds if there is a

surface in Pi with an obscuring relation to a surface in Pj

beside(Pi, Pj) means Pi is beside Pj, which holds if there
is a surface
in Pi that shares a concave or crack boundary with a surface in Pj

{E1, ...Em} be the equivalent depth clusters
Ei = {Pi1, ...Pis}

Then, the relationship between the Pi and the Ei is defined by:

(1) If | Ei | 6= 1, for any Pia ∈ Ei, there is a Pib ∈ Ei such that:
front(Pia,Pib) and front(Pib,Pia)

or
beside(Pia,Pib)

(2) If | Ei | = 1 and Ei = { Pi }, then for all Pj 6= Pi

not front(Pi,Pj) or not front(Pj,Pi)
and

not beside(Pi,Pj)
(3) The Ei are maximal (i.e. no Ei contains another Ej).

Equivalent depth surface clusters that only contain a single primitive sur-
face cluster are replaced by that primitive surface cluster (for compactness).

Then, using the same definitions, the depth merged surface clusters are
sets of equivalent depth surface clusters:
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Let:
efront(Ei,Ej) mean equivalent depth surface cluster Ei is in front of

equivalent depth surface cluster Ej, which occurs if there are
primitive surface clusters Pia ∈ Ei and Pjb ∈ Ej such that
front(Pia,Pjb)

linked(Ei,Ej) holds if efront(Ei,Ej) or efront(Ej,Ei)
{D1, ...Dn} be the depth merged clusters
Di = {Ei1, ...Eit}

Then:
the Di are all subsets of {E1, ...Em} such that for any Eia ∈ Di

there is a Eib ∈ Di satisfying linked(Eia,Eib)

The implementation of these definitions is straightforward and leads first
to the construction of primitive surface clusters, then to formation of equiva-
lent depth clusters and finally to the linking of these into larger depth merged
surface clusters. The background and picture frame surfaces are omitted.

The surface clusters are linked into the image description graph started
in Chapter 3 by the following additions:

1. Every surface cluster node is linked to a set of surface hypotheses.

2. Surface clusters are linked into a hierarchy by containment.

3. Surface clusters are linked to chains of boundary elements that sur-
round them.

5.3 Examples of Surface Cluster Formation

To show that the implemented computation produced suitable results, an
example is given here, using the surface hypotheses of the test image (see
Figure 4.8). Some of the surface clusters for this scene are shown in Figures
5.5, 5.6 and 5.7.

As can be seen in these examples, the surface clusters form object level
“chunks” of the image, and correspond to the primitive ASSEMBLYs of the
models given in Chapter 7. In Table 5.1, there is a listing of the surface
cluster to model ASSEMBLY correspondences for the test image. Clearly,
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Figure 5.5: Several Primitive Clusters
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Figure 5.6: An Equivalent Depth Cluster
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Figure 5.7: Several Depth Merged Clusters
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the surface cluster formation process isolates the key features into what cor-
responds to structurally based intuitive “objects”. Figure 5.8 shows
the surface clusters of Table 5.1 organized to make explicit their hierarchical
relationships. Clusters designated by squares closely correspond to models.

For the example above, the primitive and equivalent depth surface clus-
ters are appropriate. What seems to be a problem is the number of depth
merged surface clusters, which depend on combinatorial groupings of equiv-
alent depth surface clusters. For the test scene, there are 9 primitive, 3
equivalent depth and 6 depth merged surface clusters. Here, the number of
depth merged surface clusters is not such a problem as the object also has a
strong depth order, so 2 of the 6 correspond to ASSEMBLYs. In other test
images, shallower depth ordering causes more serious combinatorial grouping.
Hence, an alternative process should be considered.

Though several surface clusters contained multiple ASSEMBLYs, this
caused no recognition failures.

5.4 Relation to Other Work

In early two dimensional scene understanding work, Shirai [148] and Waltz
[162] achieved a rough separation of objects from the background by assuming
external boundaries of regions were the separator. Heuristics for adding
isolated background regions, based on TEE matching, were suggested. These
techniques required that the background be shadow free, and that the objects
did not contact the image boundary.

Both of these approaches concentrated on finding relevant objects by
eliminating the irrelevant (i.e. the background). This was later seen to be
unprofitable because relevance is usually determined at a higher level. The
methods were also incapable of decomposing the object grouping into smaller
object groups.

Guzman [81] started a sequence of work on surface segmentation using
image topology. Starting from line drawings of scenes, he used heuristics
based on boundary configurations at junctions to link together image re-
gions to form complete bodies. Huffman [95] and Clowes [48] put Guzman’s
heuristics into a more scientific form by isolating distinct bodies at connected
concave and obscuring boundaries in two dimensional images.

Sugihara [155] proposed two heuristics for separating objects in an edge
labeled three dimensional light-stripe based range data image. The first sepa-
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Table 5.1: Surface Cluster To Model Correspondences

SURFACE CLUSTER IMAGE

CLUSTER TYPE REGIONS MODEL

1 PRIMITIVE 20,21,30

2 PRIMITIVE 27

3 PRIMITIVE 16,26 robshldbd

4 PRIMITIVE 8 robbody

5 PRIMITIVE 29 robshldsobj

6 PRIMITIVE 33,34,35,36,37

7 PRIMITIVE 12,18,31 lowerarm

8 PRIMITIVE 9,28,38 trashcan

9 PRIMITIVE 17,19,22,25,32 upperarm

10 EQUIVALENT 20,21,27,30

11 EQUIVALENT 8,16,26,29 robshould + robbody

12 EQUIVALENT 9,12,18,28,31,38 lowerarm + trashcan

13 DEPTH 9,12,17,18,19,22, armasm + trashcan

25,28,31,32,38

14 DEPTH 8,16,17,19,22,

25,26,29,32

15 DEPTH 8,9,12,16,17, link + robot + trashcan

18,19,22,25,26,

28,29,31,32,38

16 DEPTH 8,16,20,21,26,

27,29,30

17 DEPTH 8,16,17,19,20,

21,22,25,26,27,

29,30,32

18 DEPTH 8,9,12,16,17,

18,19,20,21,22,

25,26,27,28,29,

30,31,32,38
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rated objects where two obscuring and two obscured segments meet, depend-
ing on a depth gap being detectable from either illumination or viewer effects.
The second heuristic separated bodies along concave boundaries terminat-
ing at special types of junctions (mainly involving two obscuring junctions).
Other complexities arose because of the disparate illumination and sensor
positions.

Kak et al. [99] described segmentation from a labeled edge diagram that
connects “cut”-type vertices with obscuring and concave edges, producing a
segmentation similar to the primitive surface clusters.

The work described here extends the previous work for application to ob-
jects with curved surfaces, some laminar surface groupings and hierarchical
object structure. In particular, obscuring boundaries can become connect-
ing (in certain circumstances) which allows the two laminar surfaces in the
folded leaf problem to become joined into a single surface cluster (Figure 5.3).
Further, concave boundaries defining ambiguous depth relationships can be
exploited to limit combinatorial explosion in the creation of larger surface
clusters, which is necessary to provide the image context for structured ob-
ject recognition.

Given the current input data, it is possible to directly infer from sur-
face depth and orientation the type of surface discontinuity boundaries (i.e.
obscuring, convex, concave). If the orientation data were missing, then topo-
logical analysis like that from the two dimensional blocks world analysis (e.g.
[95, 48, 162, 110, 161, 100, 162]) can sometimes uniquely deduce the three di-
mensional boundary type. Labeling rules could also correct some data errors
(e.g. [60]).

These projects also introduced the boundary labels of types obscuring
(front surface, back surface) and shape discontinuity (convex, concave) that
are used for the reasoning described here. Also useful is the understanding
of how boundary junctions relate to observer position and vertex structures
(e.g. Thorpe and Shafer [160]).

5.5 Discussion

Surface clusters need not be perfect, as the goal of the process is to produce
a partitioning without a loss of information. They may be incomplete, as
when an object is split up by a closer obscuring object, though the surface
hypothesizing may bridge the occlusion. They may also be over-aggregated
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– from images where there is insufficient evidence to segregate two objects.
These failures may reduce recognition performance (i.e. speed), but not
its competence (i.e. success): incompletely merged surface clusters will be
merged in a larger context and insufficiently split surface clusters will just
cause more searching during hypothesis construction.

The process of forming primitive surface clusters is particularly interesting
because it is a local process (i.e. connectivity is determined by classifications
made in the neighborhoods of vertices and single boundary segments) that
produces a global organization of the image. This also holds for the for-
mation of the equivalent depth surface clusters, but not the depth merged
clusters. Locality is important because (1) it is often required for efficient
parallelization and (2) it is often the hallmark of a robust process.

A criticism concerns the combinatorial formation of the depth merged
surface clusters. The general goal is to create hypotheses that correspond
to the complete visible surface of an object and nothing more, necessitating
merging surface clusters. Unfortunately, in the absence of context or object
knowledge, there is no information yet to determine whether a surface cluster
is related to the surfaces behind. As an object may be associated with any
two consecutive surfaces, it is likely that the merging process needs to be
based on either merging all surface clusters linked to the current one, or
all possible combinations of consecutive depths. As each surface may be
in front of more than one other surface, the latter alternative most likely
leads to a combinatorial explosion, whereas the former leads to enlarged
surface clusters. The combinatorial process, however, probably has better
future potential, provided some further merging constraints can be elucidated
and implemented. The use of equivalent depth clusters helped control the
problem, and as seen in Table 5.1, most of the surface clusters correspond
to object features, an object was never split between surface clusters, and
usually only one new model was appropriate for each new level of surface
cluster.

A general criticism about the surface cluster is that, as formulated here,
it is too literal. A more suggestive process is needed for dealing with natural
scenes, where segmentation, adjacency and depth ordering are more ambigu-
ous. The process should be supported by surface evidence, but should be
capable of inductive generalization – as is needed to see a complete surface
as covering the bough of a tree. The complexity of natural scenes is also
likely to lead to combinatorial problems, because of the many objects over-
lapping each other in dense scenes.
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Final Comments

Surface clusters provide a good intermediate visual representation be-
tween the segmented surface patches and the object hypotheses. In the
chapters that follow, we will see how they are used to accumulate evidence
to select models and reduce the complexity of model matching.



Chapter 6

Description of Three
Dimensional Structures

The recognition of complex objects cannot be based on raw image data be-
cause of its quantity and inappropriate level of representation. What reduces
the data to a manageable level is the process of feature description, that
produces symbolic assertions such as “elongation(S,1.2)” or “shape(S,flat)”.

Besides providing the data compression that makes recognition computa-
tionally tractable, description allows recognition processes to be more inde-
pendent of the specific type of raw data, thus promoting generality. It may
also simplify relationships; for example, an apple is approximately described
as a “reddish spheroid”.

One might ask: “What is the distinction between recognition and de-
scription?”, because recognition also reduces sets of data to descriptions. We
would be more inclined to say an image curve is “described as straight” than
is “recognized as a straight line”, whereas the reverse would apply to a per-
son’s face. Thus, one criterion is simplicity – descriptions represent simple,
consistent, generic phenomena. They are also more exact – “convex” allows
approximate local reconstruction of a surface fragment, whereas “face” can
hardly be more than representative.

If a description is dependent on a conjunction of properties, then it is
probably not suitable for use here (e.g. a “square” is a “curve” with equal
length “side”s, each at “right angle”s). Hence, another criterion is general
applicability, because “straight” is a useful description to consider for any
boundary, whereas “square” is not.

The descriptions presented here are simple unary and binary three di-
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mensional properties of curves, surfaces and volumes such as curvature, area
or relative orientation. They are not reducible to subdescriptions (i.e. they
are not structured). Because we have three dimensional range data avail-
able, it is possible to directly compute these properties, as contrasted to the
difficulties encountered when using two dimensional intensity data (though
two dimensional data is also useful). The use of three dimensional data also
allows richer and more accurate descriptions.

Pattern recognition techniques often estimate properties from two di-
mensional projections of the structures, but cannot always do so correctly,
because of the information lost in the projection process. To overcome this,
some researchers have exploited constraints available from the real proper-
ties of objects, such as the relationship between area and contour [38], from
assuming that curves are locally planar [154] or by assuming that a surface
region is a particular model patch [66].

Some of the properties considered below are viewpoint invariant. These
properties are important because they further the goal of viewpoint inde-
pendent recognition. Moreover, the key invariant properties are local (e.g.
curvature) as compared to global (e.g. area), because objects in three dimen-
sional scenes are often partially obscured, which affects global properties.

Some Three Dimensional Structural Descrip-

tions

Here, three classes of structures acquire descriptions: boundaries, surfaces
and surface clusters. The structures are interrelated and at times their de-
scriptions depend on their relationships with other entities. We have iden-
tified a variety of descriptions, some of which are listed below. Those num-
bered have been implemented and their computations are described in the
given section. Those that are viewpoint invariant are signaled by a “(V)”
annotation.

• Boundary descriptions

– three dimensional boundary curvature (Section 6.1) (V)

– three dimensional boundary length (Section 6.2)

– three dimensional symmetry axis orientation

– parallel boundary orientation (Section 6.3) (V)
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– relative boundary segment orientation (Section 6.4)

– relative boundary segment size

• Surface descriptions

– surface principal curvatures (Section 6.5) (V)

– surface curvature axis orientation (Section 6.5) (V)

– absolute surface area (Section 6.6)

– surface elongation (Section 6.7)

– relative surface orientation (Section 6.8) (V)

– relative surface size (Section 6.9)

– relative surface position

• Surface cluster descriptions

– surface cluster volume

– surface cluster elongation

– surface cluster elongation axis orientation

– surface cluster symmetry

– surface cluster relative volume

– surface cluster relative axis orientation

These three dimensional descriptions are reminiscent of the types of fea-
tures used in traditional two dimensional pattern recognition approaches to
computer vision (e.g. [14], pages 254-261). With these, one attempts to
measure enough object properties to partition the feature space into distinct
regions associated with single object classes. These techniques have been
successful for small model bases containing simple, distinct unobscured two
dimensional objects, because the objects can then be partially and uniquely
characterized using object-independent descriptions. Unfortunately, three
dimensional scenes are more complicated because the feature values may
change as the object’s orientation changes, and because of occlusion.

The description processes discussed below extract simple global properties
of curves and surfaces. The processes assume constant shape, but the actual
features are not always uniform, resulting in descriptions that are not always



108

exact (e.g. the chair back is not a perfect cylinder, though it is described
as such). However, the segmentation assumptions produce features with
the correct shape class (e.g. locally ellipsoidal), and so a first-order global
characterization is possible. This property is exploited to approximately
characterize the features.

To estimate the global properties, global methods are used, as shown
below. In retrospect, I feel that some of the methods are less theoretically
ideal or practically stable than desired, and perhaps other approaches (e.g.
least-squared error) might be better. That being said, the algorithms are
generally simple and fast, using a few measurements from the data feature
to estimate the desired property. There is a modest error, associated with
most of the properties, but this is small enough to allow model invocation
and hypothesis construction to proceed without problems.

6.1 Boundary Curvature

The calculation of three dimensional boundary curvature is trivial – the diffi-
culty lies in grouping the boundary segments into sections that might belong
to the same feature. Fortunately, the input boundary is labeled with both
the type of the segmentation boundary (between surfaces) and the type of
discontinuities along the boundary (Chapter 3). This allows sections to be
grouped for description with the goal of finding segments that directly cor-
respond to model boundary segments.

Boundaries are not arbitrary space curves, but are associated with sur-
faces. Hence, the surface determines which boundary sections will be de-
scribed. Boundaries labeled as:

• convex shape discontinuity boundaries are true object features, and are
thus described.

• concave boundaries may be true surface boundaries or may occur where
one object rests on another; in either case they are described.

• <back-side-obscuring> are definitely not true object boundaries (rela-
tive to the current surface) and are not described.

• <front-side-obscuring> boundaries may be either orientation disconti-
nuities or extremal boundaries; in either case they are described.
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The ring of boundary segments surrounding a surface is partitioned into
describable sections by the following criteria:

1. If a segment has the label <back-side-obscuring>, then it is deleted.

2. If the point where two segments join is labeled as a boundary segmen-
tation point, then split the ring at this point.

3. If two adjacent boundary segments have different labels, then split the
ring at their junction point.

Each set of connected boundary segments that remain after the splitting
process is described.

For example, assume that the object in Figure 6.1 is sitting on a surface,
that it is a box with an opening at surface 1, that boundary segment l belongs
to the background and that the labelings are:

SEGMENT SURFACE LABEL
a 1 <front-side-obscuring>
b 1 <back-side-obscuring>
b 2 <front-side-obscuring>
c 1 <back-side-obscuring>
c 3 <front-side-obscuring>
d 2,3 <convex>
e 2 <front-side-obscuring>
f 3 <front-side-obscuring>
g 2 <concave>
h 3 <concave>
i 1 <front-side-obscuring>
l ? any
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Figure 6.1: Boundary Segment Grouping Example

VERTEX SEGMENTING JUNCTION?
v1 yes (orientation discontinuity)
v2 yes (orientation discontinuity)
v3 yes (orientation discontinuity)

rest irrelevant

Then, the only describable boundary section for surface 1 is {a,i}. As b
and c are <back-side-obscuring>, they are not used. Segments a and i are
not separated by any criterion, so are treated as a single section. For surface
2, each segment is isolated. Between b and d the label changes, as between
e and g. Between b and e there is a boundary segmentation point (placed
because of an orientation discontinuity in the boundary), as between d and
g. Surface 3 is similar to surface 2.

One goal of the boundary segmentation described in Chapter 3 was to
produce boundary sections with approximately uniform curvature character.
Hence, assuming a boundary section is approximately circular, its curvature
can be estimated as follows (referring to Figure 6.2):
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Figure 6.2: Radius Estimation Geometry

Let:
~e1 and ~e2 be the endpoints of the section
~b be the bisecting point of the section
~m be the midpoint of the bounding chord = (~e1 + ~e2)/2

If:

~m = ~b, then the segment is straight,
Otherwise:

s =| ~m −~b |
t =| ~m − ~e1 |

And:
curvature = 2s/(s2 + t2)

A heuristic declares nearly straight segments as straight. The curvature
estimates for some of the complete boundaries in the test image (using seg-
ment labels shown in Figure 6.3) are given in Table 6.1.

The estimation of curvature is accurate to about 10%. Some straight
lines have been classified as slightly curved (e.g. segments 3-4-5) but they
received large radius estimates (e.g. 90 cm). Some curvature errors arise
from point position errors introduced during surface reconstruction. This
factor particularly affects boundaries lying on curved surfaces.
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Table 6.1: Boundary Curvature Estimates

ESTIMATED TRUE

REGION SEGMENTS CURVATURE CURVATURE

26 1 0.131 0.125

26 2 0.120 0.125

8 3,4,5 0.011 0.0

8 6 0.038 0.111

8 7,8,9,10 0.010 0.0

9 11,12 0.0 0.0

9 13 0.083 0.090

9 14,15,16 0.012 0.0

9 17,18,19,20 0.054 0.069

Figure 6.3: Test Image Boundary Numbers
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Table 6.2: Boundary Length Estimates

ESTIMATED TRUE

REGION SEGMENTS LENGTH LENGTH % ERROR

26 1 31.9 25.2 26

26 2 37.0 25.2 47

8 3,4,5 51.1 50.0 2

8 6 27.3 28.2 3

8 7,8,9,10 46.1 50.0 8

9 11,12 28.0 27.2 3

9 13 30.1 34.5 12

9 14,15,16 25.3 27.2 7

9 17,18,19,20 32.7 45.5 28

6.2 Boundary Length

Given the three dimensional data, the length of boundary segments can be
estimated directly. If the segment is straight, then its length is just the
distance between its endpoints. Otherwise, given the groupings described in
the previous section, the calculated curvature and the geometric definitions,
the length of a curved segment is given as follows (referring to Figure 6.2):

Let:

~u be the unit vector in the direction ~m −~b

~c = ~b + ~u/curvature be the center of the arc
~ri be the unit vector from ~c to ~ei

Then:
α = arccos(~r1 ◦ ~r2) is the angle subtended by the arc, and
length = α/curvature

The boundary length estimates for some of the complete boundaries in
the test image (segment labels from Figure 6.3) are shown in Table 6.2.

The average error for boundary length is about 20%, but there are larger
errors. On the whole, the estimates are generally acceptable, though not
accurate. The poor estimates for segments 1 and 2 result from data errors.
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6.3 Parallel Boundaries

A distinctive surface feature is the presence of parallel boundary sections.
Hence, one potential description for surfaces is the number of groups of par-
allel boundaries. In this context, parallel means in three dimensions, and
requires:

• vectors between endpoints to be parallel, and

• direction of arc curvature to be parallel.

The endpoint vector calculation is trivial given the three dimensional
data. The direction vectors are the ~u defined in the previous section, so the
second test is also easy. The results for the test image are given in Table 6.3.
No errors occurred.

6.4 Relative Boundary Orientation

The angular relationships between sections of a segmented boundary are also
a distinctive characteristic of the surface. The angle between the tangents
before and after the segmentation point is a potential measurement, but this
would not discriminate between a short and a long arc smoothly joined to
a straight segment (recalling that the boundary is segmented by orientation
and curvature discontinuities). Further, estimation of the tangent angle is
less reliable. Hence, the measurement chosen was the angle between the
vectors through the segment endpoints, as illustrated in Figure 6.4. Partial
occlusion of the boundary will affect this measurement for curved segments.
However, if enough of the boundary is visible, the estimate will be close
(assuming small curvatures).

Some of the join angles for complete object surfaces are reported in Ta-
ble 6.4. The average angular estimation error is about 0.1 radian, so this
estimation process is acceptable.

6.5 Surface Curvature

By the surface shape segmentation assumptions (Chapter 3), each surface
region can be assumed to have constant curvature signs and approximately
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Figure 6.4: Angle Between Boundary Sections

Table 6.3: Parallel Boundary Group Counts

BOUNDARIES BOUNDARIES

REGION PARALLEL PARALLEL

IN DATA IN MODEL

8 2 2

9 2 2

16 2 2

26 1 1

29 0 0
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Table 6.4: Boundary Join Angles

DATA MODEL

REGION SEGMENTS ANGLE ANGLE ERROR

26 1 - 2 3.14 3.14 0.0

26 2 - 1 3.14 3.14 0.0

8 3,4,5 - 6 1.40 1.57 0.17

8 6 - 7,8,9,10 1.79 1.57 0.22

9 11,12 - 13 1.73 1.70 0.03

9 13 - 14,15,16 1.64 1.70 0.06

9 14,15,16 - 1.45 1.44 0.01

17,18,19,20

9 17,18,19,20 - 1.45 1.44 0.01

11,12

constant curvature magnitude. Using the orientation information, the aver-
age orientation change per image distance is estimated and this is then used
to estimate absolute curvature. This description separates surface regions
into curvature classes, which provides a first level of characterization. The
absolute magnitude of the curvature then provides a second description.

Following Stevens [153] and others, the two principal curvatures, κ1 and
κ2, are used to characterize the local shape of the surface (along with the
directions of the curvatures). These are the maximum and minimum local
curvatures of the planar curves formed by intersecting a normal plane with
the surface. (The rotation angles at which these curvatures occur are orthog-
onal – a property that will be used later.) The signs of the two curvatures
categorize the surfaces into six possible surface shape classes (Table 6.5).
The curvature sign is arbitrary, and here convex surfaces are defined to have
positive curvature.

Turner [161] classified surfaces into five different classes (planar, spher-
ical, conical, cylindrical and catenoidal) and made further distinctions on
the signs of the curvature, but here the cylindrical and conical categories
have been merged because they are locally similar. Cernuschi-Frias, Bolle
and Cooper [45] classified surface regions as planar, cylindrical or spherical,
based on fitting a surface shading model for quadric surfaces to the observed
image intensities. Both of these techniques use intensity data, whereas di-
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Table 6.5: Surface Shape Classes

κ1 < 0 κ1 = 0 κ1 > 0
κ2 < 0 CONCAVE CONCAVE HYPERBOLOID

ELLIPSOID CYLINDER SURFACE

κ2 = 0 CONCAVE PLANE CONVEX

CYLINDER CYLINDER

κ2 > 0 HYPERBOLOID CONVEX CONVEX

SURFACE CYLINDER ELLIPSOID

rectly using the surface orientation data allows local computation of shape.
Moreover, using only intensity patterns, the methods give a qualitative eval-
uation of shape class, instead of absolute curvature estimates. More recently,
Besl [24] used the mean and gaussian curvature signs (calculated from range
data) to produce a similar taxonomy, only with greater differentiation of the
hyperboloidal surfaces.

Brady et al. [40] investigated a more detailed surface understanding in-
cluding locating lines of curvature of surfaces and shape discontinuities using
three dimensional surface data. This work gives a more accurate metrical
surface description, but is not as concerned with the symbolic description
of surface segments. Agin and Binford [5] and Nevatia and Binford [121]
segmented generalized cylinders from light-stripe based range data, deriving
cylinder axes from stripe midpoints or depth discontinuities.

To estimate the curvature magnitude, we use the difference in the orien-
tation of two surface normals spatially separated on the object surface. The
ideal case of a cross-section perpendicular to the axis of a cylinder is shown
in Figure 6.5. Two unit normals ~n1 and ~n2 are separated by a distance L on
the object surface. The angular difference θ between the two vectors is given
by the dot product:

θ = arccos( ~n1 ◦ ~n2)

Then, the curvature estimate at this cross-section orientation is:

κ = 2 ∗ sin(θ/2)/L
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Figure 6.5: Surface to Chord Length Relationship

To find the two principal curvatures, the curvature at all orientations
must be estimated. The planar case is trivial, and all curvature estimates
are κ = 0.

If the curvature is estimated at all orientations using the method above,
then the minimum and maximum of these estimates are the principal curva-
tures. Part (a) of Figure 6.6 shows the path of the intersecting plane across
a cylinder. For simplicity, assume that the orientation (β) of the plane inter-
secting the surface starts perpendicular to the axis of the cylinder. Further,
assume that the cylinder surface is completely observed, so that the points
at which the surface normals ~n1 and ~n2 are measured are at the extrema of
the surface. Then, the normals are directly opposed, so that θ equals π in
the above expression. The curvature is then estimated for each orientation
β. While the intersection curve is not always a circle, it is treated as if it is
one.

Let R be the cylinder radius. The chord length L observed at orientation
β is:

L = 2 ∗ R/ | cos(β) |
Hence, the curvature estimate (from above) is:

κ = 2 ∗ sin(θ/2)/L =| cos(β) | /R

For the ellipsoid case (part (b) of Figure 6.6), the calculation is similar.
Letting R1 and R2 be the two principal radii of the ellipsoid (and assuming
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Figure 6.6: Cross-Section Length Relationships

that the third is large relative to these two) the length measured is approxi-
mately:

L = 2 ∗ R1 ∗ R2/
√

T

where:
T = (R1 ∗ sin(β))2 + (R2 ∗ cos(β))2

Hence, the curvature estimate (from above) is:

κ = 2 ∗ sin(θ/2)/L =
√

T/(R1 ∗ R2)

The special case of the cylinder can be derived from this by looking at the
limit as R2 approaches infinity.

This analysis gives the estimated curvature versus cross-section orienta-
tion β. If β is not aligned with a principal curvature axis, then the cross-
section has a shifted phase. In any case, the minimum and maximum values
of these estimates are the principal curvatures. The maximum curvature
occurs perpendicular to the major curvature axis (by definition) and the
minimum curvature occurs at π/2 from the maximum. Figure 6.7 shows a
graphical presentation of the estimated curvature versus β.

For simplicity, this analysis used the curvature estimated by picking op-
posed surface normals at the extremes of the intersecting plane’s path. Real
intersection trajectories will usually not reach the extrema of the surface and
instead we estimate the curvature with a shorter segment using the method
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Figure 6.7: Ideal Estimated Curvature Versus Orientation

outlined at the beginning of this section. This produces different curvature
estimates for orientations not lying on a curvature axis. However, the major
and minor axis curvature estimates are still correct, and are still the max-
imum and minimum curvatures estimated. Then, Euler’s relation for the
local curvature estimated at orientations θ (not necessarily aligned with the
principal curvatures) is exploited to find an estimate of the curvatures:

κ(β) = κ1 ∗ cos2(β) + κ2 ∗ sin2(β) = κ2 + (κ1 − κ2) ∗ cos2(β)

One might ask why the global separated normal vector approach to cur-
vature estimation was used, rather than using derivatives of local orientation
estimates, or the fundamental forms? The basis for this decision is that we
wanted to experiment with using the larger separation to reduce the error in
the orientation difference θ when dealing with noisy data. This benefit has
to be contrasted with the problem of the curvature changing over distance.
But, as the changes should be small by the segmentation assumption, the
estimation should still be reasonably accurate. Other possibilities that were
not tried were least-squared error fitting of a surface patch and fitting a curve
to the set of normals obtained along the cross-section at each orientation β.

We now determine the sign of the curvature. As Figure 6.8 shows, the
angle between corresponding surface normals on similar convex and concave
surfaces is the same. The two cases can be distinguished because for convex
surfaces the surface normals point away from the center of curvature, whereas
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Figure 6.8: Convex and Concave Surface Similarities

for the concave case the surface normals point towards it.
Given the above geometric analysis, the implemented surface curvature

computation is:

1. Let ~P be a nominal point in the surface image region.

2. Generate the curvature estimate versus β function as outlined above,
for cross-sections through ~P :

(a) find cross-section length L

(b) find surface orientation angle difference θ

(c) estimate curvature magnitude | κ |

3. Fit cos2(α) to the curvature versus β function to smooth estimates and
determine the phase angle.

4. Extract maximum and minimum curvature magnitudes.

5. At maximum and minimum curvature orientations, check direction of
surface normal relative to surface.
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Figure 6.9: Curvature Axis Orientation Estimation (Find Axis Plane)

(a) if towards the center, then κ < 0

(b) if away from the center, then κ > 0

The estimation of the major axis orientation for the surface region is now
easy. (The major axis is that about which the greatest curvature occurs.)
The plane case can be ignored, as it has no curvature. Figures 6.9 and 6.10
illustrate the geometry for the axis orientation estimation process.

We calculate the axis direction by calculating the direction of a parallel
line ~a through the nominal point ~P . We start by finding a plane X that this
line lies in (see Figure 6.9). Plane X contains the viewer and the nominal

point ~P . Hence, the vector ~v2 from the viewer to the nominal point lies in the
plane. Further, we assume that line ~a projects onto the image plane at the
image orientation θ at which the minimum curvature is estimated. Hence,
the vector ~v1 = (cos(θ), sin(θ), 0) also lies in plane X. As the two vectors are
distinct (~v1 is seen as a line, whereas ~v2 is seen as a point), the normal ~n1 to
plane X is:

~n1 = ~v1 × ~v2
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Figure 6.10: Curvature Axis Orientation Estimation (Find Vector)
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Table 6.6: Summary of Surface Curvature Estimates

IMAGE MAJOR(MJ) ESTIMATED TRUE

REGION MINOR(MN) CURVATURE CURVATURE

8 MJ .11 .11

MN 0 0

9 MJ .09 .08

MN 0 0

12 MJ 0 0

16 MJ .15 .13

MN 0 0

18 MJ 0 0

25 MJ .19 .13

MN 0 0

26 MJ 0 0

29 MJ .12 .13

MN 0 0

31 MJ .07 .09

MN 0 0

Line ~a lies in this plane (see Figure 6.10) so it must be perpendicular to the
plane’s normal ~n1. It is also perpendicular to the surface normal ~n2. Hence,
the direction of line ~a is:

~a = ~n1 × ~n2

This vector is used as an estimate of the major curvature axis direction. The
minor curvature axis direction is given by ~a × ~n2.

The curvature and axis orientation estimation process was applied to the
test scene. The curvatures of all planar surfaces were estimated correctly as
being zero. The major curved surfaces are listed in Tables 6.6 and 6.7, with
the results of their curvature and axis estimates. (If the major curvature is
zero in Table 6.6, then the minor curvature is not shown.) In Table 6.7, the
error angle is the angle between the measured and estimated axis vectors.

The estimation of the surface curvature and axis directions is both simple
and mainly accurate, as evidenced by the above discussion and the results.
The major error is on the small, nearly tangential surface (region 31), where
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Table 6.7: Summary of Curved Surface Curvature Axis Estimates

IMAGE ESTIMATED TRUE ERROR

REGION AXIS AXIS ANGLE

8 (0.0,0.99,-0.1) (0.0,1.0,0.0) 0.10

16 (-0.99,0.0,0.0) (-0.99,0.0,0.1) 0.09

25 (-0.99,0.07,0.11) (-0.99,0.0,0.1) 0.13

31 (-0.86,-.21,-0.46) (-0.99,0.0,0.1) 0.53

9 (-0.09,0.99,-0.07) (0.0,1.0,0.0) 0.12

29 (-.14,0.99,0.0) (0.0,1.0,0.0) 0.14

the curvature estimates are acceptable, but the algorithm had difficulty es-
timating the orientation, as might be expected. Again, as the depth and
orientation estimates were acquired by hand, this is one source of error in
the results. Another source is the inaccuracies caused by interpolating depth
and orientation estimates between measured values.

The major weak point in this analysis is that the curvature can vary over
a curved surface segment, whereas only a single estimate is made (though the
segmentation assumption limits its variation). Choosing the nominal point
to lie roughly in the middle of the surface helps average the curvatures, and
it also helps reduce noise errors by giving larger cross-sections over which to
calculate the curvature estimates.

6.6 Absolute Surface Area

The surfaces of man-made objects typically have fixed surface areas, and
many natural objects also have surfaces whose areas fall within constrained
ranges. Thus surface area is a good constraint on the identity of a surface.
Consequently, we would like to estimate the absolute surface area of a seg-
mented surface region, which is possible given the information in the surface
image. Estimation applies to the reconstructed surface hypotheses (Chapter
4).

The constraints on the estimation process are:

• The surface region image area is the number of pixels inside the surface
region boundaries.
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• The image area is related to the surface area of a fronto-parallel planar
surface at a given depth by the camera parameters.

• The area of a fronto-parallel planar surface is related to the area of an
oriented planar surface by its surface orientation.

• The area of a curved surface is related to the area of the equivalent
projected planar surface by the magnitude of its curvature.

The effects of surface curvature are approximately overcome using two
correction factors for the principal curvatures, which are calculated in the
following manner. In Figure 6.11 part (a), the case of a single dimension is
considered. A curved segment of curvature C subtends an angle θ . Hence, it
has length θ/C. This appears in the image as a straight segment of length L.
So, the curvature correction factor relating the length of a curved segment
to the equivalent chord is:

F = θ/(L ∗ C)

where the angle θ is given by:

θ = 2 ∗ arcsin(L ∗ C/2)

Hence, the complete curvature correction factor is (if C > 0):

F = 2 ∗ arcsin(L ∗ C/2)/(L ∗ C)

else
F = 1

Now, referring to Figure 6.11 part (b), the absolute surface area is esti-
mated as follows:
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(a) curvature correction (b) projection correction

Figure 6.11: Image Projection Geometries
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Table 6.8: Summary of Absolute Surface Area Estimation

IMAGE PLANAR OR ESTIMATED TRUE

REGION CURVED AREA AREA % ERROR

8 C 1239 1413 12

9 C 1085 1081 0

16 C 392 628 38

26 P 165 201 17

29 C 76 100 24

Let:
I be the image area in square pixels
D be the depth to a nominal point in the surface region
~n be the unit surface normal at the nominal point
G be the conversion factor for the number of pixels per centimeter

of object length when seen at one centimeter distance
F , f be the major and minor principal curvature correction factors
~v be the unit vector from the nominal point to the viewer

Then, the slant correction relating projected planar area to true
planar area is given by:

~v ◦ ~n

and the absolute surface area is estimated by:
A = I ∗ (D/G)2 ∗ (F ∗ f)/(~v ◦ ~n)

The (D/G) term converts one image dimension from pixels to centimeters,
the ~v ◦ ~n term accounts for the surface being slanted away from the viewer,
and the F ∗ f term accounts for the surface being curved instead of flat.

In the test image, several unobscured regions from known object surfaces
are seen. The absolute surface area for these regions is estimated using the
computation described above, and the results are summarized in Table 6.8.

Note that the estimation error percentage is generally small, given the
range of surface sizes. The process is also often accurate, with better results
for the larger surface regions and largest errors on small or nearly tangen-
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tial surfaces. The key sources of error are pixel spatial quantization, which
particularly affects small regions, and inaccurate shape data estimation.

From the above discussion, the estimation process is obviously trivial,
given the surface image as input. Since the goal of the process is only to
acquire a rough estimate, the implemented approach is adequate.

6.7 Surface Elongation

The elongation of a surface region is also a distinguishing characteristic.
This has been a traditional pattern recognition measurement applied to two
dimensional regions, but a three dimensional version can also be obtained.

For a planar surface, elongation is the ratio of the longest to the shortest
dimension of a planar rectangular box circumscribing the surface, which is
similar to the two dimensional definition. The definition can be adapted
to curved surfaces by using the maximum and minimum arc lengths of the
intersection of the surface and a plane normal to the surface. The arc length
should be calculated for all intersections of the surface, but this is time-
consuming. Instead, only the cross-section widths about a central point are
used.

The four factors involved in the estimation of the surface’s dimensions
are: the image region’s dimensions, the surface slant relative to the viewer,
the curvature of the surface, and the distance from the viewer. It is possible
to approximate the elongation after separating the effects of these factors.

Figure 6.12 part (a) shows a sketch of the viewing relationship at one
cross-section through the surface. By the discussion in the previous section,
the cross-section length S is approximately related to the chord length L as:

S = L ∗ θ/(2 ∗ sin(θ/2))

Then, if the cross-section is slanted away from the viewer by an angle α ,
the observed slanted length L′ is approximately related to the chord length
L (assuming the viewing distance is large) by:

L′ = L ∗ cos(α)

Finally, the observed image length I for the surface at depth D with conver-
sion factor G (as in Section 6.6) is:

I = L′ ∗ (G/D)
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Figure 6.12: Cross-Section Length Distortions
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This analysis is then modified for observed slant compression at angles
other than the tilt angle. Figure 6.12 part (b) shows the geometry used for
the following analysis. This figure shows a unit circle compressed by a slant
angle σ in the direction τ and orthographically projected onto the image
plane. Elementary trigonometry and algebra show that the observed length
R at the angle β is:

R = 1/
√

1 + (tan(σ) ∗ cos(β))2

The computation of the elongation value is then:

Let:
~N be a nominal point in the center of the surface image region

w(α) be the image cross-section width at image angle α about ~N
θ(α) be the change in surface orientation across

the cross-section at image angle α

(P,Q,−T ) be the unit surface normal at ~N

D be the distance from the viewer to ~N
G be the conversion factor for the number of pixels per centimeter

of object length when seen at one centimeter distance

~v be the unit vector pointing to the viewer from the point ~N

Then, the tilt angle is:

τ = arctan(Q/P )

the relative slant direction β is:

β = α − τ

the slant angle σ is:
σ = arccos(~v ◦ (P,Q,−T ))

the slant correction factor is:

M =
√

1 + (tan(σ) ∗ cos(β))2

the projected chord length L’ is:

L′(α) = w(α) ∗ (D/G)
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Table 6.9: Summary of Estimated Elongations

IMAGE PLANAR OR ESTIMATED TRUE

REGION CURVED ELONGATION ELONGATION

8 C 3.3 2.0

9 C 1.8 1.7

16 C 2.9 1.5

26 P 1.4 1.0

29 C 3.6 3.1

the unprojected chord length L is:

L(α) = L′(α) ∗ M

and the estimated three dimensional cross-section is:

cross(α) = L(α) ∗ θ(α)/(2 ∗ sin(θ(α)/2))

Finally, the elongation is:

E = maxα(cross(α))/minα(cross(α))

The elongations for all unobscured image regions that directly correspond
to model SURFACEs are listed in Table 6.9.

These results show that the estimation process gives approximate results
when applied to unobscured regions. In part, small regions should be more
affected because single pixel errors are significant, but this is not always the
case.

A weakness of the process is that it only estimates the dimensions based
on reconstructions about a single point, which produces lower bounds for the
maximum and upper bounds for the minimum cross-sections. This should
result in an estimate that is lower than the true elongation. However, the
key source of error is the small size of the regions coupled with image quan-
tization. Other sources of error are the hand measured surface data, surface
interpolation and the curvature correction process assuming uniform curva-
ture along the cross-section path. However, the approximations were felt
to be justifiable on practical grounds and the above results show that the
approach is acceptable.
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Figure 6.13: Two Adjacent Surfaces

6.8 Relative Surface Orientation

Given surface orientation and some elementary geometry, it is possible to
estimate the angle at which two surfaces meet (defined as the angle that the
solid portion of the junction subsumes). This description is useful for two
reasons: (1) extra information is always useful for recognition and (2) the
measurement is dependent on the surface’s relationship with its neighbors,
whereas many other descriptions relate only to the structure in isolation.
Hence, context can enhance the likelihood of identification.

This description is only applied to surfaces that are adjacent across a
shape boundary and so emphasizes group identification. (Surfaces across an
obscuring boundary may not be related.)

The factors involved in the description’s calculation are the orientation of
the surfaces, the shared boundary between the surfaces and the direction to
the viewer. As the boundary is visible, the viewer must be in the unoccupied
space sector between the two surfaces.

Because surfaces can be curved, the angle between them may not be
constant along the boundary; however, it is assumed that this angle will not
vary significantly without the introduction of other shape segmentations.
Consequently, the calculation obtained at a nominal point is taken to be
representative.

Figure 6.13 shows two surfaces meeting at a boundary. Somewhere along
this boundary a nominal point ~P is chosen and also shown is the vector of
the boundary direction at that point ( ~B). Through this point a cross-section
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Figure 6.14: Surface Normals and the Two Surface Cases

plane is placed, such that the normals (~n) for the two surfaces lie in the
plane. Figure 6.14 shows the two cases for this cross-section.

The essential information that determines the surface angle is the angle at
which the two normals meet. However, it must also be determined whether
the surface junction is convex or concave, which is the difficult portion of
the computation. The details of the solution are seen in Figure 6.14. Let
vectors ~S1 and ~S2 be tangential to the respective surfaces in the cross-section
plane. By definition, the vector ~B is normal to the plane in which the ~ni

and ~Si vectors lie. Hence, each individual ~Si vector is normal to both the
corresponding ~ni vector and the ~B vector, and can be calculated by a cross
product.

These ~Si vectors may face the wrong direction (e.g. away from the sur-

face). To obtain the correct direction, a track is made from the point ~P in

the direction of both ~Si and −~Si. One of these should immediately enter the
surface region, and this is assumed to be the correct ~Si vector.

Because the boundary must be visible, the angle between the vector ~v
from the nominal point to the viewer and a surface vector ~Si must be less
than π. Hence, the angle between these vectors is guaranteed to represent
open space. Then, the angle between the two surfaces is 2π minus these two
open spaces. This computation is summarized below:
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Table 6.10: Summary of Relative Surface Orientation

IMAGE ESTIMATED TRUE

REGIONS ANGLE ANGLE ERROR NOTE

16,26 1.47 1.57 0.10

16,29 2.96 3.14 0.18

12,18 1.53 1.57 0.04

12,31 1.60 1.57 0.03

18,31 2.03 2.14 0.11

17,25 2.09 3.14 1.05 *

17,22 1.56 1.57 0.01

* – large error across a curvature discontinuity

Let:
~P be a nominal point on the boundary between the two surfaces

~n1, ~n2 be the two surface normal vectors at ~P
~v be the vector from the nominal point to the viewer

Then, the boundary vector ~B is:
~B = ~n1 × ~n2

and the surface vectors ~Si are:
~Si = ~B × ~ni

which are then adjusted for direction, as described above.
Given this, the surface angle is:

θ = 2π− | arccos(~v ◦ ~S1) | − | arccos(~v ◦ ~S2) |

The true and estimated surface angles for the modeled objects are sum-
marized in Table 6.10. Further, only rigid angles between surfaces in the
same primitive surface clusters are reported (these being the only evidence
used).

The estimation procedure is accurate for orientation discontinuities. The
major source of errors for this process is the measurement of the surface ori-
entation vectors by hand, and interpolating their value to the nominal point.



136

Table 6.11: Summary of Relative Surface Area Estimation

IMAGE PLANAR OR IMAGE ESTIMATED VALID

REGION CURVED CONTEXT PROPORTION RANGE

8 C 8 1.00 1.00

9 C 9,28,38 0.92 0.6 - 1.0

16 C 16,26 0.70 0.76

26 P 16,26 0.29 0.24

29 C 29 1.0 1.0

This contributed substantially to the error at the curvature discontinuity,
where interpolation flattened out the surface.

6.9 Relative Surface Area

Because a surface generally appears with a known set of other surfaces, its
proportion of the total visible surface area is another constraint on its identity
in the complete object context. This proportion can vary because of self-
occlusion, but is otherwise a constant. The precise relative area is, in theory,
determinable for all viewing positions, but in practice only the range defined
by representative positions is considered.

The relative surface area calculation is trivial once the individual compo-
nent’s absolute areas have been calculated. The surface cluster (Chapter 5)
is the context for the relative area calculation.

Table 6.11 summarizes the results of the relative surface area calculation
for the same image regions as in Table 6.8. Again, the same good perfor-
mance is noted. A point to note about the relative area is that valid evidence
can still be computed even if only the relative distances (as compared to the
absolute distances) to the object’s surfaces are available. This point also
holds for objects with fixed geometry, but variable size: the relative propor-
tion of the total size remains the same.

Final Comments
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This chapter showed that surface data allowed a variety of general identity-
independent three dimensional properties. These were directly computable
for curves, surfaces and surface clusters, using simple computations that esti-
mated the properties acceptably. More work is needed to extend the number
of properties, improve the algorithms and determine their stability over a
wider range of objects.



Chapter 7

Object Representation

To recognize objects, one must have an internal representation of an object
suitable for matching its features to image descriptions. There are several
approaches to modeling, and this research uses a surface-based object repre-
sentation distinguished by its use of shape segmentable surfaces organized in
a subcomponent hierarchy. This approach provides the information needed
to efficiently recognize and locate complicated articulated structures (like a
robot) when using the input data described in Chapter 3.

This chapter also briefly describes the SMS modeling approach [70], whose
development was based on experience with the IMAGINE I system.

7.1 The Geometric Model

The model is what the system knows about an object. Paraphrasing Bin-
ford [29]: a capable vision system should know about object shape, and how
shape affects appearance, rather than what types of images an object is likely
to produce. Geometric models explicitly represent the shape and structure
of an object, and from these, one can (1) deduce what features will be seen
from any particular viewpoint and where they are expected to be and (2)
determine under what circumstances a particular image relationship is con-
sistent with the model. Both of these conditions promote efficient feature
selection, matching and verification. Hence, this approach is intrinsically
more powerful than the property method, but possibly at the expense of
complexity and substantial computational machinery. However, a practical
vision system may also incorporate redundant viewer-centered descriptions,

138
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to improve efficiency.
The geometric body model used here introduces a uniform level of descrip-

tion suitable for a large class of objects (especially man-made). It specifies
the key primitive elements of an object representation, and how they are
positioned relative to the whole object.

Some Requirements on the Model
The models should emphasize the relevant aspects of objects. As this re-

search is concerned with model shape and structure, rather than reflectance,
these are: surface shape, intersurface relationships (e.g. adjacency and rel-
ative orientation), surface-object relationships and subcomponent-object re-
lationships. To recognize the objects in the test scene, the geometric models
will have to:

• make surface information explicit – to easily match image surface data,

• have three dimensional, transformable object-centered representations
– because objects can take arbitrary, unexpected spatial locations and
orientations,

• have geometric subcomponent relationships – because of the structur-
ing of the surface clusters and the physical constraints on their place-
ment,

• represent solid and laminar objects – to handle the variety in the scene
and

• have attachments with degrees-of-freedom – for recognizing articulated
objects (e.g. the robot).

These are general requirements; more specific requirements for geometric
information are discussed below.

As model invocation (Chapter 8) is based on both image property evi-
dence and component associations, it additionally needs:

• size, shape and curvature parameters of individual surfaces and bound-
ary segments,

• non-structural object relations, such as subtype or subclass,

• adjacency of surfaces and their relative orientation and
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• typical configurations of visible components.

Hypothesis construction and verification (Chapters 9 and 10) instantiate
and validate invoked models by pairing image data or previously recognized
objects with model components. To build the hypotheses, the matcher will
have to search the image and its results database for evidence. Verification
ascertains the soundness of the instantiated models by ensuring that the
substructures have the correct geometric relationship with each other and
the model as a whole, and that the assembled object forms a valid and
compact solid. Together, the two processes require:

• the type of substructures needed and

• the geometric relationships between the substructures and the object.

Model Primitives
Model surfaces and boundaries are usually segmented according to the

same criteria discussed in Chapter 3 for image data (essentially shape discon-
tinuities). Hence, the same primitives are also used for the models to reduce
the conceptual distance to the data primitives, and thus simplify matching.
The primitive element of the model is the SURFACE, a one-sided bounded
two dimensional (but not necessarily flat) structure defined in a three dimen-
sional local reference frame. A SURFACE has two primary characteristics –
surface shape, and extent.

Surface shape is defined by its surface class, the curvature axes and
the curvature values. The surface classes are planar, cylindrical and ellip-
soidal/hyperboloidal. The curvature values can be positive or negative, rep-
resenting convex or concave principal curvatures about the curvature axes.
The minor curvature axis (if any) is orthogonal to both the surface normal
and the major curvature axis. (This is always locally true and it also holds
globally for the surface primitives used here.) These model patches are ex-
actly the same as the data patches shown in Figure 3.10, except for where
the data patches are not fully seen because of occlusion or inappropriate
viewpoint. While many other surface shape representations are used, this
one was chosen because:

• surface shape is characterized by two parameters only (the principal
curvatures), and it is felt that these can be successfully estimated from
image data (e.g. [40]). Further, it is felt that it will be difficult to
reliably estimate more detailed information.
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• Even if the precise curvature values are not extractable, shape class
should be, using a variety of shape cues (e.g. specularity, shadows,
shading, etc.).

The definition of surface shapes is straightforward for the planar and
cylindrical (and conical) patches. Each SURFACE is defined relative to a
local coordinate system. The plane is implicitly defined to pass through
(0, 0, 0) with a normal of (0, 0,−1) and has infinite extent. A cylinder is con-
vex or concave according to the sign of its curvature, has a defined curvature
magnitude and axis of curvature, and has infinite extent.

Surfaces that curve in two directions are not well represented here. The
problem is that on these surfaces, curvature varies everywhere (except for on
a perfect sphere), whereas we would like to characterize the surface simply
and globally. Given the segmentation criteria, one feature that does remain
constant is the sign of the principal curvatures. To make the characteri-
zation more useful, we also include the magnitudes and three dimensional
directions of the curvatures at a nominal central point. While this is just an
approximation, it is useful for model matching.

When it is necessary to draw or predict instances of these SURFACEs,
the model used is (r1 = radius1, r2 = radius2):

sign(r1) ∗
(x′)2

r2
1

+ sign(r2)
(y′)2

r2
2

+
(z)2

r2
z

= 1

where rz = 50 (an arbitrary choice) and (x′, y′) are in a coordinate system
that places x′ along the major curvature axis.

Surfaces with twist are neither modeled nor analyzed.
All SURFACEs are presumed to bound solids; laminar surfaces are formed

by joining two model SURFACEs back to back. Hence, the normal direction
also specifies the outside surface direction.

The extent of a SURFACE is defined by a three dimensional polycurve
boundary. The surface patch lies inside the boundary, when it is projected
onto the infinite surface. These patches are intended to be only approximate
as: (1) it is hard to characterize when one surface stops and another starts
on curved surfaces, and (2) surface extraction and description processes do
not reliably extract patch boundaries except near strong orientation discon-
tinuities. This implies that surface patches may not smoothly join. However,
this is not a problem as the models are defined for recognition (which does
not require exact boundaries), rather than image generation.
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The polycurve boundary is specified by a few three dimensional points and
connecting segments: “point – curve – point – curve – ...”. The connecting
curve descriptions are either straight lines or portions of circular arcs.

The surface feature that causes the curve or surface segmentation is
recorded as part of the model. The surface segmentation boundary labels
are (refer to Chapter 3 for their definition):

BN non-segmenting extremal boundary
BO surface-orientation
BC surface-curvature-magnitude
BD surface-curvature-direction

The curve segmentation point labels are:
PO boundary-orientation
PC boundary-curvature-magnitude
PD boundary-curvature-direction

These labels were not used by the

recognition process, but can provide stronger constraints on the identity of
surface groupings.

An example of a full SURFACE description of the small curved end sur-
face of the robot upper arm (called “uends”) is:

SURFACE uends =

PO/(0,0,0) BC/LINE

PO/(10,0,0) BO/CURVE[0,0,-7.65]

PO/(10,15,0) BC/LINE

PO/(0,15,0) BO/CURVE[0,0,-7.65]

CYLINDER[(0,7.5,1.51),(10,7.5,1.51),7.65,7.65]

NORMAL AT (5,7.5,-6.14) = (0,0,-1);

This describes a convex cylinder with a patch cut out of it. The next
to last line defines the cylinder axis endpoints and the radii at those points.
Here, we see that the axis is parallel to the x-axis. The four lines above
that define the polycurve boundary, using four points linked by two line and
two circular arc sections. All boundary sections are connected at orientation
discontinuities (PO), while the surface meets its neighbors across orientation
(BO) and curvature magnitude (BC) discontinuities at the given boundary
section. The final line records the direction of the surface normal at a nomi-
nal central point. Figure 7.1 shows the surface and boundary specifications
combined to model the end patch.

ASSEMBLY Definition
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Figure 7.1: Upperarm Small Curved End Patch
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Whole objects (called ASSEMBLYs) are described using a subcomponent
hierarchy, with objects being composed of either SURFACEs or recursively
defined subcomponents. Each ASSEMBLY has a nominal coordinate refer-
ence frame relative to which all subcomponents are located. The geometric
relationship of a subcomponent to the object is specified by an AT coor-
dinate system transformation from the subcomponent’s reference frame to
the object’s. This is equivalent to the ACRONYM [42] affixment link. The
transformation is specified using an xyz translation and a rotation-slant-
tilt reorientation of the subcomponent’s coordinate system relative to the
ASSEMBLY’s. The transformation is executed in the order: (1) slant the
subcomponent’s coordinate system in the tilt direction (relative to the ob-
ject’s xy plane), (2) rotate the subcomponent about the object’s z-axis and
(3) translate the subcomponent to the location given in the object’s coordi-
nates. The affixment notation used in the model definition (Appendix A) is
of the form:

((transx, transy, transz), (rotation, slant, tilt))

Figure 7.2 shows an example of the transformation:

((10, 20, 30), (0, π/2, π/2))

Figure 7.3 shows the robot hand ASSEMBLY defined from three SUR-
FACEs: handsidel (the long lozenge shaped flat side), handsides (the short
rectangular flat side) and handend (the cylindrical cap at the end). Assum-
ing that all three SURFACEs are initially defined as facing the viewer, the
ASSEMBLY specification is:

ASSEMBLY hand =

handsidel AT ((0,-4.3,-4.3),(0,0,0))

handsidel AT ((0,4.3,4.3),(0,pi,pi/2))

handsides AT ((0,-4.3,4.3),(0,pi/2,3*pi/2))

handsides AT ((0,4.3,-4.3),(0,pi/2,pi/2))

handend AT ((7.7,-4.3,-4.3),(0,pi/2,0));

The SURFACEs do not completely enclose the ASSEMBLY because the
sixth side is never seen. This causes no problem; a complete definition is also
acceptable as the hypothesis construction process (Chapter 9) would deduce
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Figure 7.2: Coordinate Reference Frame Transformation
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Figure 7.3: Robot Hand ASSEMBLY

that the SURFACE is not visible when attempting to fully instantiate a
hypothesis.

Affixments with degrees-of-freedom are specified by using a FLEX (or
SYM) option, which allows unspecified translations and rotations of the sub-
component, in its local reference frame, about the affixment point. The
partially constrained attachment definitions use one or more symbolic pa-
rameters. The distinction between the FLEX and SYM option is as follows:

• FLEX is used for orientable objects with a partially constrained affix-
ment between them. The variables in the definition are bound to values
when the components are linked during recognition.

• SYM is used for unorientable, rotationally symmetric objects. Any
value can be matched to the variable during recognition, and the vari-
ables always have values during enquiry (nominally 0.0). Examples of
this from the models used in this research include the chair legs.

The AT and FLEX (or SYM) transformations are largely equivalent, and
so could be algebraically combined, but this complicates the definition task.
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Figure 7.4: Partially Constrained ASSEMBLY Example

A subcomponent’s partially constrained position is usually specified relative
to the subcomponent, not the ASSEMBLY. The affixment to the ASSEM-
BLY, however, is usually about a point that is defined in the ASSEMBLY’s
reference frame, so that the two transformations are separated.

An ASSEMBLY S with a rotational degree-of-freedom is shown in Figure
7.4. It is attached to the table T and rotates rigidly (to angle Θ) along
the path CD. S and T are part of ASSEMBLY Q. Both T and Q have
their coordinate frames located at G and S has its at B. The ASSEMBLY is
defined:

ASSEMBLY Q =

T AT ((0,0,0),(0,0,0)) % T is at G

S AT ((10,0,0),(3*pi/2,pi/2,0)) % from G to A

FLEX ((-7,0,0),(Theta,0,0)); % from A to B

The recursive subcomponent hierarchy with local reference frames sup-
ports a simple method for coordinate calculations. Assume that the hierarchy
of components is:

ASSEMBLY P0 =

P1 AT A1
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FLEX F1

ASSEMBLY P1 =

P2 AT A2

FLEX F2

ASSEMBLY P2 =

P3 AT A3

FLEX F3

...

Let Ai and Fi be simplified homogeneous coordinate matrices representing
the reference frame transformations given above. Then, each of these 4*4
matrices has the form:

(

Ri
~Ti

~0t 1

)

where Ri is the 3 × 3 rotation matrix and ~Ti is the translation vector. Each
matrix represents the transformation ~Ti +Ri ∗~v of a vector ~v in the subcom-
ponent to the object coordinate system. If:

G is the matrix transforming the ASSEMBLY’s top level coordinate system
into global coordinates, and

C transforms from global coordinates into those of the camera,

then a point ~p in the local coordinate system of ASSEMBLY Pn can be
expressed in camera coordinates by the calculation:

CG(A1F
−1
1 )(A2F

−1
2 )...(AnF−1

n )~p

There are many ways to decompose a body into substructures, and this
leads to the question of what constitutes a good segmentation. In theory, no
hierarchy is needed for rigidly connected objects, because all surfaces could be
directly expressed in the top level object’s coordinate system. This is neither
efficient (e.g. there may be repeated structure) nor captures our notions
of substructure. Further, a chain of multiple subcomponents with partially
constrained affixments represented in a single reference frame would have a
complicated linkage definition.

Some guidelines for the decomposition process are:

1. Object surfaces are segmented according to the shape discontinuity
criteria of Chapter 3.
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Figure 7.5: Segmenting a Rivet Versus a Cylinder on a Plane

2. Non-rigidly connected substructures are distinct ASSEMBLYs.

3. Repeated structures become distinct ASSEMBLYs (e.g. a common
surface shape, like a chair leg).

4. Surface groups surrounded by concave surface shape discontinuities be-
come ASSEMBLYs (e.g. where the nose joins to the face). This is
because one cannot distinguish a connecting-to from a sitting-on rela-
tionship, and so data segmentation must take the conservative choice.
Hence, the models should follow this as well. Figure 7.5 illustrates this
problem for a structure that might be a rivet or a cylinder on a plane.

Examples of the Models
A range of solid and laminar structures were modeled. The robot model

(Figure 1.9) has four rigid subcomponents: the cylindrical base, the shoulder,
the upper arm and the lower arm/gripper. Each of these is an ASSEMBLY,
as are several of their subcomponents. These four components are joined
hierarchically using the FLEX option to represent the partially constrained
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Figure 7.6: Chair Model

joint angles. The shoulder body and robot body are defined using non-
segmenting boundaries to correspond to the observed extremal boundaries
(as discussed below).

The chair (Figure 7.6) and trash can (Figure 7.7) illustrate laminar sur-
faces and symmetric subcomponents (SYM). The chair legs are defined as
thin cylinders, which are attached by a SYM relation to the chair, as is the
seat. The seat and back are both laminar surfaces defined using two back-to-
back SURFACEs (with their associated surface normals outward-facing). A
similar construction holds for the trash can. Its model has six SURFACEs,
because both the outer and inner cylindrical surfaces were split into two,
with non-segmenting boundaries joining.

The complete model for the robot is given in Appendix A.
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Figure 7.7: Trash Can Model
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Figure 7.8: Chair Leg Becomes Part of Chair Back

Discussion on the Geometric Model
There are several major inadequacies with the geometric modeling sys-

tem. Object dimensions have to be fixed, but this was largely because no con-
straint maintenance mechanism was available (unlike in ACRONYM [42]).
Uniform surface and boundary segment curvatures were also simplifications.
However, because major curvature changes cause segmentations, deviations
between the models and observed objects should be minor. The point was
to segment the models in a similar manner to the data, to promote direct
feature matching through having a similar representation for both.

Of course, some surfaces do not segment into conceptual units strictly
on shape discontinuities, such as when a chair leg continues upward to form
part of the chair back (Figure 7.8). Here, the segmentation requires a bound-
ary that is not in the data. This is part of the more general segmentation
problem, which is ignored here.

The surface matching process described in Chapter 9 recognizes image
surfaces by pairing them with model SURFACEs. Because non-planar sur-
faces can curve away from the viewer’s line-of-sight, the observed surface
patch may not correspond to the full modeled patch. Moreover, extremal
boundaries will be seen, and these will not correspond with the patch bound-
aries.

As the matching process can not properly account for this phenomenon, it
was necessary to ensure that the models were defined to help avoid the prob-



153

lem. This required splitting large curved surfaces into patches corresponding
to typically obscured surfaces. For example, full cylindrical surfaces were
split into two halves, because only one half could be seen from any view-
point. The new cylindrical patch boundaries approximately correspond to
the extremal boundaries (i.e. subset of the front-side-obscuring boundaries)
of the observed surface.

For surfaces with an extent that distinguishes orientation, this approach
needs extension. A key instance where this splitting was adequate but not
general was with the cylindrical robot shoulder, because the shoulder had
an irregular notch where it connected to the base. As with the cylindrical
surface, the patch was split at its apex to give a boundary that could be
matched with the observed extremal boundary, and a roughly corresponding
surface patch. If the robot had been viewed from an orientation substantially
above or below that actually seen in Figure 1.1, the shoulder patch may not
have been recognized.

Surfaces have been represented with a single boundary, and so must not
have any holes. The important issues of scale, natural variation, surface
texture and object elasticity/flexibility are also ignored, but this is true of
almost all modeling systems.

This surface-based representation method seems best for objects that
are primarily man-made solids. Many other objects, especially natural ones,
would not be well represented. The individual variation in a tree would not be
characterizable, except through a surface smoothing process that represented
the entire bough as a distinct solid with a smooth surface, over the class of
all trees of the same type. This is an appropriate generalization at a higher
level of conceptual scale. Perhaps a combination of this smoothing with
Pentland’s fractal-based representation of natural texture [130] could solve
this problem.

According to the goals of the recognition system, an object probably
should not be completely modeled, instead only the key features need de-
scription. In particular, only the visually prominent surfaces and features
need representation and these should be enough for initial identification and
orientation.

Finally, any realistic object recognition system must use a variety of rep-
resentations, and so the surface representation here should be augmented.
Several researchers (e.g. [121, 42, 112]) have shown that axes of elongated
regions or volumes are useful features, and volumetric models are useful
for recognition. Reflectance, gloss and texture are good surface properties.
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Viewer-centered and sketch models provide alternative representations.

7.2 Other Model Information

Object models include more than just shape and structure, and this section
discusses the remaining information and its representation. Model invoca-
tion (Chapter 8) needs three types of object-linked information. (The work
described below is by both myself ([67, 72]) and Paechter [128].) The details
and the use of this information is described in depth in Chapter 8.

The first type is interobject relationships, which provides indirect evi-
dence. Seven types of relationships are allowed: subcomponent, supercom-
ponent, supertype (family), subclass (specialization), superclass (simplifica-
tion), arbitrary association and inhibiting. The model also includes a weight
to express the importance of the relationship. The information is represented
as:

relation OF objecttype1 IS objecttype2 weight

For example:

SUPERTYPE OF trash can outer surface IS positive cylinder 1.0

The second requirement is for constraints on feature properties (Chapter
6) specified by the acceptable value ranges and a contribution weight. Ex-
amples of this information are the expected areas of surfaces or angles at
which surfaces meet. The value ranges are based on normal distributions
about peak values, and may include or exclude the values near the peak.
Additionally, some properties may just be required to be above (or below)
the peak value. Altogether, six forms for property requirements are used.

The final invocation requirement is for subcomponent groups, which are
lists of the immediate subcomponents seen from each distinct viewpoint.

Some of the extra information could have been derived from the geo-
metric models (e.g. subcomponent relationships). For others, such as the
importance of an attribute to the invocation of a model, the relationships or
the methods for automatically extracting the information (i.e. for deciding
on the key visible feature groups) are not well understood. Hence, the extra
information is represented explicitly.
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7.3 The SMS Object Representation Approach

Based on the experience of this and more recent research, the SMS ob-
ject representation system [70] was designed. Extensions over the geometric
model approach described above include: multiple, alternative representa-
tions (curve, surface or first and second-order volumetric primitives), sur-
faces that extend around the objects, and can have holes, key feature mod-
els, parameterized feature sizes and properties (e.g. surface curvatures), un-
constrained degrees-of-freedom in reference frame transformations, multiple
levels of scale-based representation and viewpoint dependent visibility infor-
mation.

The goal of SMS is to represent the visual aspects of an object that
characterize its identity, rather than describe its shape. Hence, the modeling
approach aims to provide representations that closely correspond to reliably
extractable image features. This implies that:

1. all object features may not be represented, but instead only the most
salient,

2. model representations may not be exact enough for precise reconstruc-
tion of the object (e.g. shapes may be simplified to correspond to
expected data features or surface patches may not join up neatly) and

3. there may be a variety of alternative (structural or scale-based) repre-
sentations, depending on the expected data.

The SMS structural models are linked by a subcomponent hierarchy sim-
ilar to that described for IMAGINE I, where subcomponents can be joined
to form larger models by reference frame transformations. SMS allows par-
tially constrained relationships, either through the use of variable parameters
in the transformation, or by use of an unconstrained degree-of-freedom rela-
tionship that, for example, aligns a subcomponent axis vector with a given
vector direction in the main model.

The primitive ASSEMBLY structure (i.e. one without subcomponent
ASSEMBLYs) can have three non-exclusive representations based on curve,
surface or volumetric primitives. The main motivation for the structural al-
ternatives is that different sensors produce different data features (e.g. stereo
produces good edge features, ranging produces good surface features and
bodyscanners produce good volumetric features). SMS allows one to use the
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same model to interpret data from all of these scenes; whether this is useful
is not known yet.

The curve representations are piecewise circular, elliptic and straight arcs,
segmented by the curvature discontinuity criteria proposed in Chapter 3. Sur-
face patches are similar to those described above, except that SURFACEs
can now be connected on all sides (e.g. a complete cylinder instead of two
arbitrarily segmented patches) and may have holes. Patches are carved out
of infinite planes, cylinders and cones, or (finite) tori. Volumetric primitives
are based on those proposed by Shapiro et al. [146]. They used a rough three
dimensional object model based on sticks (one primary dimension of exten-
sion), plates (two dimensions) and blobs (three dimensions) and structural
interrelationships. This approach allowed development of more stable rela-
tional models, while still symbolically characterizing object structure. The
SMS modeling system also has some second-order volumetric representations
[73] for small positive features (bump, ridge, fin and spike) and negative fea-
tures (dent, groove, slot and hole). The volumetric primitives provide model
primitives that can be matched to rough spatial characterizations of the scene
- such as when stereo provides only a sparse depth image.

In Figure 7.9 we can see first a surface characterization of a “widget”
and then a volume and curve based model. Each representation approach
captures the “feel” of the object differently.

There is a simplification hierarchy in SMS, which links together models
through scale relationships. This development is more speculative, and tries
to fuse the ideas of Marr and Nishihara [111] and Brooks [42] on scale-based
refinement of model representations and generalization hierarchies. At each
new level in the simplification hierarchy, models have their features simplified
or removed, resulting in broader classes of objects recognizable with the
model. Figure 7.10 shows a coarse and fine scale model of an ashtray (which
is also considerably more free-form than the “widget”). The main difference
between the two representations is the simplification of the cigarette rest
corrugations in the fine scale model to a plane in the coarse model. The
plane is a suitable representation for when the object is too distant from the
observer to resolve the fine detail.

Following ACRONYM [42], all numerical values can be symbolic variables
or expressions, as well as constants. This has been used for generic model
representation, by allowing size variation amongst the recognizable objects.
Variables are defined as either local or global to a model and are bound
by a dynamic scoping mechanism. For example, one could define a robot
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Figure 7.9: Surface and Volume/Curve Model of “Widget”
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Figure 7.10: Coarse and Fine Scale Model of Ashtray
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finger with an external scale parameter and an internal joint angle parameter.
When defining a robot hand using several instances of the fingers, than each
finger would have its own joint position, but all fingers would have the same
scale parameter. Figure 7.11 shows the ashtray with parameter changes
causing a wider and deeper shape.

Besides the structural model, each SMS model has a set of constraints
and descriptions. Some constraints are expressed in algebraic form, following
ACRONYM, and affect the model variables (e.g. feature sizes and joint an-
gles). These constraints can be exploited in the simplification hierarchy, as
in ACRONYM. Evidence constraints bound properties such as area, curva-
ture or relative position. These are used primarily for model invocation, as
discussed in Section 7.2. Finally, relations between the volumetric primitives
can be given [146], such as “a STICK touches a PLATE”.

Each SMS model has some visibility information directly represented
along with the object-centered information described above. While this infor-
mation is derivable from the geometric model, in principle, experience with
IMAGINE I showed that these derivations were time-consuming, because a
full raycast image was synthesized and then analyzed. (Chapter 9 elaborates
on this).

The visibility information is organized into visibility groups, where each
group corresponds to a different topological viewpoint of the immediate sub-
components. While this is still an open research problem, our work suggests
that the complexity of the viewsphere [104] of a complicated object, can be
reduced by (1) only considering occlusion relationships between immediate
subcomponents of a model, thus creating a hierarchy of viewspheres, and (2)
only considering large scale relationships, like surface ordering. Each visibil-
ity group records which subcomponents are visible or tangential (i.e. possibly
visible) and for the visible ones, which are partially obscured. New viewpoint
dependent features are also recorded, such as surface relative depth ordering,
TEE junctions and extremal boundaries on curved surfaces. Each viewpoint
has a set of algebraic constraints that specify the range of object positions
over which the given viewpoint is visible.

As can be seen, the SMS models are considerably richer than those used
for IMAGINE I, and form the basis for the IMAGINE II system currently
being developed (see Chapter 11). The rest of this book describes the results
obtained using the IMAGINE I models.
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Figure 7.11: Parameter Changes Give Deep and Wide Ashtray
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7.4 Other Object Representation Approaches

Marr [112] proposed five criteria for evaluating object representations:

1. accessibility – needed information should be directly available from the
model rather than derivable through heavy computation,

2. scope – a wide range of objects should be representable,

3. uniqueness – an object should have a unique representation,

4. stability – small variations in an object should not cause large variations
in the model and

5. sensitivity – detailed features should be represented as needed.

We will use these criteria to help understand the relationships between dif-
ferent model schemes.

The model representation scheme defined above generally satisfies these
criteria, except that the uniqueness criterion is weakened to become: an
object should have only a few representations and these should be easily
derivable from each other. The problem with the uniqueness criterion appears
when one considers the subcomponent hierarchy. At present, there is no
strong understanding of when to describe a set of features at one level in a
model hierarchy versus creating a separate subcomponent for them. Further,
given that the image data is typically seen from only one viewpoint, it is
conceivable that the properties that were used in organizing the model may
not be observed in the image data. An example where this might occur is
with: (a) a teapot body and spout grouped at one level of description with
the handle added at a higher level versus (b) grouping all three features at
the same level.

The problems of model hierarchies suggest that another criterion of a
good representation is conceptual economy, and I have identified two jus-
tifications for it. First, economy dictates that there should be only a single
representation of any particular shape, and multiple instances of that shape
should refer to the single representation. Second, features that are distinctly
characterized as a whole, irrespective of their substructures, should be rep-
resented simply by reference to that whole, with the details of that feature
represented elsewhere.
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Brady [39] proposed three additional criteria for analyzing representation
schemes: rich local support, smooth extension and subsumption of repre-
sentations and reference frame propagation. Since surface patch types are
defined by the principal curvatures, the first additional criterion is partially
satisfied. The second one does not seem to apply (Brady investigated merging
local descriptions to form larger descriptions). The reference frame propaga-
tion criterion also seems to be satisfied because, here, all model features have
well defined local reference frames and data descriptions also have local ref-
erence frames (though there may be degrees-of-freedom, as with a cylindrical
patch).

Modeling schemes in computer vision mainly belong to two families:

• Property representations – that define objects by properties or con-
straints (without recourse to an explicit geometric model) the satisfac-
tion of which should lead to unique identification.

• Geometric representations – that represent object shape and structure.

The representations may be expressed implicitly in a computer program or
explicitly as an identifiable defined model. The implicit model is not different
in competence from the explicit model, but is ignored here because of its lack
of generality. We discuss the two families in greater detail in the following
subsections. (These representations are closely related to the matching algo-
rithms discussed in Chapter 2.)

Property Representations
A typical property representation associates lists of expected properties

with each object. Some examples of this are:

• color, size and height for image regions in office scenes [55],

• rough object sizes, colors and edge shapes for desk top objects [149]
and

• face shape, edge lengths and two dimensional edge angles for identifying
polyhedra [60].

One can also include relationships that have to be held with other structures
(e.g. [19]), such as in Adler’s program [3] that interpreted two dimensional
Peanuts cartoon figure scenes.
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Property and relationship representations often take the form of a graph.
Here, object features become nodes in the graph, relationships between the
features become the arcs and properties of the features are labels on the
nodes. For example, Barrow and Popplestone [16] represented visible object
regions and their interrelationships, (like adjacency and relative size).

Graph representations have the advantage of adding some structure to
the object properties, and providing a common representation method for
many problems. One problem is all object details tend to be represented at
the same level, so the graphs can become large without benefit. Adding more
detail increases the computational difficulties of matching rather than easing
them. Barrow et al. [17] investigated hierarchical graph representations in
matching to try to overcome the computational complexity.

Various researchers ([83, 119, 123]) have augmented property represen-
tations with weak geometric shape (e.g. parallel, square) and relationships
(e.g. above, near).

Property representations mainly satisfy Marr’s scope and accessibility
criteria. Further, graph and property representations are usually two dimen-
sional, whereas we are interested in three dimensional objects and scenes,
where changes in viewpoint make drastic changes in the representation. Prop-
erty representations offer simplicity at the expense of having weak descriptive
powers and providing no support for active deduction. However, it is still
difficult to represent natural objects geometrically so their recognition must
depend heavily on these property representations.

Geometric Representations
Early geometric models were based on three dimensional point or line de-

scriptions. Point models (e.g. [139]) specify the location of significant points
relative to the whole object. This method is simple but problematic, because
of difficulties in correctly establishing model-to-data correspondences. Edge
models (e.g. [60]) specify the location, orientation and shape of edges (typ-
ically orientation discontinuities). These characterize the wire-frame shape
of an object better than the point models and have stronger correspondence
power, but lead to difficulties because of the ambiguity of scene edges and the
difficulty of reliably extracting the edges. Further, it is difficult to define and
extract intrinsic linear features on curved surfaces. Point and edge models
have trouble meeting Marr’s scope and sensitivity criteria.

Surface models describe the shape of observable surface regions and their
relationship to the whole object (and sometimes to each other). Key ques-
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tions include how to describe the shape of the surfaces and what constitutes
an identifiable surface primitive.

Surface regions can be represented by their bounding space curves in
wire frame models ([36, 14], page 291). Planar surfaces are most easily rep-
resented, but curved surfaces can also be represented by judicious placement
of lines. While useful for computer-aided design and graphics, the surface
information needed for recognition tends to be hard to access.

Surface patch models can give arbitrarily accurate representations of ob-
ject surfaces. One approach to surface representation is by bicubic spline
patches ([171, 14], page 269), where cubic polynomials approximate the sur-
face between fixed control points, giving both positional and derivative con-
tinuity. Lack of uniqueness and stability are weak aspects of these models.
Also, these modeling approaches ignore the problem of shape discontinuities
(i.e. surface orientation).

A second popular approach uses polygonal patches (e.g. [34]), with sub-
division of the patches to achieve the required accuracy. These represent
surfaces well, but give no conceptual structure to the surface and also suffer
over the stability criterion. Faugeras and Hebert [63] used planar patches
derived from depth data to partially bound a three dimensional rigid object.
Here, the model did not characterize well the full object, rather, it concen-
trated on nearly planar regions. Other researchers have created planar and
cylindrical surface models from light-stripe range data (e.g. [133, 52]).

On the whole, surfaces represent the actual visibility of an object well
and allow direct comparison of appearance, but do not easily characterize the
mass distribution of an object. Further, techniques for describing surfaces
that are curved or have natural variation for recognition have not yet been
well formulated.

Volumetric models represent the solid components of an object in relation
to each other or the whole object. Examples include space filling models (e.g.
[14], page 280) that represent objects by denoting the portions of space in
which the object is located, and constructive solid geometry (CSG) models,
that start from geometric primitives like cubes, cylinders or half-spaces (e.g.
[137, 44]) and then form more complex objects by merging, difference and
intersection operations. With these, three dimensional character is directly
accessible, but appearance is hard to deduce without the addition of surface
shape and reflectance information. Matching with solids requires finding
properties of images and solids that are directly comparable, such as ob-
scuring boundaries and axes of elongation. These volumetric representations
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tend to meet only Marr’s scope and sensitivity criteria.
Recently, Pentland [131] introduced a superquadric-based volumetric model

representation. The advantage of the superquadrics was that a great variety
of primitive volumes can be described using only a few parameters. Natural
appearance was improved by adding fractal-based surface texture afterwards.
Larger objects and scenes were formed by scaling and positioning instances
of the primitives. Pentland demonstrated several techniques for locally esti-
mating a global superquadric decomposition (from local shape analysis and
global subsumption) that was particularly effective on elongated features. He
also demonstrated estimation of fractal parameters from local shape spatial
frequency spectra and showed how these could be used to segment texture
regions. However, as with the CSG primitives, superquadric models seem to
be more useful for graphics, and appear to have difficulties with uniqueness
and access of the correct feature for model matching. This remains an open
research area.

Another promising volumetric model for computer vision is the general-
ized cylinder (or cone) ([27, 111, 6, 91]), which have had their most significant
usage in the ACRONYM system [42].

The primitive unit of representation is a solid specified by a cross-sectional
shape, an axis along which to sweep the cross-section and a sweeping rule
describing how the shape and orientation of the cross-section vary along the
axis.

The axis was the key feature because of its relation to axes directly deriv-
able from image data. Many “growth” based natural structures (e.g. tree
branches, human limbs) have an axis of elongation, so generalized cylinders
make good models. It also represents many simple man-made objects well,
because the manufacturing operations of extrusion, shaping and turning cre-
ate reasonably regular, nearly symmetric elongated solids.

In Marr’s proposal [112], objects were described by the dominant model
axis and the names and placement of subcomponents about the axis. Sub-
components could be refined hierarchically to provide greater detail. The
specification used dimensionless units, which allowed scale invariance, and
the relative values were represented by quantized value ranges that provided
both the symbolic and approximate representation needed for stability to
variation and error.

Brooks [42] used generalized cylinders in the ACRONYM system, where
they could be directly matched to image boundary pairs (i.e. ribbons). Sub-
components were attached by specifying the rotation and translation relating
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the object and subcomponent reference frames. All primitive or affixment
relationship specifications could contain variables, but the subcomponents
used in ACRONYM’s airplane example were all rigidly connected to the
main model. Hogg [91] used variable attachments to represent joint varia-
tion in a human model, with a posture function constraining relative joint
position over time.

For matching, ACRONYM’s geometric models were compiled into a pre-
diction graph, where key generalized cylinders became the nodes and place-
ment relationships between the cylinders defined the relations. Because the
image data being matched was two dimensional, the prediction graphs rep-
resented typical two dimensional views of the objects, derived from the full
three dimensional geometric model. The advantage of this was that the full
constraints of the geometric model could be employed in the uniform graph
matching method. Substantial reasoning was needed to derive the prediction
graph from the three dimensional models.

The most important contribution of ACRONYM’s modeling was the use
of algebraic constraints that limit the range of model variables in relation to
either fixed values or other variables. An example would be: “the length of
a desk top is greater than the width, but less than twice the width”, where
both length and width are variable parameters.

Variables and constraints together support generic class models, at least
in structural terms (as opposed to functional). The structural aspects of the
model define the essential components and their attachments, symbolic pa-
rameters denote the type of variation and the constraints specify the range of
variation. The effect of the algebraic constraints is to structure the space of all
possible models with the same logical part relationships into a generalization
hierarchy, where more restrictive constraints define generic specializations of
the model. Subclasses are defined by more tightly constrained (or constant)
parameters, or additional constraints.

A criticism of the generalized cylinder/cone representation concerns its
choice of primitive element. Many natural and man-made objects do not
have vaguely cylindrical components: a leaf, a rock, the moon, a crumpled
newspaper, a tennis shoe. Though some aspects of these objects could be
reasonably represented, the representation would omit some relevant aspects
(e.g. the essential two dimensionality of the leaf), or introduce other irrele-
vant ones (e.g. the axis of a sphere). Hence, other primitives should at least
be included to increase its scope.
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Secondly, what is perceived is the surface of objects. Hence, it seems
reasonable that the preferential representation for object recognition should
make surface-based information explicit. The near-parallel, tangential ob-
scuring boundaries of a generalized cylinder (“ribbon”) are reasonable fea-
tures for detection, and the orientation of the figure’s spine constrains its
three dimensional location, but this is about all the information that is eas-
ily derivable from the cylinder representation. Surface shape comparisons
are non-trivial, because it is difficult to determine the visible surfaces of the
cylinder and what it will look like from a given viewpoint. It is often hard
to decide with what model feature an image feature should correspond.

These models are structured, so that they meet the sensitivity criterion
and give unique representations. When modeling objects formed from hi-
erarchical collections of elongated primitive shapes, the generalized cylinder
method also meets the scope and stability criteria. The key problem of these
models is accessibility – it can be hard to deduce much about the appearance
of an object from its volumetric description and much about which model to
use from the observed appearance.

These considerations, however, are most relevant when recognizing ob-
jects whose three dimensional surface shape and structure is apparent at
the scale of analysis. The ACRONYM examples, aerial photographs of air-
port scenes, were largely two dimensional as almost all objects were reduced
to laminar surfaces viewed perpendicularly. Hence, treating nearly parallel
intensity boundaries as potentially observable extremal boundaries of gener-
alized cylinders was appropriate.

The reduction of generics to numerical ranges of parameter values is sim-
plistic, although an important first step. Sometimes it is inappropriate: a
model adequate for recognizing a particular type of office chair probably
would not specialize to any other chair. Any chair model that includes most
office chairs would probably require a functional definition: seating surface
meets appropriate back support surface.

Brooks attempted to introduce structural variation through parameter
variation, but his solution seems inappropriate. For example, an integer
variable ranging from 3 to 6 was used to state that an electric motor had
3, 4, 5 or 6 flanges, and a second variable stated that a motor did or did
not have a base by constraining its value to 0 to 1. More complicated al-
gebraic inequalities stated that motors with bases have no flanges. Uniform
representation is a laudable goal, but these examples suggest that a more
powerful representation should be considered. Hence, the physical variation
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within a class (i.e. size and affixment variations), that constraints repre-
sent well, should be separated from the conceptual relationships involved in
generalization, where logical/relational constraints would be better.

There has been little work on object representations for non-rigid objects,
other than ACRONYM, as just described. Grimson [79] defined and recog-
nized piecewise linear two dimensional models that could scale, stretch along
one axis or have subcomponents joined by a revolute joint. Terzopolous et
al. [159] described symmetry-seeking models based on deformable paramet-
ric tube and spine primitives. The shapes of the models were controlled by
energy constraints on the deformation of the spine, the symmetry of the tube
and the relative position of the two. These models allowed the successful re-
construction of three dimensional natural shapes (e.g. a crook-neck squash)
from only the two dimensional image contours. It is unclear, however, if this
approach is suitable for object recognition, because of the many parameters
required.

Most geometric representations are object-centered, though Minsky [116]
proposed a frame representation for recording features visible from typical
distinct viewpoints, thus adding viewer-centered information. Chakravarty
[47] applied this notion in classifying the topologically distinct views of poly-
hedral scenes, for use in object recognition. Koenderink and van Doorn [104]
considered the application of such ideas to generic smooth objects, by ana-
lyzing the discontinuities of occlusion and visibility relationships.

Final Comments This completes our discussion on object representation.
Other discussions of three dimensional object representation techniques can
be found in [14, 23, 71]. A particularly thorough review was given by Besl
[26] and covers geometric techniques for space-curves, surfaces, volumes and
four dimensional (i.e. moving) objects. His review also summarized well the
basic geometric matching techniques that are typically used with each class
of object.

With the models defined in this chapter, we can now start to recognize
the objects in the scene. The recognition process will make heavy use of the
surface-based geometric models, and of the subcomponent hierarchy. The
first step of recognition is to select potential models for the image features,
which is the topic of the next chapter.



Chapter 8

Model Invocation

One important and difficult task for a general model-based vision system
is selecting the correct model. Model-based vision is computationally in-
tractable without reducing the large set of objects that potentially explain a
set of data to a few serious candidates that require more detailed analysis.
Since there may be 1,000 – 100,000 distinct objects in a competent general
vision system’s range, and even a modest industrial vision system may have
100 distinct objects in its repertoire, the problem is too large to undertake
model-directed comparisons of every known object in every viewpoint. The
problem remains even if the potentially massive parallelism of the brain or
VLSI are considered.

Visual understanding must also include a non-attentive element, because
all models need be accessible for interpreting all image data. So, the solution
must consider both efficiency and completeness of access.

There is also a more crucial competence aspect to the problem. A vision
system needs to be capable of (loosely) identifying previously unseen objects,
based on their similarity to known objects. This is required for non-rigid
objects seen in new configurations, incompletely visible objects (e.g. from
occlusion) or object variants (e.g. flaws, generics, new exemplars). Hence,
“similar” models must be invoked to help start identification, where “similar”
means sharing some features or having an identically arranged substructure.

In view of all these requirements, model invocation is clearly a complex
problem. This chapter presents a solution that embodies ideas on association
networks, object description and representation, and parallel implementa-
tions. In the first section, the relevant aspects of the problem are discussed.
The second presents a theoretical formulation of the proposed solution, the
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third shows examples of the process, the fourth discusses related work, and
the last evaluates the theory.

The work described here builds on the original work by Fisher [67] and
many significant improvements by Paechter [128].

8.1 Some Characteristics of the Invocation

Process

Invocation is Suggestion

Invocation is the result of the directed convergence of clues that suggest
identities for explaining data. On the street, one occasionally sees a person
with a familiar figure, face and style, but who on closer inspection turns
out not to be the acquaintance. The clues suggest the friend, but direct
examination contradicts the suggestion.

Invocation also supports the “seeing” of nonexistent objects, as in, e.g.,
Magritte’s surrealist paintings, where configurations of features give the im-
pression of one object while actually being another. Figure/ground reversals
and ambiguous interpretations such as the vase and faces illusion could oc-
cur when multiple invocations are possible, but only a single interpretation
is held at any instant, because of mutual inhibition, as suggested by Arbib
[9] and others.

Invocation is Mediated by Relationships

Invocation is computed through associations or relationships with other
objects. The effect is one of suggestion, rather than confirmation. For ex-
ample, a red spheroid might suggest an apple, even though it is a cherry.
Another example is seen in the Picasso-like picture drawn in Figure 8.1.
Though many structural relationships are violated, there are enough sugges-
tions of shapes, correct subcomponents and rough relationships for invoking
a human face.

While there are many types of relationship between visual concepts, two
key ones are mediated by class and component relationships as discussed be-



171

Figure 8.1: Picasso-like Figure Invokes Human Model
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low. Other relationship types include context (robots are more often found
in factories than in trees) or temporal (a red traffic light is often seen after
a yellow traffic light). Altogether, the work here integrates eight different
evidence types: subcomponent, supercomponent, subclass, superclass, de-
scription (i.e. generic shape), property, general association and inhibiting
(i.e. competing).

Associations Have Varying Importances

The importance of a particular feature in invoking a model is a function
of the feature, model, context and viewing system.

Some objects share common features, such as planar faces in blocks world
scenes. Other objects have distinct features, such as the shape of the Eiffel
Tower, an ear or the characteristic blue light used by emergency vehicles.
Hence, some features may dramatically reduce the set of potential models.

Context is also important, because the a priori likelihood of discovering
an object influences the importance of a feature. Wheels (generic) when
seen in a garage are more likely cues for automobiles than when seen in a
bicycle shop. Part (a) of Figure 8.2 shows is a standard pyramid that is
unlikely to invoke any models other than its literal interpretation. Yet, in
Figure 8.2 part (b), the same pyramid invokes the “nose” model acceptably.
Obviously, the context influences the likely models invoked for a structure.
The viewing system is also a factor, because its perceptual goals influence the
priorities of detecting an object. For example, industrial inspection systems
often concentrate on a few distinctive features rather than on the objects as
a whole.

Statistical analysis could determine the likelihood of a feature in a given
context, but is unhelpful in determining the importance of the feature. Fur-
ther, because contexts may change, it is difficult to estimate the object and
feature a priori distributions needed for statistical classification. Finally,
feature importance may change over time as factors become more or less
significant (e.g. contexts can change). Hence, importance assessment seems
more properly a learning than an analysis problem.

Evidence Starts with Observed Properties
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Figure 8.2: Pyramid in Face Context Invokes Nose Model

Property evidence is based on properties extracted from the input data.
Here, the evidence will be common unary or binary properties. An example
is surface shape evidence, which may have zero, one or two magnitudes and
axes of curvature.

The properties are absolute measurements constrained by bounds (like
ACRONYM [42]). Some properties must lie in a range, such as expected
surface area. Others are merely required to be above or below a limit, as
when requiring positive maximum principal curvature. Other property values
may be excluded, such as zero principal curvature.

Evidence is acquired in “representative position” [51]. Features that re-
main invariant during data acquisition over all observer positions are few
(e.g. reflectance, principal curvatures). As this research is concerned with
surface shape properties, the potential evidence is more limited and includes
angles between structures, axis orientations, relative feature sizes and rela-
tive feature orientations. Invocation features should be usually visible. When
they are not, invocation may fail, though there may be alternative invocation
features for the privileged viewing positions.

Evidence Comes from Component Relationships
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Figure 8.3: Identified Subcomponents Invoke Models

The presence of an object’s subcomponents suggests the presence of the
object. If we see the legs, seat and back of a chair, the whole chair is likely
although not guaranteed to be there, as we could be seeing an unassembled
set of chair parts. Hence, verified or highly plausible subcomponents influence
the plausibility of the object’s presence. The reverse should also occur. If we
are reasonably sure of the chair’s presence (e.g. because we have found several
subcomponents of the chair), then this should enhance the plausibility that
nearby leg-like structures are chair legs. This information is useful when such
structures are partially obscured, and their direct evidence is not as strong.

Figure 8.3 shows an abstract head. While the overall face is unrepresen-
tative, the head model is invoked because of the grouping of correct subcom-
ponents.

Evidence Comes from Configurations of Components

Configurations of subcomponents affect invocation in two ways: (1) only
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a subset of subcomponents is visible from any particular viewpoint, and (2)
the spatial distribution of subcomponents can suggest models as well. The
first case implicates using visibility groups when integrating evidence. For a
chair, one often sees the top of the seat and the front of the back support,
or the bottom of the seat and back of the back support, or the top of the
seat and the back of the back support, but seldom any of the other twelve
groupings of the four subcomponents. These groupings are directly related
to the major visibility regions in the visual potential scheme suggested by
Koenderink and van Doorn [103]. They showed how the sphere of all poten-
tial viewing positions of an object could be partitioned according to what
components were visible in each partition and when various features became
self-obscured. Minsky [116] suggested that distinguishable viewer-centered
feature groupings should be organized into separate frames for recognition.

It is well known that the many small features of a normal object lead to a
great many regions on the view potential sphere. To avoid this problem, two
ideas were adopted here. First, rather than creating a new visibility region
whenever an occlusion event occurs (i.e. when an edge is crossed), the regions
are formed only according to changes in the visibility of large-scale features
(i.e. SURFACEs and ASSEMBLYs). That is, a new group is formed when-
ever new subcomponents are seen, or when feature ordering relationships are
different. Second, the visibility and feature ordering analysis only applies
to the immediate subcomponents of the object, and disregards any visibility
relationships between their own subcomponents. Thus, visibility complexity
is reduced by reducing the number of features and the details of occlusion
relationships considered, by exploiting the subcomponent hierarchy, and by
ignoring less likely visibility groupings.

Figure 8.4 shows the sphere of viewpoints partitioned into the topologi-
cally distinct regions for a trash can. At a particular scale, there are three
major regions: outside bottom plus adjacent outside surface, outside surface
plus inside surface and outside, inside and inner bottom surfaces. There are
other less significant regions, but these are ignored because of their minor
size.

During invocation, these visibility groupings are used to collect subcom-
ponent evidence, and the invocation of a group implies a rough object ori-
entation. Here, invocation is the important result, which will lead to initial
structure assignments for hypothesis construction (Chapter 9), from which
orientation is estimated directly.

The second aspect of spatial configurations is how the placement of com-
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Figure 8.4: Distinct Viewing Regions for Trash Can
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Figure 8.5: Spatial Configurations Invoke Models

ponents, rather than their identity, suggests the model. Figure 8.5 shows
the converse of Figure 8.3, where all subcomponents have the wrong identity
but, by virtue of their position, suggest the face model.

Spatial configuration evidence is represented by binary evidence types
that constrain relationships like relative position, orientation or size. The
evidence for these relationships should probably be stronger if the features
involved in the relationship also have the correct types. That is, the two
eye-like features in Figure 8.5 help suggest a face, but they would do so more
strongly if they were individually more like eyes.

Evidence Comes from Class Relationships

An object typically has several generalizations and specializations, and
evidence for its invocation may come from any of these other hypotheses. For
example, a generic chair could generalize to “furniture”, or “seating struc-
ture”, or specialize to “dentist chair” or “office typing chair”. Because of the
unpredictabilities of evidence, it is conceivable that any of the more general-
ized or specialized concepts may be invoked before the generic chair. For the
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more general, this may occur when occlusion leaves only the seating surface
and back support prominent. Conversely, observation of a particular distin-
guishing feature may lead to invocation of the more specific model first. In
either case, evidence for the categorically related structures gives support for
the structure.

Class prototypes are useful when a set of objects share a common identity,
such as “chair”. General properties of an object class are more important for
invocation (as compared to verification, which needs the details of shape).

There are some superficial relationships with the generic identification
scheme in ACRONYM [42], where identification proceeds by descent through
a specialization hierarchy with increasingly stringent constraints. Here, the
hierarchy and notion of refining constraints are similar, but: (1) the goal is
suggestion, not verification, so the property constraints are not strict, and
(2) the flow of control is not general to specific: identification could locally
proceed in either direction in the hierarchy.

There is a Low-Level Descriptive Vocabulary

There is a vocabulary of low level, object independent and special inter-
mediate shapes and configurations. The purpose of the descriptions is to
introduce generic, sharable structures into the invocation process. Examples
of the symbols include: “positive-cylindrical-surface” and “square-planar-
polygon”. However, this vocabulary does not usually refer to identifiable
real objects, but instead to ideal generalizations of some particular aspects
of the object. For the “positive-cylindrical-surface”, it does not say anything
about the identity of the patch, nor the extent or curvature, but concisely
characterizes one aspect of the object.

The symbols structure the description of an object, thus simplifying any
direct model-to-data comparisons and increase efficiency through shared fea-
tures. A description hierarchy arises from using subdescriptions to define
more complex ones. An example of this is in the chain of descriptions:
“polygon” - “quadrilateral” - “trapezoid” - “parallelogram” - “rectangle”
- “square”, where each member of the chain introduces a new property con-
straint on the previous. The hierarchy helps reduce the model, network and
matching complexity. Rather than specify all properties of every modeled
object, the use of common descriptions can quickly express most properties
and only object-specific property constraints need be added later.
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This is important to invocation efficiency, because of the filtering effect
on recognitions, whereby image data invoke low level visual concepts, which
then invoke higher level concepts.

If object descriptions are sufficiently discriminating, a vision system may
be able to accomplish most of its interpretation through only invocation with
little or no model-directed investigation.

Invocation is Incremental

Evidence can come from a variety of sources and as more supporting
evidence accumulates the desirability of invoking a model increases. The in-
vocation process must continue even though some evidence is missing because
of occlusion or erroneous descriptions. Complementary evidence should con-
tribute to plausibility and conflicting evidence should detract from it. The
process should degrade gracefully: less evidence should lower the desirability
of invocation rather than prevent it totally.

These factors suggest that invocation is mediated by a continuous plau-
sibility.

Invocation Occurs in Image Contexts

There must be contexts for grouping property evidence and for associ-
ating subcomponents, so that related evidence is integrated and unrelated
evidence is excluded.

Individual Evidence Values Need to be Integrated

Evidence needs to be integrated several times: when individual properties
are merged to provide a total property evidence value, when individual sub-
component evidence values are combined and when all eight evidence types
are combined. This integration is complicated by the different implications of
the evidence types and their relative importances. Moreover, the quantity of
evidence associated with different evidence types implies evidence weighting
is required.



180

8.2 Theory: Evidence and Association

We now describe the invocation process in detail, based on the intuitions of
the previous section.

The first consideration of invocation is from its externally viewed char-
acteristics – its function and its input and output behavior. Formally, the
inputs to invocation are:

• A set {Ci} of image contexts.

• A set {(dj, vij, Ci)} of image descriptions of type (d) with value (v) for
the data in these contexts.

• A database {(ti,Mj,Mk, wijk)} of model-to-model (M) relationships of
different types (t) with weights (w).

• A database {(Mi,{(dij, lij, hij, uij, xij, wij)})} of desired description con-
straints for each model, where d is the description type, l is the lower
acceptable value for the description, h is the expected peak value, u
is the upper acceptable value, x specifies whether the desired value is
included or excluded in the range and w is a weight.

The basic structural unit of invocation is a model instance for a model Mj in
an image context Ci. The output of invocation is a set {(Mj, Ci, pij)} of the
plausibility measures for each model instance. This implies that each object
type is considered for each context. Fortunately, the context formulation has
already achieved a reduction of information.

Invocation always takes place in an image context. This is because ob-
jects are always connected and their features are always spatially close. The
context defines where image data can come from and what structures can
provide supporting evidence. For this research, the two types of contexts
are the surface hypothesis (Chapter 4) and the surface cluster (Chapter 5),
which localize evidence for model SURFACEs and ASSEMBLYs respectively.
The surface cluster also groups surfaces and contained surface clusters, so is
a suitable context for accumulating subcomponent plausibilities.

Model invocation calculates a plausibility representing the degree to which
an object model explains an image structure. Plausibility is a function of the
model, the data context, the data properties, the desired properties, the
model-to-model relationships, current object hypotheses, and the plausibili-
ties of all related model-to-data pairings.
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A plausibility measure is used instead of direct indexing because:

1. many objects have similar features and a plausibility measure expresses
the similarity between models,

2. generic models may not exactly match a real specific object,

3. it allows weak evidence support from associated model-to-data pairings,

4. it supports accumulating unrelated evidence types, and

5. it provides graceful degradation as image descriptions fail because of
noise, occlusion or algorithmic limits.

Given the plausibility ranking, when should a model be invoked? Even
if a model instance has the highest plausibility, it should not invoke the
model if the absolute plausibility is low, as when analyzing an image with
no identifiable objects in it. The measure used lies in the range [−1, 1], and
when it is positive, the model can be invoked. Because the invocation net-
work described below favors positive plausibilities as supporting and negative
plausibilities as contradicting, a threshold of zero was used.

Plausibility is a function of property evidence arising from observed fea-
tures and relationship evidence arising from hypotheses that have some rela-
tionship with the current one. For example, a toroidal shape gives property
evidence for a bicycle wheel, whereas a bicycle frame gives relationship evi-
dence.

The foundation of plausibility is property evidence and is acquired by
matching descriptions of image-based structures to model-based evidence
constraints. The constraints implement the notion that certain features are
important in distinguishing the structure.

Relationship evidence comes from associated model instances. Although
there are many types of relationships, this work only considered the following
ones (treating object A as the model of current interest):

1. Supercomponent: B is an structure of which A is a subcomponent.

2. Subcomponent: B is a subcomponent of structure A.

3. Superclass: B is a more generic class of object than A.

4. Subclass: B is a more specific class of object than A.
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5. Description: Every property of B is a property of A.

6. Inhibition: Identity B competes with identity A.

7. Association: The presence of object B makes the presence of A more
likely.

These seven relationships have been made explicit because each embod-
ies different forms of visual knowledge and because their individual evidence
computations are different. Component relationships give strong circumstan-
tial evidence for the presence of objects. An object necessarily requires most
of its subcomponents for it to be considered that object, whereas the reverse
does not hold. The presence of a car makes the presence of wheels highly
plausible, but cannot say much about whether a particular image feature is
a wheel. The presence of automobile wheels also makes the presence of a car
plausible (though the latter implication is weaker), but does not mean that
any containing image context is likely to contain the car.

The final issue is evidence integration. Evidence is cumulative: each new
piece of valid evidence modifies the plausibility of a structure. Evidence is
also suggestive: each item of support is evaluated independently of the others
and so does not confirm the identity of any structure. Because there are eight
different evidence types, the problem of how to compute a single plausibility
value arises. We wish to use all the evidence, as data errors, missing values,
and object variations are alternative causes for weak evidence, as well as
having the wrong identity. The solution given below treats the different
evidence values on the same scale, but integrates the values according to the
evidence type.

The different model hypotheses in the different contexts are represented
as nodes in a network linked by property and relationship evidence arcs.
Many of the arcs also connect to arithmetic function nodes that compute
the specific evidence values, as discussed in detail below. Property evidence
provides the raw plausibility values for a few of the nodes, and the other nodes
acquire plausibility by value propagation through the relationship arcs.

An abbreviated example is shown in Figure 8.6, where a simplified net-
work is shown with the given relationship links (“G” denotes a class rela-
tionship, “D” denotes a description relationship, “I” denotes an inhibiting
relationship and “C” denotes a component relationship). The precise formu-
lation of the calculations is given in later sections, and the point here is to
introduce the character of the computation (while glossing over the details).
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Figure 8.6: A Simplified Invocation Network

Supposing there was property evidence for there being a < torus > and a
< vehicle > in the current context, the question then is what the plausi-
bility of the < wheel > is. This value comes from integrating description
evidence from the < torus > and component evidence from the < car > and
< bike >, and competing generic evidence from the < polo mint >.

When a model has been invoked, it is subject to a model-directed hy-
pothesis construction and verification process. If the process is successful,
then the plausibility value for that object is set to 1.0. Alternatively, fail-
ure sets the plausibility to −1.0. These values are permanently recorded
for the hypotheses and affect future invocations by propagating through the
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network.
In the discussion of each of the relationship types below, three major as-

pects are considered: the type of relationship, the calculation of the relation-
ship’s invocation contribution and the context from which the relationship
evidence is taken.

8.2.1 Property Evidence

Property evidence is calculated by evaluating the fit of structural properties
(Chapter 6) to model requirements (Chapter 7). An example of a set of
requirements would be a particular surface must be planar and must meet
all adjacent connected surfaces at right angles.

There is some controversy over what constitutes evidence, but here, evi-
dence is based only on primitive image properties, such as relative curve ori-
entation, rather than higher level descriptions, such as “rectangular”. This
decision is partly made because “rectangular” is a distinct conceptual cat-
egory and, as such, would be included as a distinct generic element in the
invocation network. It would then have a description relationship to the
desired model.

The context within which data is taken depends on the structure for
which property evidence is being calculated. If it is a model SURFACE,
then properties come from the corresponding surface hypothesis. If it is
an ASSEMBLY, then the properties come from the corresponding surface
cluster.

Unary evidence requirements are defined in the model database in one
of six forms, depending on whether the values are required or excluded, and
whether there are upper, lower or both limits on their range. The complete
forms are (where e=evidence type is the type of evidence):
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central include:
UNARYEVID low < e < high PEAK peak WEIGHT wgt

above include:
UNARYEVID low < e PEAK peak WEIGHT wgt

below include:
UNARYEVID e < high PEAK peak WEIGHT wgt

central exclude:
UNARYEVID low < e < high PEAK peak ABSENT WEIGHT wgt

above exclude:
UNARYEVID low < e PEAK peak ABSENT WEIGHT wgt

below exclude:
UNARYEVID e < high PEAK peak ABSENT WEIGHT wgt

If the peak value is the mean of the upper and lower limit, it need not be
specified. Each requirement has a weight that scales the contribution of this
evidence in the total property evidence evaluation.

Binary evidence requirements are defined similarly, with the key difference
that the model also specifies the types of the substructures between which
the properties are to hold. The model specification for the binary “central
include” form is:

BINARYEVID low < evidence_type(type1,type2) < high PEAK peak WEIGHT wgt

In IMAGINE I, all evidence types were considered to be unary. If a
binary property between two features was expressed, then evidence evalua-
tion would take the best instance of the binary relationship. IMAGINE II
made the relationship explicit. The properties used in IMAGINE I were:
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NUMLINB number of straight lines in boundary
NUMARCB number of curves in boundary
DBPARO number of groups of parallel lines in boundary
NUM90B number of perpendicular boundary junctions
NUMEQLB number of groups of equal length boundary segments
DCURV boundary segment curvature
DCRVL boundary segment length
DBRORT boundary segment relative orientation
MINSCURV minimum surface curvature
MAXSCURV maximum surface curvature
SURSDA relative surface orientation
ABSSIZE surface area
RELSIZE percent of surface area in surface cluster
SURECC eccentricity of surface

It is possible to generate automatically most of the evidence types from
the geometric models, if heuristics for setting the ranges and weight values
are given, but all these values were manually chosen here. Appendix A shows
some of the evidence constraints for the modeled objects.

Models inherit evidence from their descriptions (discussed in Section
8.2.4), so only additional evidence (i.e. refinements) need be specified here.

Finally, we consider how the total evidence value is calculated from the
individual pieces of evidence. The constraints on this computation are:

• Each piece of evidence should contribute to the total value.

• The contribution of a piece of evidence should be a function of its
importance in uniquely determining the object.

• The contribution of a piece of evidence should be a function of the
degree to which it meets its constraints.

• Negative evidence should inhibit more strongly than positive evidence
support.

• Each piece of evidence should only be evaluated by the best fitting
constraint (allowing disjunctive evidence constraints).

• All constraints need evidence.

• Every property must meet a constraint, if any constraints of the ap-
propriate type exist.
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• Not all properties are constrained (i.e. some are irrelevant).

• Binary property evaluations are also a function of the plausibility that
the two substructures have the desired identities.

Based on the “degree of fit” requirement, a function was designed to
evaluate the evidence from a single description. The function is based on a
scaled gaussian evaluation model, with the evaluation peaking at the desired
value, having positive value within the required range (which need not be
symmetric), and tailing off to -1.0. Because there are six types of evidence
requirements, six different evidence evaluation functions are needed. How-
ever, the excluded types are the negatives of the included types, and the
below types are the mirror image of the above types. So, only the “central
include” and “above include” are described here. Based on the model defi-
nitions above, the “central include” function for the ith evidence constraint
is:

Let;
dj = jth data value

If: dj > peaki

then: fij = ( (dj−peaki)

(highi−peaki)
∗ 1.1774)2

else: fij = ( (peaki−dj)

(peaki−lowi)
∗ 1.1774)2

And the evaluation ej is:

gij = 2 ∗ exp(−fij

2
) − 1

The constant 1.1774 ensures the evaluation equals 0 when the data value
equals high or low. The “above include” function for the ith evidence con-
straint is:

Let:
dj = jth data value

If: dj > peaki

then: fij = 0.0

else: fij = ( (peaki−dj)

(peaki−lowi)
∗ 1.1774)2

And the evaluation ej is:

gij = 2 ∗ exp(−fij

2
) − 1

Figure 8.7 illustrates these functions. Their gaussian form is appealing
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because it is continuous and smooth and relates well to gaussian error distri-
butions from property estimation. Other functions meet the requirements,
but stronger requirements could not be found that define the function more
precisely.

A property constraint’s evaluation is given by the data value that best
satisfies the constraint. This is because model-to-data correspondences have
not been made yet, so the evaluations are undirected. As the point of invo-
cation is suggestion, any datum within the constraint range is contributory
evidence, and correct models will have all their constraints satisfied. Hence,
the final evidence value for this constraint is given by:

ei = maxj(gij)

This portion of the invocation network is illustrated in Figure 8.8.
The evaluation of binary property evidence takes into account the plau-

sibility of the subcomponents as well as the property value itself. Thus:

habi = c1 ∗ gi(a, b) + c2 ∗ par + c2 ∗ pbs + c3

is the evidence evaluation function for the ith binary evidence constraint,
relating model subcomponent r to model subcomponent s, when using the
value of the given property between data features a and b. gi(a, b) is the
same evaluation function as for the unary properties (gij), par and pbs are
the plausibilities that data feature a has model identity r, data feature b has
model identity s, and c1, c2 and c3 are constants that express the relative
importance of the different terms (c1 = 0.8, c2 = 0.4, c3 = −0.6). The final
binary property evidence value is:

ei = maxab(habi)

This picks the best evidence over all pairs of immediate subfeatures in the
data context.

The evaluations for individual property requirements then need to be
integrated. One function that satisfies the evidence integration constraints
is a weighted harmonic mean:
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Figure 8.7: Data Evaluation Functions
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Figure 8.8: Best Evaluation Selection Network Fragment
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let:
ei be the data evaluation for the ith property constraint
wi be the weight for that evidence type

Then:
evdprop = harmmean({(ei, wi)})

where
A =

∑

wi

B =
∑ wi

ei+2

harmmean({(ei, wi)}) = A
B
− 2

If no property evidence is available, this computation is not applied. The
modified harmonic mean is continuous, gives additional weight to negative
evidence and integrates all values uniformly. Moreover, it has the property
that:

harmmean({(e1, w1), (e2, w2), (e3, w3)})
= harmmean({(e1, w1), (harmmean({(e2, w2), (e3, w3)}), w2 + w3)})

This means that we can add evidence incrementally without biasing the
results to the earlier or later values (provided that we also keep track of the
weighting of the values). The offset of 2 is used to avoid problems when the
plausibility is near -1, and was chosen because it gave good results. The
integrated property evidence has a weight that is the sum of the individual
property weights: wprop =

∑

wi.
This harmonic mean can be implemented in a value passing network, as

shown in Figure 8.9, which integrates the evidence values ei with weights
wi. Here, the square boxes represent unary or binary arithmetic units of the
designated type, and circular units represent either constants, or the evidence
values imported from the above calculation.

8.2.2 Supercomponent Associations

This relationship gives evidence for the presence of an object, given the pres-
ence of a larger object of which it may be a subpart. Though evidence
typically flows from subcomponents to objects, supercomponent evidence
may be available when: (1) the supercomponent has property or relationship
evidence of its own, or (2) other subcomponents of the object have been
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Figure 8.9: Harmonic Mean Network Fragment Integrating Property Evi-
dence
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found. Unfortunately, the presence of the supercomponent implies that all
subcomponents are present (though not necessarily visible), but not that an
image structure is any particular component. As the supercomponent ev-
idence (during invocation) cannot discriminate between likely and unlikely
subcomponents in its context, it supports all equally and thus implements a
“priming” operation. This is because the computation is one of plausibility,
not certainty. Weighting factors control the amount of support a structure
gets. When support is given for the wrong identities, other evidence contra-
dicts and cancels this evidence.

There are several constraints derivable from the problem that help define
the evidence computation. They are:

• The presence of a supercomponent makes the presence of an object
plausible.

• The more plausible the presence of the supercomponent, the more plau-
sible the presence of the object.

• There is at most one supercomponent of any object, though there may
be many candidates.

• The context of the supercomponent must contain the context of the
object.

The formal definition of the supercomponent relationship computation is:
Given:

a model instance of type M in image context C
a set {Si} of supercomponents of M
a set {Cj} of supercontexts of C, including C itself and
pij is the plausibility that model Mi occurs in context Cj

Then:
fi = maxj(pij)

chooses the best evidence for a supercomponent over all supercontexts and
evdsupc = maxi(fi)

picks the best supercomponent evidence over all supercomponent types.
The current context is also included because the supercomponent may not
have been visually segmented from the object. If no supercomponent evi-
dence is defined or observed, this computation is not applied.
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The network created for this evidence type is simply a tree of binary
“max” units linked as defined above.

8.2.3 Subcomponent Associations

This relationship gives direct evidence for the presence of an object, given
the presence of its subcomponents. It is stronger than the supercomponent
relationship, because the subcomponents are necessary features of the ob-
jects, but it is not a complete implication because the subcomponents may
be present without the presence of the assembled object. The computation
described below only requires the presence of the subcomponents and does
not consider their geometric relations.

This computation is defined by several constraints:

• The more subcomponents present, the more plausible is the object’s
presence.

• Even if all subcomponents are present, this does not guarantee the
presence of the object.

• Subcomponents are typically seen in viewpoint dependent groupings,
and are seen from only one viewpoint at a time.

• The more plausible a subcomponent’s presence, the more plausible is
the object’s presence.

• The context of all subcomponents must lie within the context of the
object.

The computation is formalized below and looks for the most plausible
candidate for each of the subcomponents in the given context, and aver-
ages the subcomponent’s contributions towards the plausibility of the object
being seen from key viewpoints. The final plausibility is the best of the view-
point plausibilities. Each of the individual contributions is weighted. The
averaging of evidence arises because each subcomponent is assumed to give
an independent contribution towards the whole object plausibility. Because
all subcomponents must lie within the same surface cluster as the object,
the context of evidence collection is that of the hypothesis and all contained
subcontexts.

The formal definition of the subcomponent relationship calculation is:
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Given:
a model instance of type M in image context C
a set {(Si, wi)} of subcomponents of M ,

where wi is the weight of subcomponent Si

sets Gk = {Ski} of subcomponents representing groups
of subcomponents visible from typical viewpoints

a set {Cj} of subcontexts of the context C including C itself
a set of model instances of type Si, in context Cj,

with plausibility value pij

The weight factors designate significance within the group, with larger
weights emphasizing more important or significant features. The subcompo-
nent weights are the sum of the weights of the property evidence specified
for the subcomponents.

The first value calculated is the best evidence for each subcomponent
type in the subcontexts:

bi = maxj(pij)

This is implemented as a tree of binary “max” units. Then, the evidence
for each viewpoint is calculated by integrating the evidence for the expected
viewpoints using the modified harmonic mean function described above:

vk = harmmean({(bi(k), wi(k))})
over all i(k) subcomponents in Gk.

Finally, the evidence from the different viewpoints is integrated, by se-
lecting the best evidence:

evdsubc = maxk(vk)

The assumption is that if the object is present, then there should be exactly
one visibility group corresponding to the features visible in the scene. Sub-
component evidence has a weighting that is the maximum visibility group’s
weight, which is the sum of the weights of the subcomponents and their
properties:

wsubc = maxk(
∑

wi(k))

Relative importances between subcomponents and properties can be modified
by scaling the relevant weights. The network structure for this computation is
similar to those previously shown. If no subcomponent evidence is available,
this computation is not applied.
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8.2.4 Description Evidence

This relationship gives direct evidence for an object, because all properties of
the description type (i.e. a generic objects) are also object properties – the
type is a description of the object. The object may have several description
types: a “square” is both a “rectangle” and a “rhombus”. Hence, evidence
for a description type is also evidence for an object that uses the description,
and this is expressed by a plausibility relationship.

Constraints that help specify the description evidence computation are:

• The more plausible the description, the more plausible the object.

• Each description gives additional evidence for an object.

• A weight expresses the importance of the description relative to other
property evidence.

• The context of the description is that of the object.

Formally, the description evidence computation is defined:

Given:
a model instance of type M in image context C
a set {(Di, wi)} of descriptions Di of M with associated weights wi

a set {pi} of plausibilities of description Di in context C

Then, using the modified harmonic mean, the description evidence is:
evddesc = harmmean({(pi, wi)})

The resulting weight of evidence is:
wdesc =

∑

wi

If no description types are defined, this computation is not applied. The
portion of the network associated with this evidence is similar to those shown
above.

8.2.5 Superclass Evidence

This relationship gives evidence for the presence of an object of class M ,
given the presence of an object of superclass S. For example, evidence for the
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object being a wide-bodied aircraft lends some support for the possibility of
it being a DC-10. The use of superclass is not rigorous here – the notion
is of a category generalization along arbitrary lines. Hence, a class may
have several generalizations: an < automobile wheel > may generalize to
< torus − like object > or < automobile part >. Class generalization does
not require that all constraints on the generalization are satisfied by the
specialization, which differentiates this evidence type from the description
relationship. So, a superclass need not be a strictly visual generalization,
that is, there may be different models for the object and its superclass.

Superclasses provide circumstantial, rather than direct, evidence as the
presence of the < torus − like object > alone does not provide serious ev-
idence for the < wheel > being present. If the object had both strong
< torus > and < automobile part > evidence, the implication should be
stronger. If the object had strong < torus > and weak < automobile part >
evidence, then it would be less plausible for it to be a < automobile wheel >.
Because the superclass is a generalization, its plausibility must always be at
least as great as that of the object. Hence, the evidence for an object can be
at most the minimum of the evidence for its superclasses.

Constraints that help specify the superclass evidence computation are:

• The presence of a superclass increases the plausibility of the object’s
presence.

• The more plausible the superclass, the more plausible the object.

• The plausibility of an object is less than that of a superclass.

• The context of the superclass is that of the object.

These constraints lead to the following formal definition of the superclass
evidence computation:

Given:
a model instance of class M in image context C
a set {Si} of superclasses of M
a set {pi} of plausibilities of model Si in context C

Then, the superclass evidence is:
evdsupcl = mini(pi)



198

Figure 8.10: Superclass Evidence Integration Network Fragment

If no superclass evidence is available, this computation is not applied.
The portion of the network associated with this evidence is shown in Figure
8.10, where the square unit is a “min” unit (representing a balanced tree of
binary “min” units) and the inputs come from the appropriate superclass
nodes.

8.2.6 Subclass Evidence

This relationship gives evidence for the presence of an object of class M , given
the presence of an object of subclass S. As above, the notion of subclass is that
of a specialization, and an object may have several. Here, the implication
is a necessary one, because an instance of a given subclass is necessarily an
instance of the class. Hence, the plausibility of the object must not be less
than that of its subclasses.
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The constraints that specify the subclass relationship calculation are:

• The more plausible the subclass, the more plausible the object.

• The plausibility of the object is at least that of each subclass.

• The context of the subclasses is the context of the object.

These constraints lead to the following formal definition of the subclass
evidence computation:

Given:
a model instance of class M in image context C
a set {Si} of subclasses of M
a set {pi} of plausibilities of model Si in context C

Then, the subclass relationship evidence value is:
evdsubcl = maxi(pi)

If no subclass evidence is available, this computation is not applied. The
invocation network fragment for this evidence type is similar to those shown
previously.

8.2.7 General Associations

This relationship gives evidence for the presence of an object of type M ,
given the presence of an object of arbitrary type S. This is not a structure
or class relationship, which have already been considered in Sections 8.2.2,
8.2.3, 8.2.5 and 8.2.6. It is an “other relationships” category. An relationship
of this type might be: “the presence of a desk makes the presence of a chair
plausible”. This allows many forms of peripheral evidence and can be thought
of as a “priming” relationship.

Association is not commutative, so individual connections need to be
made, if desired, for each direction. For example, the presence of a car
makes the presence of a road likely, whereas there are many roads without
cars. On the other hand, the evidence supplied is weak: the certain presence
of the car does not necessarily mean the object under consideration is a road.
Further, the strength of association will depend on the objects involved.
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The previous evidence types have clearly specified contexts from which
evidence came, but this type does not. Generally associated objects could
be anywhere in the scene, so all nodes of the desired type give support.

Some constraints on this type of relationship are:

• The presence of an associated object increases the plausibility of the
object.

• The more plausible the associated object, the more plausible the object.

• The weight of an association expresses the expectation that the desired
object is present, given that the associated object is present.

• The context of the association is the whole image.

These constraints lead to the following formal definition of the general
association computation:

Given:
a model instance of type M in image context C
a set {(Si, wi)} of associated models

(where wi is the strength of association)
a set {Cj} of all contexts
a set {pij} of plausibilities of model Si in context Cj

Then, the association relationship evidence is:
evdass = maxi(wi ∗ maxj(pij))

which chooses the best evidence for each associated type, and then the
best weighted association type. If no association evidence is available, this
computation is not applied. The invocation network fragment for this evi-
dence type is shown in Figure 8.11, where the “max” units represent balanced
trees of binary “max” units and the pij come from other nodes, as described
above.

8.2.8 Identity Inhibition

A structure seldom has more than one likely identity, unless the identities
are related (e.g. a structure that is likely to be a DC-10 can also be a wide-
bodied aircraft but seldom a banana). Hence, an identity should be inhibited
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Figure 8.11: Association Evidence Network Fragment



202

by other unrelated identities having high plausibilities in the same context.
A second source of inhibition comes from the same identity in subcontexts,
to force invocation to occur only in the smallest satisfactory context. The
key questions are what types provide inhibition, how to quantify the amount
of inhibition and how to integrate this inhibition with the other evidence
types.

Type-related inhibition is a complicated issue. Competition does not al-
ways occur even between unrelated generic types. For example, the generic
type “positive-cylindrical-surface” should not compete with the generic type
“elongated-surface”, whereas it should compete with the generic type “negative-
cylindrical-surface”. The latter comparison is between two members of a set
of related types that also include: “planar”, “positive-ellipsoid”, “negative-
ellipsoid” and “hyperboloid” surfaces. All types in this set compete with
each other, but not with any other types.

Inhibition results in a plausibility value like those discussed in previous
sections and is then integrated with the other evidence types, as discussed
below. An advantage to this method is that it still allows for alternative inter-
pretations, as in the ambiguous duck/rabbit figure (e.g. [9]), when evidence
for each is high enough.

Some constraints on the inhibition computation are:

• Inhibition comes from the same type in subcontexts.

• All members of specified sets of generic descriptions inhibit each other.

• All subcomponents and supercomponents of the object do not inhibit
the object.

• All types of the same category (SURFACE or ASSEMBLY) that are
not component, description or class related inhibit each other.

• Only positive evidence for other identities inhibits.

• The inhibition should be proportional to the plausibility of the com-
peting identity.

• The inhibition should come from the strongest competition.

• The context of inhibition is the current context for competing identities
and all subcontexts for the same identity.
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These constraints lead to the inhibition computation:

Given:
a model instance of type M in image context C
a set {Si} of all identities competing with M
a set {Cj} of subcontexts of context C
a set {pi} of plausibilities for the identities Si in context C
a set {pj} of plausibilities for the identity M in the subcontexts Cj

Then, the inhibition evidence is:
evdinh = max(maxi(pi),maxj(pj))

This computation gives no inhibition if no competing identities exist.
If several identities have roughly equal plausibilities, then inhibition will

drive their plausibilities down, but still leave them roughly equal. A single
strong identity would severely inhibit all other identities. Figure 8.12 shows
the invocation network unit for computing the inhibition evidence, where
the lower “max” units represent balanced trees of binary “max” units and
the pi come from competing identities and the pj come from subcontexts, as
described above.

8.2.9 Evidence Integration

There are eight evidence types, as discussed in the previous eight sections,
and a single integrated plausibility value needs to be computed from them.
All values are assumed to be on the same scale so this simplifies the consid-
erations.

Some constraints the computation should meet are:

• Directly related evidence (property, subcomponent and description)
should have greater weight.

• If there is no property, description or subcomponent evidence, then
evidence integration produces no result.

• Other relationship evidence should be incremental, but not overwhelm-
ingly so.

• Only types with evidence are used (i.e. some of the evidence types may
not exist, and so should be ignored).
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Figure 8.12: Inhibition Invocation Network Fragment



205

• Property, description and subcomponent evidence are complementary
in that they all give explicit evidence for the object and all should be
integrated.

• If supercomponent evidence is strong, then this gives added support for
a structure being a subcomponent. Weak supercomponent evidence has
no effect, because the subcomponent could be there by itself, or not be
there at all.

• If superclass evidence is strong, then this gives added support for the
object.

• Strong association evidence supports the possibility of an object’s pres-
ence.

• If other identities are competing, they reduce the plausibility.

• As subclasses imply objects, the plausibility of an object must be at
least that of its subclasses.

Based on these constraints, the following integration computation has
been designed:
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Let:
evdprop, evddesc, evdsubcl, evdsupcl, evdsubc, evdsupc, evdass, evdinh

be the eight evidence values, with weightings:
wprop, wdesc, wsubc

Then:
v1 = harmmean({(evdprop, wprop), (evddesc, wdesc), (evdsubc, wsubc)})
if evdsupc > 0

then v2 = v1 + csupc ∗ evdsupc (csupc = 0.1)
else v2 = v1

if evdass > 0
then v3 = v2 + cass ∗ evdass (cass = 0.1)
else v3 = v2

if evdsupcl > 0
then v4 = v3 + csupcl ∗ evdsupcl (csupcl = 0.1)
else v4 = v3

if evdinh > 0
then v5 = v4 + cinh ∗ evdinh (cinh = −0.25)
else v5 = v4

Finally, the integrated plausibility is:
min(max(v5, evdsubcl,−1.0), 1.0)

The −1.0 and +1.0 terms in the final function ensure the result is in the
correct range. The weighting constants (0.1 and −0.25) used above were
chosen to influence but not dominate the evidence computation and were
found empirically. Small changes (e.g. by 10%) do not affect the results.

The invocation network fragment executing this function is similar to
those previously shown except for the use of a “gated-weight” function unit
that implements the evidence increment function for supercomponent, asso-
ciation, superclass and inhibition evidences.

8.2.10 Network Evaluation

The invocation network is automatically created from the model base, image
surfaces and surface cluster hierarchy. One model instance node is created for
each pairing of a model feature to an image feature, provided that both are



207

compatible – image surfaces are compatible with model SURFACEs and sur-
face clusters are compatible with model ASSEMBLYs. The model instance
nodes are then connected by network fragments that compute the evidence
relations defined above. The number and type of fragments used depend on
the relationships defined in the model base, the surface hypotheses and the
surface cluster hierarchy.

Plausibilities are calculated by value propagation in the network. Prop-
erty evidence evaluations are computed for all models with property evidence
requirements, and these evidence values then initiate plausibility propaga-
tion. New values are recomputed and propagated whenever the inputs to a
function unit or model instance node change if the new result is more than
0.1% different from the previous result.

The ideal computation has the network computing continuously as new
descriptions are computed, assuming the invocation process executes inde-
pendently of the data description process. When there is enough data to
cause a plausibility to go above the invocation threshold, then that model
could be invoked.

However, here we used a serial implementation that computed all prop-
erty evaluations initially. Then, plausibilities are propagated throughout the
network, until convergence is reached. On convergence, nodes with positive
plausibilities are invoked for model-directed processing (Chapter 9). Invoca-
tions are ordered from simple-to-complex to ensure that subcomponents are
identified for use in making larger hypotheses.

Because an object may appear in several nested surface clusters, it makes
little sense to invoke it in all of these after it has been successfully found in
one. Further, a smaller surface cluster containing a few subcomponents may
acquire plausibility for containing the whole object. These too should not
cause invocation. The inhibition formulation partly controls this, but one
active measure was also needed. After an object hypothesis is successfully
verified (Chapter 10), the hypothesis is associated with the smallest surface
cluster completely containing the object. Then, all surface clusters containing
or contained by this cluster have their plausibility for this model set to −1.

8.3 Evaluating the Invocation Process

The properties that we would like invocation to have are:

1. Correct models are always invoked, and in the correct context.
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2. No matter how large the model base, the only false hypotheses invoked
are those that are “similar” to the true ones.

This section presents the evidence that the proposed theory has these prop-
erties. In evaluating this theory, it is hard to apply general mathematical or
computational analysis as:

1. The performance depends on the particular network used, and there
are few constraints on this.

2. The network executes a complicated, non-linear computation.

3. No valid statistics are available for the performance of structure de-
scription (Chapter 6) on general position, unobscured structures.

4. It is not possible to characterize the scenes sufficiently well to predict
typical structure occlusions.

5. Little information is available to assess performance of the structure
description on partially obscured structures.

Three minor analytic results have been found:
(1) If all property, subcomponent, description and superclass evidence

is perfect, then the correct model is always invoked. This is equivalent to
saying that the object has the correct identity and all properties are measured
correctly. If we then assume the worst (i.e. that the other four evidence types
are totally contradictory) then evidence integration gives:
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Let:
evdprop = 1.0, evdsubcl = −1.0, evdsupcl = 1.0, evdsubc = 1.0,
evdsupc = −1.0, evddesc = 1.0, evdass = −1.0, evdinh = 1.0

be the eight evidence values
Then, following the integration computation from Section 8.2.9:

v1 = harmmean({(evdprop, wprop), (evddesc, wdesc),
(evdsubc, wsubc)}) = 1.0

v2 = v1 = 1.0
v3 = v2 = 1.0
v4 = v3 + csupcl ∗ evdsupcl = 1.0 + 0.1 ∗ 1.0 = 1.1
v5 = v4 + cinh ∗ evdinh = 1.1 + (−0.25) ∗ 1.0 = 0.85

and the integrated plausibility value p is:
p = min(max(v5, evdsubcl,−1.0), 1.0) = 0.85

(2) Assume N independent properties are measured as property evidence
for a structure, and all are equally weighted. Then, the probability that the
property evidence evaluation is greater than zero is shown in Figure 8.13,
assuming all constraint ranges have the widths shown, and the data values
are normally distributed. The point is to estimate how many properties are
needed and what the constraint ranges on a property should be, to ensure
that the property evidence almost always supports the correct identity. The
graph shows that if at least 5 gaussian distributed properties are used, each
with constraint width of at least 1.6 standard deviations, then there is a
probability of 0.98 for positive property evidence. These results were found
by simulation.

(3) There is some relative ranking between the same model in different
contexts: model Mi has better evidence in context Ca than in context Cb if,
and only if p(Mi, Ca) > p(Mi, Cb). Further, if model Mi implies model Mj

(i.e. a superclass), then in the same context C:

p(Mj, C) ≥ p(Mi, C)

Unfortunately, not much can be said regarding the ranking of different models
in the same context, because each has different evidence requirements.

The theory proposed in this chapter accounts for and integrates many of
the major visual relationship types. The surface cluster contexts focus atten-
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Figure 8.13: Probability of Positive Property Evidence Versus Number of
Properties
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tion to ASSEMBLY identities (and surface contexts to SURFACE identities),
the object types denote natural conceptual categories, and the different rela-
tionship links structure the paths of evidence flow. The mathematical results
suggest that “correct models are always invoked” if the data is well-behaved.

The “no false invocations” requirement is not easily assessed without a
formal definition of “similar”, and none has been found that ensures that
false invocations are unlikely. So, a performance demonstration is presented,
using the model base partly shown in Appendix A with the test image, and
show that the invocation process was effective and robust.

Suppose interest is in the plausibility of the trash can outer surface
(“tcanoutf”) as an explanation for region 9 (see Figure 3.10). The description
process produces the following results:

DESCRIPTION VALUES
maximum surface curvature 0.091
minimum surface curvature 0.0
relative size 0.92
absolute size 1082
elongation 2.0
boundary relative orientation 1.64, 1.45, 1.45, 1.73
parallel boundaries 2
boundary curve length 33.6, 26.7, 30.5, 28.0
boundary curvature 0.058, 0.0, 0.085, 0.0

The property evidence computation is then performed, based on the fol-
lowing evidence constraint (all other properties are in the description “tcan-
fac”):

PROPERTY LOW PEAK HIGH WEIGHT
maximum curvature 0.058 0.078 0.098 0.5

This results in a property evidence value of 0.74 with weight 0.5. After
invocation converges, there are also the relationship evidence values. No
subclasses, superclasses, subcomponents or associations were defined for this
model, so their evidence contribution is not included. The model has a
description “tcanfac” that shares properties of the trash can inner surface
(“tcaninf”) except for its convexity or concavity, and its evidence value is
0.66 with a weight of 5.3. The supercomponent evidence value is 0.38 because
“tcanoutf” belongs to the trash can ASSEMBLY. The maximum of the other
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SURFACE plausibility values for non-generically related identities is 0.41 (for
the “robbodyside” model), so this causes inhibition. These evidence values
are now integrated to give the final plausibility value for “tcanoutf” as 0.62.
As this is positive, the trash can outer surface model will be invoked for this
region.

We now consider the problem of invoking the trash can ASSEMBLY
model in surface cluster 8 (from Table 5.1), which is composed of exactly the
trash can’s outer and inner surface regions. For each of the two surfaces, three
possible identities obtain: trash can inner surface, trash can outer surface
and trash can bottom. The trash can model specifies only subcomponent
and inhibition relationships and defines three subcomponents:

SUBCOMPONENT WEIGHT
tcanoutf 0.9
tcaninf 0.6
tcanbot 0.4

These are organized into three visibility groups:

SUBCGRP OF trashcan = tcanoutf tcaninf;

SUBCGRP OF trashcan = tcanoutf tcanbot;

SUBCGRP OF trashcan = tcaninf tcanbot tcanoutf;

The plausibilities of the subcomponent model SURFACE instances are:
DATA INNER DATA OUTER

MODEL INNER -0.42 0.26
MODEL OUTER -0.48 0.62
MODEL BOTTOM -0.81 -0.88

The subcomponent evidence computation starts with the best plausibility
for each model feature: inner = 0.26, outer = 0.62, bottom = -0.81. (Note
that, because of occlusion, the data outer surface provides better evidence for
the model inner SURFACE that the data inner surface, because all properties
other than maximum curvature are shared. This does not cause a problem; it
only improves the plausibility of the inner SURFACE model.) The visibility
group calculation used the harmonic mean with the weightings given above
to produce a subcomponent evidence value of 0.46, -0.08 and 0.01 for the
three visibility groups. Finally, the best of these was selected to give the
subcomponent evidence of 0.46.

The highest competing identity was from the robbody model, with a plau-
sibility of 0.33. Integrating these evidence values gives the final plausibility
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for the trash can as 0.38, which was the supercomponent plausibility used in
the first example.

Because there are far too many plausibility and evidence values to de-
scribe the whole network, even for this modest model base (16 ASSEMBLYs,
25 SURFACEs, and 24 generic descriptions: 22 for SURFACEs and 2 for
ASSEMBLYs), we next present a photograph of the network to illustrate the
general character of the computation, and then look at the invoked model
instances in more detail. Figure 8.14 shows all model instance nodes of the
network in its converged state. In the large region at the upper left of the
picture (with the textured appearance) each small grey colored rectangle rep-
resents one model instance. The brightness of the box encodes its plausibility,
from black (−1.0) to white (+1.0). The model instances are represented in a
two dimensional grid, indexed by the image features horizontally from left-
to-right with surfaces first and then the surface clusters. The vertical index
lists the model features from top to bottom, with model SURFACEs and
then ASSEMBLYs. The two large black areas on the upper right and lower
left arise from type incompatibility (model SURFACEs with surface clusters
on the upper right and ASSEMBLYs with image surfaces on the lower left).
The cover jacket of the book shows the results of the network more clearly,
by encoding the plausibility from blue (−1.0) to red (+1.0).

Several interesting features can be seen immediately. First, there is a
strong horizontal grouping of black and white boxes near the middle of the
upper left surface pairing nodes. These are for the generic description evi-
dence types, such as planar, positive cylinder, etc. As they are defined by
only a few properties, they achieve strong positive or negative plausibilities.
The specific model SURFACEs are above, and other generic SURFACE fea-
tures are below these. Only the specific model SURFACEs can be invoked,
and there are only a few bright-grey to white nodes with a plausibility that
is high enough for this, whereas there are many darker grey low plausibility
nodes (more details below).

A similar pattern is seen in the ASSEMBLY nodes on the lower right,
except for a large brightish region on the right side, with many potentially
invokable model instances. This bright region occurs because: (1) there
are several nested surface clusters that all contain much of the robot and
(2) a surface cluster containing most of an object generally acquires a high
plausibility for the whole object. This led to the explicit disabling of model
instance nodes after verification, as described previously.



214

Figure 8.14: Model Instance Node Summary after Convergence
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All invocations for this image are summarized in Tables 8.1 and 8.2 (sur-
face clusters are listed in Table 5.1 and image regions are shown in Figure
3.10). As commented above, successful invocations in one context mask invo-
cations in larger containing contexts. Further, generic models are not invoked
– only the object-specific models. Hence, not all positive final plausibilities
from Figure 8.14 cause invocation.

ASSEMBLY invocation is selective with 18 invocations of a possible 288
(16 ASSEMBLY models in 18 surface cluster contexts). Of these, all appro-
priate invocations occur, and nine are in the smallest correct context and one
is in a larger context. Of the others, three are justified by close similarity
with the actual model (note 1 in the table) and five are unjustified (notes 2
and 3).

SURFACE model invocation results are similar, with 21 invocations out
of 475 possible (25 SURFACE models in 19 surface contexts). Of these, ten
were correct, five are justifiably incorrect because of similarity (note 1) and
six are inappropriate invocations (notes 2 and 3).

Clearly, for this image, the invocation process works well. The chief causes
for improper invocation were:

1. combinatorial surface cluster formation, resulting in similar but not
directly related contexts which are thus not inhibited by the correct
context, and

2. superficial similarity between features.

Possible solutions to these problems are:

• improving the depth merged surface cluster formation process and

• increasing the number of object properties.

8.4 Related Work

There is little work on model invocation in the context of three dimensional
vision. The most common technique is comparing all models to the data and
is useful only when few possibilities exist.

A second level used a few easily measured object (or image) properties
to select a subset of potential models for complete matching. Roberts [139]
used configurations of approved polygons in the line image to index directly
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Table 8.1: Invoked ASSEMBLY Model Hypotheses

SURFACE INVOCATION

MODEL CLUSTER PLAUSIBILITY STATUS NOTES

robshldbd 3 0.50 E

robshldsobj 5 0.45 E

robshldsobj 2 0.44 I 2

robshldsobj 11 0.44 I 2

robshould 11 0.39 E

trashcan 8 0.38 E

robbody 12 0.33 I 1

robbody 13 0.33 I 1

robbody 8 0.33 I 1

robbody 15 0.33 L

lowerarm 7 0.29 E

link 15 0.15 E

robot 14 0.14 I 3

robot 15 0.14 E

link 17 0.11 I 3

armasm 13 0.09 E

upperarm 9 0.05 E

robot 17 0.02 I 3

STATUS
E invocation in exact context
L invocation in larger than necessary context
I invalid invocation

NOTES
1 because true model is very similar
2 ASSEMBLY with single SURFACE has poor discrimination
3 not large enough context to contain all components
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Table 8.2: Invoked SURFACE Model Hypotheses

SURFACE INVOCATION

MODEL REGION PLAUSIBILITY STATUS NOTES

robshldend 26 0.76 C

tcanoutf 9 0.61 C

robbodyside 9 0.41 I 1

robshoulds 29 0.40 C

robshoulds 27 0.40 I 3

ledgea 18 0.36 C

lendb 31 0.27 C

tcaninf 9 0.26 I 1

ledgeb 18 0.25 I 1

robshould1 16 0.21 I 1

robshould2 16 0.21 C

lsidea 12 0.20 I 1

lsideb 12 0.20 C

robbodyside 8 0.11 C

robshould1 12 0.10 I 3

robshould2 12 0.10 I 3

uside 19,22 0.07 C

uedgeb 19,22 0.07 I 2

lsidea 19,22 0.04 I 2

lsideb 19,22 0.04 I 2

uends 25 0.02 C

STATUS
C correct invocation
I invalid invocation

NOTES
1 because of similarity to the correct model
2 because the obscured correct model did not inhibit
3 because of some shared characteristics with the model
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models according to viewpoint. Nevatia and Binford [121] used an indexing
scheme that compared the number of generalized cylinders connecting at the
two ends of a distinguished cylinder.

Object properties have often been used to discriminate between potential
objects in the domain using tabular and decision-tree techniques. Examples
include the early SRI work (e.g. [19, 156, 157]), which recognized objects
in office scenes using constraints that held between objects. This work did
not distinguish invocation from verification, and was successful because the
model bases were small, the domain simple and the objects easily discrim-
inable. If model bases are large, then there are likely to be many objects with
similar properties. Further, data errors and occlusion will make the choice
of initial index property difficult, or require vast duplication of index links.

Bolles et al. [35] implemented a powerful method for practical indexing,
in their local feature focus method (for use in a two dimensional silhouette
industrial domain). The method used key features (e.g. holes and corners) as
the primary indices (focus features), which were then supported by locating
secondary features at given distances from the first.

Key properties are clearly needed for this task, so these were good ad-
vances. However, property-based discrimination methods are sensitive to
property estimation errors. Moreover, there are other classes of evidence
and object relationships. Property-based indexing often makes subfeatures
unusable because of their being too complex to calculate everywhere or too
object specific. Alternately, the properties are too simple and invoke every-
where and do not properly account for commonality of substructures.

When it comes to sophisticated three dimensional vision, Marr stated:

“Recognition involves two things: a collection of stored 3-D model
descriptions, and various indexes into the collection that allow a
newly derived description to be associated with a description in
the collection.” ([112], page 318)

He advocated a structured object model base linked and indexed on three
types of links: the specificity, adjunct and parent indices, which correspond
to the subclass, subcomponent and supercomponent link types used here. He
assumed that the image structures are well described and that model invo-
cation is based on searching the model base using constraints on the relative
sizes, shapes and orientations of the object axes. Recognized structures lead
to new possibilities by following the indices. The ACRONYM system [42]
implemented a similar notion.
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Direct indexing will work for the highest levels of invocation, assuming
perfect data from perfectly formed objects. However, it is probably inade-
quate for more realistic situations. Further, there remains the problem of
locating the point from which to start the search from, particularly in a large
model base.

Arbib [9] also proposed an invocation process that takes place in a schematic
context. In his view, schemata have three components:

i. Input-matching routines which test for evidence that that
which the schema represents is indeed present in the envi-
ronment.

ii. Action routines – whose parameters may be tuned by parameter-
fitting in the input-matching routines.

iii. Competition and cooperation routines which, for example,
use context (activation levels and spatial relations of other
schemas) to lower or raise the schema’s activation level.

His point (i) requires each schema to be an active matching process, but
is similar, in principle, to the evidence accumulation process discussed here.
His point (ii) corresponds to the hypothesis construction and verification
processes (Chapters 9 and 10) and point (iii) corresponds closely to the inhi-
bition and relation evidence types used here. His schema invocation process
was not defined in detail and considered mainly the highest levels of descrip-
tion (e.g. of objects) and only weakly on the types of visual evidence or the
actual invocation computation.

Hoffman and Jain [90] described an evidence-based object recognition
process that is similar to the one described in this chapter. Starting from
a set of surface patches segmented from range data, they estimated a set
of unary and binary properties. Evidence conditions were formulated as
conjunctions of property requirements. The degree to which an evidence
condition supported or contradicted each model was also specified. When an
unknown object was observed, a similarity measure was computed for each
model. This approach can use object-specific evidence conditions, leading to
more precise identification, but at the cost of evaluating the conditions for
all objects. Good results were demonstrated with a modest model-base.

Binford et al. [30] also described a similar (though probability based)
invocation approach. The scheme uses a “Bayesian network”, where proba-
bilities accumulate from subcomponent relationships and originate from the
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likelihood that an observed two dimensional image feature is the projection
of a three dimensional scene feature. Reliability is enhanced by only using
“quasi-invariant” features (i.e. those nearly constant over a large range of
viewing positions), such as the fixed relative orientation between two axes.
The network formulation used alternating layers of object and relative place-
ment relationships (“joints”). Subcomponent a priori distributions were gen-
erated heuristically from occurrences in the model base.

There are obvious links between the network approach described here
and the connectionist approach. In the latter, the domain knowledge is
implicit in the weighted interconnections between simple identical processing
units, which represents the interobject relationships. These machines can
converge to a fixed output state for a given input state, and can learn network
connection weights (e.g. [92, 88, 2]). Many of the computations proposed for
invocation can probably be implemented using such devices.

Hinton proposed and evaluated ([87, 89]) a connectionist model of invo-
cation that assigns a reference frame as well as invoking the model. The
model uses connections between retinotopic feature units, orientation map-
ping units, object feature (subcomponent) units and object units. This model
requires duplicated connections for each visible orientation, but expresses
them through a uniform mapping method. Consistent patterns of activity
between the model and data features reinforce the activation of the mapping
and model units. The model was proposed only for two dimensional patterns
(letters) and required many heuristics for weight selection and convergence.

Feldman and Ballard [64] proposed a connectionist model indexing scheme
using spatial coherence (coincidence) of properties to gate integration of ev-
idence. This helps overcome inappropriate invocation due to coincidentally
related features in separate parts of the image. The properties used in their
example are simple discriminators: “circle, baby-blue and fairly-fast” for a
frisbee.

This proposal did not have a rich representation of the types of knowl-
edge useful for invocation nor the integration of different types of evidence,
but did propose a detailed computational model for the elements and their
connections.

Feldman [65] later refined this model. It starts with spatially co-located
conjunctions of pairs of properties connected in parallel with the feature
plane (descriptions of image properties). Complete objects are activated
for the whole image based on conjunctions of activations of these spatially
coincident pairs. The advantage of complete image activation is that with this
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method it is not necessary to connect new objects in each image location. The
disadvantage is in increased likelihood of spurious invocations arising from
cross-talk (i.e. unrelated, spatially separated features invoking the model).
Top-down priming of the model holds when other knowledge (e.g. world
knowledge) is available. Structured objects are represented by linkage to the
subcomponents in the distinct object viewpoints. Multiple instances of the
objects use “instance” nodes, but little information is given to suggest how
the whole image model can activate separate instances.

These approaches are similar to those of this chapter: direct property ev-
idence triggers structurally decomposed objects seen from given viewpoints.
The network formulation for invocation proposed here has a parallel struc-
ture for two reasons: (1) the need for fast retrieval and (2) it is a convenient
formalism for expressing the computational relationships between evidence
types.

A key difference between the connectionist work reviewed above and the
work described in this book is the use of dedicated network structures, as
specified by the evidence type’s constraints, etc. There is also an implemen-
tation difference, in that many of the connectionist networks express their
results as states or configurations of activity of the network, rather than as
the activity at a single node, which is the approach here.

Other Potential Techniques

There has been little Artificial Intelligence research done that treated
model invocation as a specific issue. Work (e.g. [116, 144]) has focused
more on the contents and use of models or schemas than on how a schema
is selected.

The NETL formalism of Fahlman ([58, 59]) is a general indexing approach
to invocation. This approach creates a large net-like database, with gener-
alization/specialization type links. One function of this structure is to allow
fast parallel search for concepts based on intersections of properties. For
example, an elephant node is invoked by intersection of the “large”, “grey”
and “mammal” properties. The accessing is done by way of passing mark-
ers about the network (implemented in parallel), which is a discrete form of
evidence passing. The few links used in this approach make it difficult to
implement suggestiveness, as all propagated values must be based on certain
properties.
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General pattern recognition/classification techniques are also of some use
in suggesting potential models. A multi-variate classifier (e.g. [56]) could
be used to assign initial direct evidence plausibility to structures based on
observed evidence. Unfortunately, this mechanism works well with property
evidence, but not with integrating evidence from other sources, such as from
subcomponent or generic relationships. Further, it is hard to provide the a
priori occurrence and property statistics needed for the better classifiers.

The relaxation-based vision processes are also similar to the plausibility
computation. Each image structure has a set of possible labels that must
be consistent with the input data and related structure labels. Applications
have tended to use the process for either image modification [141], pixel clas-
sification [82], structure detection, or discrete consistency maintenance [162].
Most of the applications modify the input data to force interpretations that
are consistent with some criterion rather than to suggest interpretations that
are verified in another manner. Unfortunately, invocation must allow multi-
ple labels (generics) and has a non-linear and non-probabilistic formulation
that makes it difficult to apply previous results about relaxation computa-
tions.

8.5 Discussion

The purpose of invocation is to reduce the computation involved in the model-
to-data matching process. This has been partially achieved by basing invoca-
tion on propagated plausibility values, so the computation has been reduced
from a detailed object comparison to evidence accumulation. Unfortunately,
virtually every object model still needs to be considered for each image struc-
ture, albeit in a simplified manner. On the other hand, the model-to-data
comparison computation has now been simplified. As a result, it is now
amenable to large scale parallel processing.

One deficiency in this method is the absence of a justified formal criterion
that determines when to invoke a model. Invoking when the plausibility was
positive worked well in practice, but most seriously incorrect hypotheses are
near -1.0. Hence, a threshold somewhat lower than 0.0 could be considered.
This might lead to each object having a different threshold.

This work leaves several open “learning” problems:

1. How is the structure of the model network created and modified?
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2. How are the features used for invocation selected?

3. How are the property and relationship weights chosen?

Other unsolved problems include resolving the problem of multiple invo-
cations within the extended surface cluster hierarchy (as discussed above),
preventing data feature evidence from being used for more than one model
subcomponent and deciding when to invoke generic models (as well as the
object-specific ones). The theory could also be extended for non-shape prop-
erties (e.g. color, texture, etc.) and quantified descriptors (e.g. “larger”,
“much larger”) proposed by Marr [112] as an attempt to achieving scale in-
variance. Finally, though the class hierarchy and evidence computations were
defined, no significant testing of this feature was undertaken.

For each evidence computation, some natural constraints were proposed
as specification criteria. But, there were never enough constraints to uniquely
determine the computation. The hope is that the variations in algorithms
that this allows result only in slightly different performance levels. This has
been partially tested using substantially different property evidence evalua-
tion and evidence integration functions, without significant differences in the
invocation results.

This chapter has only concerned visual recognition, but this invocation
approach may have more general applicability. Any form of symbolic infer-
ence requires accessing the correct symbol. So, the model invocation problem
is also a general cognitive problem, with the following aspects:

• low level symbolic assertions are produced for the current input whether
from an external (e.g. raw sense data) or internal (e.g. self-monitoring)
source,

• higher level concepts/symbols tend to be semi-distinctly characteriz-
able based on “configurations” of lower level symbolic descriptions,

• there are many potential higher level symbols, but only a small subset
should be selected for closer consideration when matching a symbol,

• the importance of a particular concept in invoking another is dependent
on many factors, including structure, generics, experience and context,
and

• symbols “recognized” at one description level (either primitive or through
matching) become usable for the invocation of more complex symbols.
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Examples of this in a non-vision context might be something like an invo-
cation of a Schankian fast-food restaurant schema [144] or recognizing words
in speech.

Final Comments

This chapter formalized the associative basis of a model invocation pro-
cess with the major elements as object types, property evidence inputs and
associative links based on generic and component relations. The theory was
based on sets of constraints describing how different evidence affects plausi-
bility, and the use of surfaces and surface clusters as the contexts in which
to accumulate evidence.



Chapter 9

Hypothesis Construction

At this point the recognition process has isolated a set of data, described
its features and invoked a model as its potential identity. To claim that
the object is genuinely recognized requires the pairing of model features to
image data. Without these correspondences object recognition is only sug-
gestive – like saying a collection of gears and springs is a watch. Hence, the
hypothesis construction process has the goal of fully instantiating correctly
invoked models, estimating object position and accounting for the appear-
ance of the object, including occlusion. These tasks are the first stage in
substantiating the existence and identity of the object, as described in this
chapter.

The chapter also describes some more recent work that uses a value-
propagating network for geometric reasoning.

9.1 Thoughts on Hypothesis Construction

The hypothesis construction process described below attempts to find evi-
dence for all model features. This is somewhat controversial and it is worth-
while to briefly discuss the motivations for this decision.

If we are working in a restricted domain (such as on an industrial assem-
bly line) the numbers and types of objects in the scene are usually limited.
Here, many details would be object-specific, and a goal-directed argument
suggests that only the key differentiating features need be found. When
the domain is sufficiently restricted, specific features will be unique signi-
fiers. However, this would not be an appropriate strategy for a general vision
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system because, without additional descriptions or non-visual knowledge of
the restricted domain, it would not ordinarily be possible to reach the stage
where only a few identities were under consideration.

However, identifying individuals or subclasses requires finer details (e.g.
distinguishing between two people, or even between two “identical” twins).
Many individual objects differ only slightly or share identical features. Con-
sider how often one recognizes a facial feature or a smile of a friend in the face
of a complete stranger. Though the stranger is unique through the configu-
ration of his/her features, some details are held in common with the friend.
If recognition were predicated on only a few features, which may sometimes
be sufficient for unique identification in a limited domain, then we would be
continually misrecognizing objects. While only a few may be necessary for
model invocation, many others are necessary for confirmation.

These problems suggest that the hypothesis construction process should
try to find direct image evidence for all model features.

On the other hand, partial evidence is often sufficient. We usually have
no trouble identifying a friend even when a mustache has been shaved off,
and often do not even notice that there is a change, let alone know what the
change is. Or we can often recognize them, having seen only a portion of
their face.

Moreover, finding evidence for all features is usually impossible, as reso-
lution changes might make the information too large or too small to directly
detect, and occlusion will hide some of it.

Yet, we tend to expect recognition to be perfect. So, on idealistic grounds,
a general vision system should acquire as much information as possible. This
is also supported by the usual role of a general vision system – that it should
be a largely autonomous, data-driven analysis system, providing environmen-
tal descriptions to a higher-level action module, which may then instigate
additional goal-directed visual analysis.

In summary, our desire for full model instantiation derives from:

• a philosophical requirement – that true image understanding requires
consistent interpretation of all visible features relative to a model and
contingent explanation of missing features,

• an environmental requirement – that many details are needed to distin-
guish similar objects, especially as objects share common features and
some details will be absent for environmental reasons (e.g. occlusion),
and
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• a practical requirement – that objects should be recognized to the de-
gree they need to be distinguished.

Why Use Surfaces as Evidence

What is desired is image evidence that supports the existence of each
model feature. In edge-based recognition systems, an image edge was the
key evidence for a model feature, because surface orientation discontinuity
boundaries were observed as edges. This was even more important in polyhe-
dral domains (without reflectance boundaries), where extremal boundaries
were also orientation discontinuity boundaries. Unfortunately, more natu-
rally shaped and colored objects led to a veritable plethora of problems:
there were fewer traditional orientation edges, extremal boundaries no longer
corresponded to orientation discontinuities and reflectance and illumination
variations created new edges. So, these made the search for simple and di-
rectly corresponding edge evidence much more difficult.

Two of the advantages of using surfaces given in Chapter 3 are mentioned
here again:

• using surfaces as the primary representational unit of both the raw data
and the object model makes the transformation distance between the
two almost non-existent, and

• the interpretation of a surface data unit is unambiguous (unlike image
edges, which may correspond to a variety of scene phenomena).

With surface representations, it is again possible to find image evidence
that directly matches with model features. Assuming that there is a con-
sistent segmentation regimen for both the surface image and model SUR-
FACEs, the model feature instantiation problem can be reduced to finding
which model SURFACE corresponds to each data surface.

Finding all model features first requires understanding how three dimen-
sional objects appear in images – to locate image evidence for oriented model
instances. Here the recognition process must understand, or at least be able
to predict how a surface patch’s appearance varies with changes in the sur-
face’s position relative to the viewer. The segmentation process attempts to
produce surface patches with a uniform curvature characterization, so it is
easy to approximate the visible shape to first-order, given the model patch
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and its relative position. Also, given recent advances in computer graphics,
it is possible to deduce the visibility status of most surface patches.

Another result of using the surface segmentation is a discrete symbolic
partitioning of the complete object surface. This simplifies the surface match-
ing computation tremendously. An infinitesimal element of a surface could
have many possible identities and this shows up in practice as the need to
rotate incrementally and shift surfaces when matching (e.g. [96, 135]). A
segmented surface immediately simplifies the matching by choosing a higher
level structure for comparison. Topology further decreases the amount of
matching as adjacent model SURFACEs must pair with adjacent data sur-
faces, reducing the problem to subgraph isomorphism. If the invocation
process gives strong suggestions to the identity of the various surfaces, then
combinatorial matching is almost completely unnecessary.

9.2 Deducing Object Position

Part of competent object recognition is knowing where an object is – hence
its three dimensional location and orientation must be determined. This
information is also needed internally, as identity verification requires finding
that all visible object features are correctly placed. Moreover, an estimate of
an object’s position enables prediction of image locations for missing features.

Invocation suggests a few model-to-data feature (e.g. surface) correspon-
dences to form an initial “island of stability”. From this, the reference frame
of the object relative to the viewer can be deduced by analyzing the geometric
relationships between the features. For example, a single surface correspon-
dence constrains the object to a single rotational degree-of-freedom about
a nominal surface normal (assuming that the model and data normals can
be paired). A second rotation axis, whether from a second surface or from
an axis of curvature on the first surface, usually completely constrains the
object’s orientation (though possibly up to a mirror image).

9.2.1 Geometric Reasoning

Recently, Orr [126] analyzed several prominent three dimensional scene anal-
ysis systems, including the IMAGINE I system described here, and con-
cluded that five generic functions provided the geometric reasoning needed
for most computer vision tasks. The functions were:
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LOCATE – producing position estimates from model-to-data feature cor-
respondences,

PREDICT – predicting a data feature for a given model feature, given an
estimate of the object’s position,

MERGE – integrating two position estimates to produce a better estimate,
or to signal inconsistency between the estimates,

TRANSFORM – expressing a position in another reference frame and

INVERSE – inverting the transformation between two reference frames.

Central to these functions was a position data type, that represented the
rotation and translation between two geometric reference frames. This re-
lationship may be exact (as in a model), complete but inexact (as when
accounting for measurement uncertainty), or partial (as represented by, for
example, an underdetermined rotation constraint).

At the time of the research undertaken here, two of the best approaches
to representing position estimates were based on either an explicit complete
position, perhaps with some error estimates (i.e. from a least-squared error
technique, such as Faugeras and Hebert [63]) or by parameter ranges, linked
to algebraic inequality constraints over the parameters (as in the ACRONYM
system [42]).

The first approach integrated a set of uniform data (e.g. model-to-data
vector pairings) to give a single-valued estimate, but at some computational
cost. On the other hand, ACRONYM’s advantage was that it could easily in-
tegrate new evidence by adding new constraints, the range of possible values
was made explicit and inconsistency was detectable when parameter ranges
became non-existent. Its disadvantage was that the current estimate for a
parameter was implicit in the set of constraints and could only be obtained
explicitly by substantial algebraic constraint manipulation of non-linear in-
equalities, which result only in a range of values with no measure of “best”.

More recent work by Durrant-Whyte [57] represented position estimates
statistically, computing the transformations of positions by a composition
technique. This has the advantage of propagating uncertainties concisely
and gives a “best” estimate, but does not easily provide the means to de-
termine when inconsistency occurs (other than low probability). Further,
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approximations are needed when the reference frame transformations them-
selves involve uncertainty, or when uncertainty is other than statistical (e.g.
a degree-of-freedom about a joint axis).

The techniques used in IMAGINE I are now described, and related to
the five function primitives described above.

Each individual parameter estimate is expected to have some error, so
it is represented by a range of values. (The initial size of the range was
based on experience with parameter estimation.) An object’s position is
then represented by a six dimensional parameter volume, within which the
true parameter vector should lie. Thus, the position representation is a
simplified, explicit version of that used by ACRONYM (but less precise,
because constraint boundaries are now planes perpendicular to the coordinate
axes). This leads to more efficient use, while still representing error ranges
and detecting inconsistency.

Integrating parameter estimates (i.e. MERGE) is done by intersecting the
individual parameter volumes. All the six dimensional parameter volumes
are “rectangular solids” with all “faces” parallel, so that the intersection is
easily calculated and results in a similar solid. Because the true value is
contained in each individual volume, it must also lie in the intersection. The
effect of multiple estimates is to refine the tolerance zone by progressively
intersecting off portions of the parameter volume, while still tolerating errors.
If a final single estimate is needed, the average of each pair of limits is used.

As described so far, the transformation of coordinate reference systems
(TRANSFORM) has been done by multiplication of the homogeneous coor-
dinate matrices representing the transforms. Since we are now using a pa-
rameter estimate range, the transformation computation must be modified.
In the most general case, each transformation would have its own range, but,
as implemented here, only the transformation from the camera coordinate
system to the object global reference frame is allowed statistical variations.
(Although, transformations may have parameterized degrees-of-freedom – see
Chapter 7.) These variations propagate through the calculation of the global
or image locations for any feature specified in any level of reference frame.
The variation affects two calculations:

1. how to calculate a combined transformation given that one transfor-
mation is a range, and

2. how to calculate the range of positions for a point given a transforma-
tion range.
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The technique used for both of these problems is similar, and is only an
approximation to a complete solution:

1. For a subset of values in the parameter range,

(a) Calculate a transformation

(b) Transform the second parameter vector (or point)

2. Bound the set of transformed vectors (or points).

This process is illustrated in Figure 9.1. In part (a), a two dimensional
parameter range with the subset of points is designated. In part (b), the
original range is rotated to a new range, and part (c) shows the parameter
bounds for the new range.

The figure illustrates one problem with the method – parameter bounds
are aligned parallel with the coordinate axes, so that the parameter vol-
ume (actually six dimensional) increases with each transformation. A second
problem is that the rotation parameter space is not rigid in this coordinate
system, so that the shape of the parameter space can change greatly. If it
expands in a direction not parallel with a coordinate axis, the combination
of the first problem with this one can result in a greatly expanded parameter
space. Further, the transformation is not unique, as zero slant allows any
tilt, so any transformations that include this can grow quickly.

One general problem with the method is that consistent data does not
vary the parameter bounds much, so that intersecting several estimates does
not always tighten the bounding greatly. Hence, there is still a problem
with getting a “best” estimate from the range. Another problem with the
general case is that each model variable increases the dimensionality of the
parameter space, requiring increased computation and compounding bound-
ing problems.

The conclusion is that this simplified method of representing and manip-
ulating parameter estimates is not adequate, which led to the work by Fisher
and Orr [74] described in Section 9.2.4.

The INVERSE function occurs in two forms. Inverting an exact transfor-
mation (represented by a homogeneous coordinate matrix) is simply matrix
inversion. Inverting an estimate range is given by bounding the inversions of
a subset of the original range (similar to TRANSFORM).

The PREDICT function uses either an exact transformation from the
model or the mean value of a data-derived parameter range to predict either
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Figure 9.1: Two Dimensional Rotation of Parameter Ranges
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three dimensional vector directions, three dimensional points or two dimen-
sional points (by projection of the three dimensional points).

The LOCATE function is specific to the data and model feature pairings,
and is described in more detail in the next two sections.

9.2.2 Estimating Individual Surface Reference Frames

Estimating Surface Rotation

A SURFACE’s spatial position is represented by the transformation from the
camera coordinate frame to that of the SURFACE. Several constraints are
available to help deduce the transformation.

Fisher [66] showed how the transformation could be deduced using the
two dimensional boundary shape. Estimation of the orientation parameters
(rotation, slant and tilt) used the cross-section width as a function of the
image angle, which deforms in a characterizable way.

In the research presented here, surface normals are directly available. If
a planar data patch is paired with a model patch, their normal vectors must
be parallel so only one rotational degree-of-freedom needs to be resolved.
The final rotation degree-of-freedom is estimated by correlating the angular
cross-section width as a function of rotation angle. Figure 9.2 illustrates this.
For non-planar surfaces, an approximate solution is obtained by using the
normals at the centroids of the surfaces. A more complete solution using the
curvature axis is presented below.

The complete method is:
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Figure 9.2: Estimation of Rotation for Isolated Surface Patches
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Table 9.1: Rotation Parameters For Single SURFACEs

Image Measured (rad) Estimated (rad)

SURFACE Region ROT SLANT TILT ROT SLANT TILT

robbodyside 8 0.00 0.13 4.71 0.02 0.13 4.76

robshoulds 29 0.05 0.70 6.08 0.02 0.84 6.15

uside 19,22 6.04 0.88 3.48 5.20 0.88 4.32

uends 25 3.12 0.75 2.75 3.16 0.66 3.21

lsideb 12 1.51 0.88 1.73 1.70 0.88 1.54

tcanoutf 9 0.00 0.13 4.71 0.02 0.11 4.56

Rotate the image surface until the central point normal is aligned with
the -Z camera axis (R1).

Rotate the model SURFACE until the central point normal is aligned with
the -Z camera axis (R2).

Calculate data surface cross-section widths.
Calculate model SURFACE cross-section widths.
For each rotation angle (α ) about the model normal axis:

calculate model rotation (R3(α))
correlate cross-section widths

Set a threshold = 0.9 * peak correlation.
Pick peak correlations (αi).
(If more than 30% above threshold, declare circularly symmetric: αi = 0.0).
Solve for reference frames: R−1

1 R3(αi)R2.

Some of the estimated and nominal rotation values for the modeled SUR-
FACEs successfully invoked in the test image are given in Table 9.1. The
full set of results are in [67], and those shown here include the best, worst
and typical results. All values given in the tables below are in the cam-
era reference frame. The estimates shown here are only the mean values of
the estimate intervals, whose size depends on the input data error and the
amount of parameter space intersection.

The rotation estimates are good, even on small SURFACEs (robshoulds)
or partially obscured SURFACEs (uside, uends, lsideb, ledgea).

SURFACE orientation can be estimated without using the boundary if
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Figure 9.3: Rotation Estimation from Normal and Curvature Axis

there is significant surface curvature in one direction. Here, the three di-
mensional orientation of the major curvature axis constrains the remaining
angular degree-of-freedom to two possible orientations. The transformation
from the model normal and curvature axis vectors to those of the data gives
the orientation estimate. Data errors complicate the calculation, which is
described in detail in Section 9.2.3. Figure 9.3 illustrates the process of ro-
tation estimation using the normal and curvature axis. Table 9.2 lists the
results for this case.

Table 9.2: Rotations for Single SURFACEs Using the Curvature Axis

Image Measured (rad) Estimated (rad)

SURFACE Region ROT SLANT TILT ROT SLANT TILT

robbodyside 8 0.00 0.13 4.71 6.28 0.13 4.77

robshoulds 29 0.05 0.70 6.08 0.10 0.83 6.07

uends 25 3.12 0.75 2.75 3.12 0.66 3.24

tcanoutf 9 0.00 0.13 4.71 0.01 0.18 4.61
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Table 9.3: Combined Rotation Parameters For Single SURFACEs

Image Measured (rad) Estimated (rad)

SURFACE Region ROT SLANT TILT ROT SLANT TILT

robbodyside 8 0.00 0.13 4.71 0.01 0.13 4.76

robshoulds 29 0.05 0.70 6.08 0.02 0.83 6.15

uends 25 3.12 0.75 2.75 3.16 0.66 3.21

tcanoutf 9 0.00 0.13 4.71 0.01 0.18 4.56

Table 9.3 shows the results obtained by integrating the above results with
those from Table 9.1 (by parameter space intersection). As the curvature
based estimation process gives nearly the same results as the boundary based
process, the intersection hardly improves the results. This suggests that the
initial estimation techniques are both generally accurate.

Estimating SURFACE Translations

Given the rotations, the translations are estimated. Fisher [66] estimated
these directly from the boundary data. Depth was estimated by comparing
model and data areas and cross-section widths. The three dimensional trans-
lation was estimated using the two dimensional translation that best fitted
the data and then inverting the projection relationship using the estimated
depth.

Here, depth estimates are directly available, and the xy translation is
estimated by relating the rotated model SURFACE centroid to the two di-
mensional image centroid and inverting the projection relationship. Typical
estimated and nominal translation values for the modeled SURFACEs suc-
cessfully invoked in the test image are given in Table 9.4.

The translation estimates are reasonable, though not as accurate as the
rotation estimates. This is true even though SURFACEs lsideb, ledgea and
uside were substantially obscured. For the unobscured SURFACEs, the av-
erage translation error for the test image is (-6.0,1.6,-1.6), and is believed to
arise from errors in estimating the camera coordinate system. Other sources
of error include measurement error (estimated as 1.0 cm and 0.1 radian),
image quantization (estimated as 0.6 cm at 5m and 0.002 radian) and errors
arising from the approximate nature of the parameter estimations. In any
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Table 9.4: Translation Parameters For Single SURFACEs

Image Measured (cm) Estimated (cm)

SURFACE Region X Y Z X Y Z

robbodyside 8 -13.9 -32.4 565 -13.5 -35.9 562

robshoulds 29 -20.9 17.8 556 -16.2 9.8 564

uside 19,22 -21.0 13.4 585 -13.6 31.0 578

uends 25 27.2 16.6 547 35.6 16.5 551

lsideb 12 23.7 16.9 533 21.9 28.4 539

tcanoutf 9 22.3 -44.1 536 29.1 -44.2 541

case, the error is about 1.5% of the distance to the object, so the relative
position error is small.

To illustrate the position results for the test image better, several pic-
tures are shown with the SURFACEs drawn in their estimated positions on
top of the original scene. Figure 9.4 shows the robot body side SURFACE
(robbodyside), the robot upper arm side SURFACE (uside) and the trash
can outer SURFACE (tcanoutf). Figure 9.5 shows the robot shoulder end
SURFACE (robshldend), the robot lower arm side SURFACE (lsideb) and
the robot upper arm small end SURFACE (uends). The lower arm side
SURFACE y translation estimate is high because of occlusion.

9.2.3 Estimating ASSEMBLY Reference Frames

If a set of model vectors (e.g. surface normals) can be paired with correspond-
ing data vectors, then a least-squared error estimate of the transformation
could be estimated using methods like that of Faugeras and Hebert [63].
This integrates all evidence uniformly. The method described below esti-
mates reference frame parameters from smaller amounts of evidence, which
is then integrated using the parameter space intersection method described
above. The justification for this approach was that it is incremental and
shows the intermediate results more clearly. It can also integrate evidence
hierarchically from previously located subcomponents.

Each data surface has a normal that, given correspondence with a par-
ticular model SURFACE, constrains the orientation of the ASSEMBLY to a
single rotational degree-of-freedom about the normal. A second, non-parallel,
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Figure 9.4: Test Scene with some Estimated SURFACE Positions
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Figure 9.5: Test Scene with Other Estimated SURFACE Positions
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Figure 9.6: Rotating Model Normals to Derive the Reference Frame

surface normal then fixes the object’s rotation. The calculation given here
is based on transforming a pair of model SURFACE normals onto a data
pair. The model normals have a particular fixed angle between them. Given
that the data normals must meet the same constraint, the rotation that
transforms the model vectors onto the data vectors can be algebraically de-
termined. Figure 9.6 illustrates the relationships.

Use of surface normals is reasonable only for nearly planar surfaces. For
cylindrical or ellipsoidal surfaces, normals at the central points on the data
and model surfaces can be computed and compared, but: (1) small displace-
ments of the measurement point on surfaces with moderate curvature lead to
significant changes in orientation, and (2) occlusion makes it impossible to
accurately locate corresponding points. Fortunately, highly curved surfaces
often have a curvature axis that is more accurately estimated and is not de-
pendent on precise point positions nor is it affected by occlusion. Figure 9.7
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Figure 9.7: Axis Stability on Cylindrical Surfaces

illustrates these points.
A third approach uses the vector through the central points in the sur-

faces, which is most useful when the surfaces are widely separated. Then,
variations in point placement (e.g. due to occlusion) will cause less significant
effects in this vector’s orientation.

Given these techniques, two surface patches give rise to eight orientation
estimation cases:

1. Two planes with surface normals not parallel: use the data normals
paired to the model normals.

2. Two planes with surface normals nearly parallel: use one data normal
paired to the model normal and the second vector from paired central
points.

3. Any shape and a generic surface (i.e. with two non-zero curvatures),
normals not parallel: use the data normals paired to the model normals.

4. Any shape and a generic surface, normals nearly parallel: use one data
normal paired to the model normal and the second vector from paired
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central points.

5. Plane and cylinder, cylinder axis not parallel to plane normal: use
paired plane data and model normals, paired cylinder data and model
axes.

6. Plane and cylinder, cylinder axis nearly parallel to plane normal: use
the data normals paired to the model normals.

7. Two cylinders, axes not parallel: use data axes paired with model axes.

8. Two cylinders, axes nearly parallel: use one data axis paired to the
model axis and the second vector from paired central points.

After feature pairing, the rotation angles are estimated. Unfortunately,
noise and point position errors mean that the interior angles between the pairs
of vectors are only approximately the same, which makes exact algebraic
solution impossible. So, a variation on the rotation method was used. A
third pair of vectors, the cross product of each original pair, are calculated
and have the property of being at right angles to each of the original pairs:

Let:
~d1, ~d2 be the data normals
~m1, ~m2 be the model normals

Then, the cross products are:

~cd = ~d1 × ~d2

~cm = ~m1 × ~m2

From ~d1 and ~cd paired to ~m1 and ~cm an angular parameter estimate
can be algebraically calculated. Similarly, ~d2 and ~cd paired to ~m2 and ~cm

gives another estimate, which is then integrated using the parameter space
intersection technique.

Fan et al. [61] used a somewhat similar paired vector reference frame esti-
mation technique for larger sets of model-to-data vector pairings, except that
they picked the single rotation estimate that minimized an error function,
rather than integrated all together. This often selects a correct rotation from
a set of pairings that contains a bad pairing, thus allowing object recognition
to proceed.
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Before the rotation is estimated from a pair of surfaces, a fast compatibil-
ity test is performed, which ensures that the angle between the data vectors
is similar to that between the model vectors. (This was similar to the angular
pruning of Faugeras and Hebert [63]). The test is:

Let:
~d1, ~d2 be the data normals
~m1, ~m2 be the model normals

If:

| (~d1 ◦ ~d2) − (~m1 ◦ ~m2) |< τc (τc = 0.3)

Then, the vector pairs are compatible.

The global translation estimates come from individual surfaces and sub-
structures. For surfaces, the estimates come from calculating the translation
of the nominal central point of the rotated model SURFACE to the estimated
central point of the observed surface. Occlusion affects this calculation by
causing the image central point to not correspond to the projected model
point, but the errors introduced by this technique were within the level of
error caused by mis-estimating the rotational parameters. The implemented
algorithm for SURFACEs is:

Let:
G be the transformation from the ASSEMBLY’s coordinate

system to that of the camera
A be the transformation from the SURFACE’s coordinate system

to that of the ASSEMBLY
Then:

1. Get the estimated global rotation for that SURFACE: (GA)
2. Rotate the central point (~p) of the model SURFACE: (~v1 = GA~p)
3. Calculate the three dimensional location (~v2) of the image region

centroid, inverting its image coordinates using the depth
value given in the data

4. Estimate the translation as ~v2 − ~v1
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ASSEMBLY Reference Frame Calculation Results

The estimation of an ASSEMBLY’s reference frame is demonstrated for the
robot lower arm.

As the rigidly attached hand subcomponent is not visible, it contributes
no information. Each of the SURFACEs paired and transformed according
to the above theory contributes to these estimates (in the camera coordinate
system):

OBJECT ROT SLANT TILT
lsideb & lendb MIN 3.966 1.158 4.252

MAX 0.633 0.204 3.949

lendb & ledgea MIN 3.487 1.190 4.693
MAX 0.192 0.216 4.405

ledgea & lsideb MIN 3.853 1.361 4.599
MAX 0.430 0.226 4.257

The rotation estimates are integrated by intersection to give the following
result:

ROT SLANT TILT
MIN 3.966 1.361 4.693
MAX 0.192 0.204 3.949

and the average value is:

ROT SLANT TILT
5.220 2.353 1.180

which compares well with the measured value of:

ROT SLANT TILT
5.060 2.236 1.319

Translation is estimated after rotation, and starts with an estimate from
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each individual SURFACE. These estimates are:

X Y Z
lsideb MIN -1.891 -10.347 503.

MAX 57.262 48.807 592.

lendb MIN -1.206 -26.849 500.
MAX 58.259 32.616 589.

ledgea MIN -1.058 -20.298 503.
MAX 58.116 38.875 592.

The translation estimates are integrated by intersection to give the fol-
lowing result:

X Y Z
MIN -1.058 -10.347 503.
MAX 57.262 32.616 589.

and the average value is:

X Y Z
28.1 11.1 546.

which compares well with the measured value of:

X Y Z
26.6 8.79 538.

Tables 9.5 and 9.6 summarize the results for the primitive ASSEMBLYs in
the test image whose estimates resulted from using more than one SURFACE.
The other primitive ASSEMBLYs have reference frames identical to that
of the single SURFACE (rotated into the ASSEMBLY’s reference frame if
necessary). All results are given in the camera coordinate system. The
parameter estimates are good, even though both the upper and lower arm
are substantially obscured.

Estimating Reference Frames from Previously Recognized Sub-
components

Each previously recognized subcomponent contributes a position estimate.
Suppose, the subcomponent has an estimated global reference frame Gs and
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Table 9.5: Translation Parameters For Primitive ASSEMBLYs

Measured (cm) Estimated (cm)

ASSEMBLY X Y Z X Y Z

robshldbd -13.9 17.0 558. -15.7 11.5 562.

upperarm 0.95 26.4 568. 0.60 17.1 570.

lowerarm 26.6 8.79 538. 28.1 11.1 546.

Table 9.6: Rotation Parameters For Primitive ASSEMBLYs

Measured (rad) Estimated (rad)

ASSEMBLY ROT SLANT TILT ROT SLANT TILT

robshldbd 0.257 2.23 6.12 0.135 2.30 6.28

upperarm 3.72 2.23 2.66 3.22 2.24 3.14

lowerarm 5.06 2.23 1.32 5.22 2.35 1.18

the transformation from the subcomponent to the main object is A (given
in the model). (If the subcomponent is connected with degrees-of-freedom,
then any variables in A will be bound before this step. This is discussed
in Section 9.4.4.) Then, the estimated new global frame is GsA

−1. Figure
9.8 illustrates how the subcomponent’s reference frame relates to that of the
object.

In the test image, these ASSEMBLYs had their positions estimated by
integrating estimates from subcomponents:

ASSEMBLY SUBCOMPONENTS
armasm lowerarm, upperarm

robshould robshldbd, robshldsobj
link robshould, armasm

robot link, robbody

The reference frame estimates for these ASSEMBLYs are summarized
in Tables 9.7 and 9.8. Integrating the different position estimates sometimes
gives better results and sometimes worse (e.g. robbodyside versus robot rota-
tion). Often, there was little effect (e.g. upperarm versus armasm rotation).
A key problem is that transforming the subcomponent’s reference frame ex-
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Figure 9.8: Object and Subcomponent Reference Frame Relationship

Table 9.7: Translation Parameters For Structured ASSEMBLYs

Measured (cm) Estimated (cm)

ASSEMBLY X Y Z X Y Z

armasm 0.95 26.4 568. 0.60 17.1 553.

robshould -13.9 17.0 558. -15.7 10.3 562.

link -13.9 17.0 558. -9.7 16.3 554.

robot -13.8 -32.6 564. -13.5 -35.9 562.

pands the position estimates so much that it only weakly constrained the
ASSEMBLY’s reference frame.

The numerical results for the whole robot in the test scene are summarized
in Table 9.9. Here, the values are given in the global reference frame rather
than in the camera reference frame.

Better results could probably have been obtained using another geomet-
ric estimate integration method (e.g. [63, 57]). However, the results here
are generally accurate, mainly because of the richness of information in the
surface image and geometric object models.
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Table 9.8: Rotation Parameters For Structured ASSEMBLYs

Measured (rad) Estimated (rad)

ASSEMBLY ROT SLANT TILT ROT SLANT TILT

armasm 3.72 2.23 2.66 3.20 2.29 3.11

robshould 0.257 2.23 6.12 0.135 2.29 6.28

link 0.257 2.23 6.12 0.055 2.29 0.05

robot 0.0 0.125 4.73 0.0 0.689 4.75

Table 9.9: Measured And Estimated Spatial Parameters

PARAMETER MEASURED ESTIMATED

X 488 (cm) 486 (cm)

Y 89 (cm) 85 (cm)

Z 554 (cm) 554 (cm)

Rotation 0.0 (rad) 0.07 (rad)

Slant 0.793 (rad) 0.46 (rad)

Tilt 3.14 (rad) 3.53 (rad)

Joint 1 2.24 (rad) 2.18 (rad)

Joint 2 2.82 (rad) 2.79 (rad)

Joint 3 4.94 (rad) 4.56 (rad)
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9.2.4 Network Based Geometric Reasoning

Position errors result from two causes - errors in the input data and defi-
ciencies in the position estimation algorithms. To help remove the second
source, Fisher and Orr [74] developed a network technique based on the alge-
braic method used in ACRONYM. The technique implements the constraint
relationships as a value-passing network that results in tighter bounds and
improved efficiency. Moreover, we observed that the forms of the algebraic
constraints tended to be few and repeated often, and hence standard subnet-
work modules could be developed, with instances allocated as new position
constraints were identified. Examples of these network modules are: “a model
vector is transformed to a data vector” and “a data point must lie near a
transformed model point”.

There are three aspects to the new network-based geometric reasoner:

1. specifying the geometric problem as algebraic constraints,

2. evaluating the constraints in a value-passing network and

3. partitioning the network into prototypical modules.

These are now described in more detail.
The key data type is the position, which represents the relative spatial

relationship between two features (e.g. world-to-camera, camera-to-model,
or model-to-subcomponent). A position consists of a 3-vector representing
relative translation and a unit 4-vector quaternion representing relative ori-
entation (of the form (cos(θ/2), sin(θ/2)~w) for a rotation of θ about the axis
~w).

The key geometric relationships concern relative position and have two
forms: exact and partially constrained. An example of an exact form is: let
object A be at global position (~rA,~tA), (translation ~tA and rotation ~rA) and
object B be at (~rAB,~tAB) relative to A. Then, the global position of B is:

(rAB ∗ rA, rAB ∗ tA ∗ r′AB + tAB)

where ∗ is the quaternion multiplication operator:

(q0, q1, q2, q3) ∗ (p0, p1, p2, p3)
= (q0p0 − q1p1 − q2p2 − q3p3, q2p3 − q3p2 + q0p1 + q1p0,

q3p1 − q1p3 + q0p2 + q2p0, q1p2 − q2p1 + q0p3 + q3p0)
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and the quaternion inverse operator “ ′ ” is:

(r0, r1, r2, r3)
′ = (r0,−r1,−r2,−r3)

A partially constrained position is given by an inequality constraint, such
as:

tAz ≥ 50

This means that the z component of A’s global position is at least 50. Such
a constraint might arise from some a priori scene knowledge, or observing a
fragment of a surface.

Other relationships concern vectors or points linked by a common trans-
formation, as in T~v1 = ~v2, or the proximity of points or vectors:

| ~p1 − ~p2| < ǫ

Instances of these constraints are generated as recognition proceeds. Then,
with a set of constraints, it is possible to estimate the values of the con-
strained quantities (e.g. object position) from the known model, the data
values and their relationships. Alternatively, it may be possible to determine
that the set of constraints is inconsistent (i.e. the set of constraints has no
solution), and then the hypothesis is rejected.

A key complication is that each data measurement may have some error
or uncertainty, and hence the estimated values may also have these. Alterna-
tively, a variable may be only partially constrained in the model or a priori
scene information. Hence, each numerical quantity is represented by an in-
terval [7]. Then, following ACRONYM with some extensions, all constraints
are represented as inequalities, providing either upper or lower bounds on all
quantities.

We now look at how the constraints are evaluated.
ACRONYM used a symbolic algebra technique to estimate upper (SUP)

and lower (INF) bounds on all quantities. When bounds cross, i.e. SUP (x) <
INF (x), then inconsistency was declared and the hypothesis rejected. This
symbolic algebra method was slow and did not always give tight bounds.

The basis of the network approach is the propagation of updated bounds,
through functional units linked according to the algebraic problem specifica-
tion. A simple example is based on the inequality:

A ≤ B − C
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Figure 9.9: Small Constraint Network

By the SUP/INF calculus ([33, 151, 42]), the upper bound of A is constrained
by:

SUP (A) ≤ SUP (B) − INF (C)

as are the lower bounds of B and C:

INF (B) ≥ INF (A) + INF (C)

SUP (C) ≤ SUP (B) − INF (A)

Thus, one can use the value of SUP (B) − INF (C) as an estimated upper
bound for A, etc. These relationships are used to create the network for
this single inequality, which is shown in Figure 9.9. As new bounds on (for
example) B are computed, perhaps from other relationships, they propagate
through the network to help compute new bounds on A and C.

There are two advantages to the network structure. First, because val-
ues propagate, local improvements in estimates propagate to help constrain
other values elsewhere. Hence, even though we still have rectangular interval
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parameter space bounds, the constraints are non-rectangular and thus can
link changes in one variable to others. Even for just local problems, contin-
ued propagation until convergence produces better results than the symbolic
methods of ACRONYM. Second, these networks have a natural wide-scale
parallel structure (e.g. 1000+) that might eventually lead to extremely fast
network evaluation in VLSI (e.g. 10-100 microseconds). One disadvantage
of the network approach is that standard bounding relationships must be
pre-computed as the network is compiled, whereas the symbolic approach
can be opportunistic when a fortuitous set of constraints is encountered.

For a given problem, the networks can be complicated, particularly since
there may be both exact and heuristic bounding relationships. For example,
the network expressing the reference frame transformation between three
positions contains about 2000 function nodes (of types “+”, “-”, “*”, “/”,
“sqrt”, “max”, “greaterthan”, “if” etc.). The evaluation of a network is fast,
even in serial, because small changes are truncated to prevent trivial propaga-
tions, unlike other constraint propagation approaches (see [53]). Convergence
is guaranteed (or inconsistency detected) because bounds can only tighten
(or cross), since only sufficiently large changes are propagated.

The creation of the networks is time-consuming, requiring a symbolic
analysis of the algebraic inequalities. Fortunately, there is a natural modular
structure arising from the types of problems encountered during scene anal-
ysis, where most geometric constraints are of a few common types. Hence, it
is possible to pre-compile network modules for each relationship, and merely
allocate a new instance of the module into the network as scene analysis
proceeds. To date, we have identified and implemented network modules for:

SS - two scalars are close in value

PP - two points are close in location

VV - two vectors point in nearly the same direction

TP - a transformation links a pair of points

TV - a transformation links a pair of vectors

TV2 - a transformation links two pairs of vectors

TT - a transformation links from one position to a second by a third position

P2V - a vector can be defined by two points
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QWT - a quaternion is equivalent to an axis of rotation and an angle

One important feature of these modules is that they are bi-directional,
in that each variable partially constrains all other related variables. Hence,
this method is usable for expressing partial constraints (such as “the object
is above the table” or Z ≥ 0). The constraints on other related variables can
then help fully constrain unbound or partially constrained variables.

We now include a simple and a complicated example of network use.
Suppose subcomponents B and C are rigidly connected to form object A.
With the estimated positions of the subcomponents in the global coordinate
system, Pg−B and Pg−C , and the transformations between the object and
local coordinate systems, PA−B and PA−C , then these can be used to estimate
the global object position, Pg−A, by using two instances of the “TT” module
listed above. Figure 9.10 shows this network. Notice that each subcomponent
gives an independent estimate of Pg−A, so that the network keeps the tightest
bounds on each component of the position. Any tighter resulting bounds then
propagate back through the modules to refine the subcomponent position
estimates.

Figure 9.11 shows the full network generated for analyzing the robot in
the test scene. As before, the boxes represent transformations, but there
are more types used here. The “TPn” boxes stand for n instances of a
“TP” module. The circular “Jn” boxes represent three identical instances of
subnetworks allocated for transformations involving joint angles, which are
omitted to simplify the diagram (each contains 7 network modules). The
relative positions of objects are given by the P structures, such as Pg−R,
which represents the position of the robot in the global reference frame.
These are linked by the various transformations. Links to model or data
vectors or points are represented by the unconnected segments exiting from
some boxes.

The top position Pg−C is the position of the camera in the global coordi-
nate system, and the subnetwork to the left and below relates features in the
camera frame to corresponding ones in the global coordinate system. Below
that is the position Pg−R of the robot in the global coordinate system and
the position PC−R of the robot in the camera coordinate system, all linked by
a TT position transformation module. Next, to the bottom left is the sub-
network for the cylindrical robot body Pg−B. The “J1” node connects the
robot position to the rest (“link”) on the right, whose position is Pg−LK . Its
left subcomponent is the rigid shoulder ASSEMBLY (SH) with its subcom-
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Rigid Subcomponent Hierarchy
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Figure 9.10: A Simple Geometric Reasoning Network
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ponents, the shoulder body (SB) and the small shoulder patch (SO). To the
right, the “J2” node connects to the “armasm” ASSEMBLY (A), linking the
upper arm (U) to the lower arm (L), again via another joint angle (“J3”). At
the bottom are the modules that link model vectors and points to observed
surface normals, cylindrical axis vectors, and central points, etc. Altogether,
there are 61 network modules containing about 96,000 function nodes.

The network structure closely resembles the model subcomponent hier-
archy, and only the bottom level is data-dependent. There, new nodes are
added whenever new model-to-data pairings are made, producing new con-
straints on feature positions.

Evaluating the complete network from the raw data requires about 1,000,000
node evaluations in 800 “clock-periods” (thus implying over 1000-way par-
allelism). Given the simplicity of operations in a node evaluation, a future
machine should be able to support easily a 1 microsecond cycle time. This
suggests that an approximate answer to this complicated problem could be
achieved in about 1 millisecond.

As the tolerances on the data errors propagate through the network mod-
ules, they do not always produce tight result intervals, though some interval
reduction is achieved by integrating separate estimates. For example, if each
orientation component of a random position Pa−b has interval width (i.e. er-
ror) δ and each orientation component of a random position Pb−c has interval
width ǫ, then each component of the resulting position Pa−c = Pa−b ∗ Pb−c

has interval width:
16(δ + ǫ)

3π

However, this interval width is less or non-existent for most of the actual
rigid transformations used here.

Because the resulting intervals are not tight, confidence that the mean
interval value is the best estimate is reduced, though the bounds are correct
and the mean interval values provide useful position estimates. To tighten
estimates, a post-processing phase iteratively shrinks the bounds on a se-
lected interval and lets the new bounds propagate through the network. For
the robot example, this required an additional 12,000 cycles, implying a total
solution time of about 13 milliseconds on our hypothetical parallel machine.

Using the new geometric reasoning network, the numerical results for the
whole robot in the test scene are summarized in Table 9.10. Here, the values
are given in the global reference frame rather than in the camera reference
frame.
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Table 9.10: Measured And Estimated Spatial Parameters

PARAMETER MEASURED ESTIMATED

X 488 (cm) 487 (cm)

Y 89 (cm) 87 (cm)

Z 554 (cm) 550 (cm)

Rotation 0.0 (rad) 0.038 (rad)

Slant 0.793 (rad) 0.702(rad)

Tilt 3.14 (rad) 2.97 (rad)

Joint 1 2.24 (rad) 2.21 (rad)

Joint 2 2.82 (rad) 2.88 (rad)

Joint 3 4.94 (rad) 4.57 (rad)

The results of the position estimation can been seen more clearly if we
look at some figures showing the estimated object positions overlaying the
original scene. Figure 9.12 shows the estimated position of the trash can is
nearly correct. The robot upper arm (Figure 9.13) and lower arm (Figure
9.14) are also close. When we join these two to form the armasm ASSEMBLY
(Figure 1.10), the results are still reasonable, but by the time we get to the
whole robot (Figure 9.15), the accumulated errors in the position and joint
angle estimates cause the predicted position of the gripper to drift somewhat
from the true position (when using the single pass at network convergence).
The iterative bounds tightening procedure described above then produces
the slightly better result shown in Figure 1.11. Note, however, that both
network methods produced improved position results over that of the original
IMAGINE I method, which is shown in Figure 9.16.

Though research on the efficient use of these networks is continuing, prob-
lems overcome by the new technique include the weak bounding of trans-
formed parameter estimates and partially constrained variables, and the rep-
resentation and use of constraints not aligned with the parameter coordinate
axes. The network also has the potential for large scale parallel evaluation.
This is important because about one-third of the processing time in these
scene analyses was spent in geometric reasoning.
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Figure 9.12: Recognized Trash Can
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Figure 9.13: Recognized Upper Arm
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Figure 9.14: Recognized Lower Arm
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Figure 9.15: Recognized Complete Robot Using One-Pass Network Method
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Figure 9.16: Original IMAGINE I Recognized Complete Robot
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9.3 Feature Visibility Analysis

In three dimensional scenes, not all object features will be visible (e.g. some
will be on the back side of an object), and a true three dimensional scene
understanding program should account for this. There are three distinct
cases of feature invisibility. The first case always occurs: there are features
on the back side of every object and these cannot ordinarily be detected from
a single viewpoint (except by using mirrors or shadows). At the same time,
it is easy to predict what cannot be seen, using the estimated orientation of
hypotheses to predict back-facing SURFACEs.

The next case is forward-facing self-obscured features. Here, an object
feature is obscured by one or more closer surfaces from the same object.
Given knowledge of the object’s shape and position relative to the viewer,
the relative surface positions and their visibility can be predicted.

Finally, there is structure obscured by unrelated objects. Here, the details
of occlusion cannot be predicted, nor is it easy to deduce the invisible struc-
ture (though context and historical information could help – as in the top of
a desk). Perhaps the best that can be done is to show that what remains is
consistent with the hypothesis of obscured structure. Consequently, indirect
evidence for some features must be found. This requires three actions – pre-
dicting feature visibility, finding evidence for closer structures and verifying
that the available features up to the point of occlusion are consistent with
the model.

After feature visibility analysis, the results are used in three ways:

1. SURFACEs predicted to be invisible are not searched for,

2. SURFACEs predicted to be partially self-obscured are verified as hav-
ing one or more boundaries that show this (e.g. back-side obscuring
between this and other object SURFACEs), and

3. SURFACEs predicted to be completely visible are verified as having no
back-side obscuring boundaries (unless obscured by unrelated objects).

Because of parameter estimation errors, test 3 is not reliable and is not
performed (more discussion below).

These three cases of feature visibility are only applied to individual SUR-
FACEs, as any ASSEMBLY can be decomposed into SURFACEs.
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9.3.1 Deducing Back-Facing SURFACEs

Deducing whether planar SURFACEs are back-facing or not is simple: if the
predicted surface normal points away from the camera, then the SURFACE
is not visible.

Let:
~n be the model SURFACE normal ((0, 0, -1) by definition)
A be the coordinate transformation from the SURFACE’s

local system to that of the whole object
G be the transformation from the object’s

local system to that of the camera
~p = a nominal point on the SURFACE in local coordinates

Then:
~m = GA~n is the predicted normal orientation
~v = GA~p is the view vector from the camera to the point

on the SURFACE
Test:

if ~v ◦ ~m > 0, then the SURFACE is back-facing

For curved SURFACEs, we test the normal at each point on the boundary.
By the segmentation assumptions (Chapter 3), the surface varies smoothly
within the boundaries, so if all points on the boundary and the nominal
central point are back-facing, then the interior of the surface almost always
is as well.

A problem occurs with the combination of nearly tangential SURFACEs
and parameter misestimation. Here, SURFACEs predicted as visible may
not always be so, and vice versa. This case can be detected, by detecting
surface normals oriented nearly perpendicular to the line of sight at the
surface boundary. If a SURFACE is determined to be tangential, hypothesis
construction does not require image evidence for it.

Classifying the visibility of curved SURFACEs follows this logic: If a
substantial portion of a curved SURFACE is front-facing, then call it “front-
facing”. If it is not “front-facing” and a substantial portion of the SURFACE
is tangential, then call it “tangential”. Otherwise, call it “back-facing”. The
ideal form of this test is:
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Let:
T = set of points whose surface normals are nearly perpendicular to

the three dimensional line of sight (i.e. the tangential points)
F = set of points whose surface normals face the viewer, but

are not in T (i.e. the front-facing points)
B = set of points whose surface normals face away from the

viewer, but are not in T (i.e. the back-facing points)
Then:

If empty(F) and empty(T), then back-facing (i.e. never seen)
If empty(F) and not(empty(T)), then tangential (i.e. possibly seen)
If not(empty(F)), then front-facing (i.e. always seen)

Because of parameter estimation errors, some compromises in the above
ideal algorithm are made:

• thresholds are added to decide the visibility class of each vector

• thresholds are added to decide the visibility class of the whole SUR-
FACE

The algorithm to classify individual vectors is:

Let:
~vi be the line of sight to point i
~mi be the predicted surface normal vector at i
di = ~vi ◦ ~mi

Then:
if di > τ1, then i ∈ B (τ1 = 0.1)
if di < −τ1, then i ∈ F
i ∈ T otherwise
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Table 9.11: Predicted SURFACE Visibility

Object SURFACE Visibility

robbody front-facing = {robbodyside(1)}
tangential = {robbodyside(2)} *1

robshldbd front-facing = {robshldend,robshould2}
tangential = {robshould1} *1

robshldsobj front-facing = {robshoulds(1)}
tangential = {robshoulds(2)} *1

upperarm front-facing = {uside(2),uends,uedgel(1)}
back-facing = {uside(1),uendb,uedgel(2)}
tangential = {uedges(1),uedges(2)}

lowerarm front-facing = {lsideb,ledgea,lendb}
back-facing = {lsidea,ledgeb}

trashcan front-facing = {tcanoutf(1),tcaninf(1),
tcanbot(1)}

back-facing = {tcanbot(2)}
tangential = {tcanoutf(2),tcaninf(2)} *1

*1 – largely back-facing curved SURFACE has tangential sides

The classification of the whole SURFACE is obtained by:
Let:

b = size(B)
f = size(F)
t = size(T)
s = b + f + t

Then:
if f/s > τ2, then front-facing (τ2 = 0.1)
else if t/s > τ3, then tangential (τ3 = 0.1)
else back-facing

When this classification was applied to the objects with their estimated
reference frames in the test image, surface visibility was correctly deduced.
The results are shown in Table 9.11.
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9.3.2 Deducing Self-Obscured SURFACEs

Given the deductions of the previous subsection, all remaining SURFACEs
must be at least partially front-facing, but some may be partially or wholly
self-obscured by other closer SURFACEs from the same object.

Self-occlusion analysis uses the object model and position estimates to
predict an image of the object, which is then analyzed for visibility. The
process occurs in three stages:

1. prediction of visible SURFACEs,

2. deduction of missing SURFACEs and

3. deduction of partially self-obscured SURFACEs.

The first step is implemented using a raycasting depth image generator.
Here, a ray from the viewer is intersected with the model SURFACEs placed
according to the object’s estimated position. The raycaster produces an
array of pixels valued with the depth and identity of the closest (i.e. visible)
SURFACE.

The detection of completely obscured structure is now trivial and consists
of finding those front-facing SURFACEs (from the analysis of the preceding
subsection) not visible in the predicted image.

The detection of partially obscured SURFACEs is also simple. During
image generation, whenever a predicted visible surface pixel was replaced or
not included because of a closer pixel, then self-occlusion occurred. The iden-
tities of all SURFACEs that suffered this are recorded during the generation
of the synthetic image. Any such SURFACE not completely self-obscured is
then partially self-obscured.

Parameter estimation errors may cause nearly obscured SURFACEs to
disappear and barely obscured SURFACEs to reappear. A similar effect oc-
curs with unobscured SURFACEs becoming partially obscured (i.e. because
a closer SURFACE moves slightly in front of it) and vice versa. So, the
following algorithm was implemented to decide the visibility classes:
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Figure 9.17: Boundaries Surround Completely Obscured Surface

Let:
v = number of visible pixels (predicted by raycasting)
n = number of obscured pixels (predicted by raycasting)
p = v/(v + n) (percentage of visible pixels)

Then:
if p > τ1, then the SURFACE is fully visible (τ1 = 0.9)
if τ1 ≥ p > τ2, then the SURFACE is partially obscured (τ2 = 0.05)
Otherwise, the SURFACE is fully obscured

Table 9.12 records the predicted occlusion status for all front-facing SUR-
FACEs of all primitive ASSEMBLYs in the test image. This corresponds
exactly to the observed visibility of all SURFACEs (disregarding external
occlusion, which is discussed below). For structured ASSEMBLYs, the pro-
cess is similar, only some previous cases of external occlusion now become
self-occlusion as components are connected together.

9.3.3 Detecting External Occlusion

Structure obscured by unrelated objects cannot be anticipated in coinciden-
tal scene arrangements, unless closer objects can be identified. What remains
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Table 9.12: Predicted Self-Occlusions

Object Occlusion Status

robbody fully-visible = {robbodyside(1)}
robshldbd fully-visible = {robshldend,robshould2}
robshldsobj fully-visible = {robshoulds(1)}
upperarm fully-visible = {uside(2),uends}
lowerarm fully-visible = {lsideb,ledgea}

partially-self-obscured = {lendb}
trashcan fully-visible = {tcanoutf(1)}

partially-self-obscured = {tcaninf(1)}
fully-self-obscured = {tcanbot(1)}

possible is to show that the absence of a feature is consistent with the as-
sumption of occlusion, that is, there are closer, unrelated surfaces completely
covering the portion of the image where it is expected. This unrelatedness
can be verified by detecting front-surface-obscuring or concave boundaries
completely surrounding the closer surfaces, as in Figure 9.17.

The other case considered occurs when non-self-obscured SURFACEs are
observed as partially obscured. These must meet all shape and adjacency
constraints required by the model and the invisible portions must be to-
tally behind other unrelated surfaces (as before). The boundary between the
partial object and obscuring surfaces must be obscuring.

Verifying fully obscured structure is the simplest case. Here, every portion
of the predicted model SURFACE must be behind an unrelated data surface.
Minor errors in absolute distance prediction make it difficult to directly verify
that an object surface pixel is further away than the corresponding observed
pixel, such as when a piece of paper lies on a table surface. Fortunately,
relative surface depth differences have already been accounted for in the
labeling of obscuring boundaries and the formation of depth ordered surface
clusters (Chapter 5). The ordering test can then be reformulated to verify
that the entire missing SURFACE lies within the image region belonging to
an unrelated, closer, surface cluster. In practice, the test can be performed
using a raycasting technique:

1. Find the set of closer, unrelated surfaces.
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2. Predict the image locations for the missing SURFACE.

3. For each pixel, verify that the observed surface image region has been
assigned to one of the closer surfaces.

Again, this ideal algorithm was altered to tolerate parameter misestima-
tion:

Let:
P = set of predicted image positions for the SURFACE
I = subset of P lying on identified object surfaces

(should be empty)
O = subset of P lying on closer unrelated obscuring

surfaces (should be P)
E = subset of P lying elsewhere (should be empty)

If:
size(I) / size(P) < τ1 and size(E) / size(O) < τ2

(τ1 = 0.2, τ2 = 0.2)

Then: declare the surface to be externally obscured

Figure 9.18 illustrates the test.
Because of the depth ordering ambiguities of concave surface boundaries

(i.e. which surface, if either, is in front of the other), this approach will
fail to detect some cases of external occlusion. Difficulties also occur with
surfaces that lie both in front of and behind objects. In the absence of
more accurate depth predictions, the only correct test may be to observe
an obscuring boundary between the visible portions of the object and the
missing portions.

The only fully externally obscured structure was the robot hand, which
was correctly detected. Because the reference frame estimates for the lower-
arm had a slightly larger rotation angle, part of the hand was predicted not
to be obscured by the trash can. This motivated the threshold based test
described above.

Figure 9.19 shows the predicted position of the robot hand on top of the
scene.

Determining the visibility status of the model features was computa-
tionally expensive – particularly the raycasting image generation for self-
occlusion analysis. About one-third of the processing time was spent in this
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Figure 9.18: Predicted Boundary of Externally Obscured Surface
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Figure 9.19: Predicted Gripper Position
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process. In response to this, the SMS modeling approach [70] was developed.
These models explicitly record the visibility of all model features for the SMS
equivalent of each ASSEMBLY, for the key viewpoints. The model does not
specify the visibility relationship of all recursively accessible features, merely
those represented at the current level of the hierarchy, which considerably
reduces the number of occlusion relationships considered for each object.
Feature visibility is associated with a partitioning of the view sphere, and
the relative position between the viewer and the object determines which
partition applies at a given time. From this index, the visibility is directly
accessed.

9.4 Direct Evidence Collection

The visibility analysis deduced the set of SURFACEs for which image evi-
dence should be available and we now discuss how such evidence is detected
and matched to the model.

9.4.1 Initial (Invocation) Feature Evidence

Model SURFACEs have no substructure, so the evidence for a hypothesized
model SURFACE is the associated surface image region. ASSEMBLYs are
then formed by hierarchical synthesis [161], so previously verified subcompo-
nents or SURFACE hypotheses are evidence for a hypothesized ASSEMBLY.

If invocation occurs, at least one subcomponent grouping (Section 8.2.3)
must have positive plausibility, which suggests that some subcomponents
are visible and are likely to have been previously recognized. (If none were
invoked, then it is unlikely that the object will be invoked.) Then, verified
subcomponent hypotheses become the initial evidence for the structure.

For each image structure associated with the invocation subcomponent
group, all verified hypotheses of the correct types in the current image context
(surface cluster) are located. Then, groups of these verified subcomponent
hypotheses are combinatorially paired with the invoked model’s features to
create a new hypothesis, provided that:

1. Each model feature gets at most one hypothesis, which must have the
correct type.

2. No image structure is used more than once.
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3. Only maximal pairings are considered.

4. There is a consistent reference frame that unifies all subcomponents.

The combinatorial matching is potentially explosive, but each image sub-
structure generally has only a few verified hypotheses, usually arising from
symmetry or ambiguity. Objects with these problems or duplicated features
generate more initially consistent hypotheses, but most of these are elimi-
nated by constraints (2) and (4).

The worst combinatorial explosion occurs with the robot lower arm, where
each of the visible planar surfaces could be one of two model SURFACEs, each
in two possible orientations. The curved end SURFACE has one model in two
possible orientations. Altogether, there are initially 32 possible pairings using
previously recognized subcomponents. Fortunately, the constraints eliminate
all but two, which are indistinguishable in this scene. The upper arm is the
next worst case, with eight initial pairings of which two are left after the
constraints. All other initial hypothesis generations had four or fewer cases.
Most invalid cases were eliminated by constraint (4).

9.4.2 Additional SURFACE Feature Location

Given the initial location estimates and the geometric model, it is easy to
predict where a visible surface should appear. This prediction simplifies
direct search for image evidence for the feature. This is, in style, like the
work of Freuder [75], except that three dimensional scenes are considered
here.

To select good image evidence for an uninstantiated model feature, the
oriented model is used to predict roughly where the surface data should
appear. Figure 9.20 shows the predicted location for the robot upper arm
uedgel panel superimposed on the original image using the initial parameter
estimates for upperarm.

Other constraints can then be applied to eliminate most inappropriate
surfaces from the predicted area. The constraints that a potential surface
must meet are:

1. It must not be previously used.

2. It must be in the surface cluster for the ASSEMBLY.

3. It must be in the correct image location.
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Figure 9.20: Predicted Uedgel Panel on Image
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4. It must have the correct three dimensional surface orientation.

5. It must have the correct three dimensional location.

6. It must have the correct size.

7. Its visible portions must have the correct shape.

The implemented algorithm used the constraints 1 to 5, with some pa-
rameter tolerances on 3, 4 and 5. The 7th was not used because likely causes
for not finding the surface during invocation were: it was partially obscured,
it was incompletely segmented or it was merged during the surface recon-
struction process (Chapter 4). The result of these would be incorrect shapes.
These factors also affect the area constraint (6), so this was used only to
select a single surface if more than one met the first five constraints (but this
did not occur in the test scene).

The implemented algorithm is:

Let:
S = {all surfaces in the surface cluster not previously used

in the hypothesis} = {sd}
~cp = predicted image central point for the missing SURFACE
~cd = observed image central point for sd

~np = predicted three dimensional surface normal at ~cp

~nd = observed three dimensional surface normal at ~cd

zp = predicted depth at ~cp

zd = observed depth at ~cd

Ap = model area for missing SURFACE
Ad = estimated area for sd

If:
(constraint 3)
| ~cd − ~cp |< τ1 (τ1 = 20 pixels)
(constraint 4)
~np ◦ ~nd > τ2 (τ2 = 0.8)
(constraint 5)
| zp − zd |< τ3 (τ3 = 50 cm)

Then: sd is an acceptable surface
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The surface selected is the acceptable sd whose area is closest to that
predicted, by minimizing:

| 1 − Ad

Ap

|

In the test image, the only missing SURFACEs were the two side surfaces
on the upper arm and the inside surface at the back of the trash can. For the
trash can, the only potential image surfaces for the trash can back surface
were the two visible surfaces in the surface cluster. The front surface was
already used in both cases, and the rear surface met all the other constraints,
so was selected. A similar process applied to the upper arm side panels.

9.4.3 Rigid Subcomponent Aggregation

Surfaces are not the only evidence accepted for model features – previously
recognized subcomponents are also used. For example, a nose would be such
a subcomponent in the context of a face. The structures can be rigidly
connected to the parent object (e.g. nose to face) or non-rigidly connected
(e.g. arm to body). The collections should correspond to model features
because of the model segmentation assumptions (Chapter 7) and the surface
cluster formation process (Chapter 5).

Any analysis associated with these structures can be reduced to analysis
of the subcomponent SURFACEs, but it would be desirable to use the larger
units. First, the substructures might have been previously identified, and so
processing should not be duplicated, and second, the use of larger structural
units helps reduce the combinatorial matching. Finally, parsimony dictates
that matching should proceed at the level of descriptions, and complex ob-
jects would be described using subcomponents.

Because of the hierarchical synthesis [161] nature of the recognition pro-
cess, previously recognized subcomponents can be directly integrated as evi-
dence, without having to return to the surface analysis [66]. As the subcom-
ponent’s type is already a strong constraint on its usability, the remaining
constraints are:

1. being in the surface cluster,

2. having the correct adjacent structure and

3. having correct placement.
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The placement test is:

Let:
Gs be the global transformation for the subcomponent
A be the transformation from the subcomponent’s

to the object’s reference frame
Then:

if GsA
−1 (by INVERSE and TRANSFORM) is consistent with the
object’s reference frame (by MERGE) then allow attachment.

No structure adjacency criterion was implemented, but subcomponent
SURFACEs should be adjacent to other object SURFACEs, as conditioned
by any external or self-occlusion. Figure 9.8 illustrates the subcomponent
aggregation process.

Only one instance of a recognizable rigidly connected subcomponent oc-
curred in the test image. Here, the cylindrical robot shoulder body and
the small triangular shoulder patch were joined to form the complete robot
shoulder. The combination passed the placement test, so proceeded to veri-
fication.

9.4.4 Binding Subcomponents with Degrees of Free-
dom

Subcomponents whose attachment is only partially constrainted (such as
the lowerarm ASSEMBLY of a PUMA robot) also need to be aggregated.
As the subcomponent has been recognized previously, its coordinate frame
must be consistent with the object’s, given the degrees-of-freedom inherent in
the modeled relationship between their respective coordinate frames. At the
same time, the test also binds the values for the remaining degrees-of-freedom
in the coordinate relationship. This results in numerical values being bound
in the particular hypothesis context for the symbolic variables used in the
model definition (Chapter 7). Figure 9.21 illustrates the partially constrained
subcomponent attachment process.

The matching and binding is by a “numerical” unification process:
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Figure 9.21: Partially Constrained Subcomponent Aggregation (in 2D)

Let:
G be the global reference frame transformation for the object
S be the global reference frame transformation for the subcomponent
A(~x) be the transformation from the subcomponent’s reference frame

to the object’s reference frame with ~x as the unbound variables
Then:

Compare G−1S to A(~x)
Where A(~x) has bound variables, then the values must match

(i.e. parameter estimate ranges overlap)
Where A(~x) has unbound variables, then the variables are set

to the corresponding parameter ranges from G−1S

The results for the correct partially constrained subcomponent aggrega-
tions are summarized in Table 9.13. All correct bindings were made, and the
table shows that the connection parameters were estimated well. Most of the
incorrect combinatorial subcomponent groupings were eliminated during the
binding process because of inconsistent reference frames, so this was also a
benefit.
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Table 9.13: Correct Partially Constrained Subcomponent Attachments

Modeled Measured Estimated

Object Subcomponents Parameter Value Value

robot link, robbody jnt1 2.24 2.18

link armasm, robshould jnt2 2.82 2.79

armasm upperarm, lowerarm jnt3 4.94 4.56

In the test scene, one binding occurred between inappropriate hypothe-
ses, when constructing the armasm ASSEMBLY. Because of symmetry, each
of its two subcomponents (upperarm and lowerarm) had two hypotheses.
Hypothesis pairing produced four pairs, of which two passed the above test.
Only one should have passed, but because of the tolerances on reference
frame estimates, it was not possible to eliminate the grouping that placed
the lower arm behind the upper arm solely by using geometric constraints.
Self-occlusion analysis during verification (Chapter 10) did eliminate the ex-
tra hypothesis, however.

9.5 Relation to Other Research

Though pattern recognition techniques are widespread, and may give rough
information about the object’s image position, they do not usually provide
precise placement, description and feature correspondences. Another tech-
nique, graph matching (e.g. [16]), typifies topological matching methods that
make correspondences between image and model features, but again do not
give scene placement nor precise image description. The graph arcs can in-
clude rough spatial relations (e.g. above, left, near) between image features
and an image model (e.g. [83], [119], [123, 1]). They can also include en-
vironmental relations like the sky being at the top of an image and above
roofs [123], or most scene lines being vertical [102], which allow for rough
correspondences and object placement in the image. These classes of tech-
niques do not strongly exploit the geometric structure of objects and scenes
(which often provide the best constraints on the identity and position of
objects) though the algorithms do offer simplicity and well-defined decision
procedures.
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Geometric scene understanding systems can be classified by the dimen-
sionality of their model features (i.e. point, curve, region or volume) and
their image data (i.e. two or three dimensional). All of the key research
discussed below used three dimensional geometric models.

Early scene understanding systems (e.g. [139, 60]) used two dimensional
point or corner correspondences to solve for object location and projection
relationships. Later, Turner [161] located objects by using three dimen-
sional points found from stereo triangulation of paired two dimensional image
points.

Three influential edge-based recognition systems are:

• Brooks’ ACRONYM system [42] matched pairs of nearly parallel two
dimensional lines (“ribbons”) to the extremal boundaries of general-
ized cylinders, thus instantiating model primitives. Larger objects were
found by a graph matching technique, where the arcs in the graphs rep-
resented two dimensional projections of three dimensional geometric
relationships between the generalized cylinders (e.g. relative orienta-
tion). Three dimensional object position was found by using the two
dimensional image measurements (feature sizes and positions, etc.) to
back-constrain the range of position parameters.

• Lowe’s SCERPO system [108] used groupings of straight two dimen-
sional line features to suggest and orient model instances - which were
sets of three dimensional lines. To help avoid combinatorial matching
problems, he used a “perceptual organization” technique that grouped
edges by colinearity, parallelism and endpoint connectivity and then
formed larger features, like parallelograms. A measure of significance
related to the probability of random occurrence of the segment group-
ings was calculated for both model and data segments, which was then
used to help order search. With a pairing of three or more segments,
three dimensional position was found by using an iterative least-squared
error algorithm. Hypotheses were then verified and refined by collect-
ing additional line evidence, using direct feature predictions from the
initial position estimates.

• The University of Sheffield TINA system [134] matched three dimen-
sional lines derived from binocular stereo to a three dimensional wire
frame object model (which was itself derived empirically from observed
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instances of the objects). The use of edge information implied the ob-
jects needed to be largely polyhedral. A least-squared error matching
process deduced the position of the object from the three dimensional
feature correspondences.

Lowe’s work was analyzed by McIvor [114], with the main criticisms being
over weak initial position estimates, ignoring edge fragmentation, incorrect
probability analysis for larger groups, unnecessary projection relationship
simplifications and insufficient discriminatory powers. However, McIvor also
demonstrated the approach was successful in 10 of 16 views of a test part.

There has been little geometric matching of two dimensional image re-
gions to three dimensional model surfaces. Fisher [66] used heuristics based
on the deformations of the three dimensional model surface patches when
seen in two dimensions to estimate three dimensional surface patch position.
This supported a hierarchical synthesis matching process that recognized
larger objects. Ballard and Sabbah [13] used a variety of Hough transfor-
mation techniques to estimate the six positional parameters sequentially.
This uniform mechanism is more stable to noise, but is likely to suffer when
the object’s shape varies dramatically with the viewpoint. Turner [161] at-
tempted a more symbolically descriptive matching technique by using surface
patches classified according to the patterns of iso-intensity curves. The ele-
mentary recognition operation used property and relation matching. More
complicated objects were recognized by aggregating subcomponents in a hi-
erarchical synthesis process.

Three dimensional surfaces have been used for recognition since the early
1970’s. Several researchers (e.g. [147, 133]) collected surface data from a
structured light system, where configurations of light stripes characterized
regular surface shapes. This method of data collection has again become
popular (e.g. [127, 36]). A particularly significant result was obtained by
Faugeras and Hebert [63], who recognized an irregular part using locally
planar patches, by matching to an empirically derived model (although the
matcher only found a few correspondences). Grimson and Lozano-Perez [78]
extended this work by developing a set of heuristics that eliminate many
spurious initial hypotheses. Their features were three dimensional image
points with attached vectors (such as surface normals). Grimson [79] later
extended this work to recognizing families of scaled, stretched or jointed two
dimensional piecewise linear objects, by propagating and refining estimates
of the scale or stretch factor down the model-to-data segment pairing search
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tree.
In a “continuous” version of surface matching, Ikeuchi [96] used an ex-

tended gaussian image method to reduce object description to a sphere with
quills representing the sizes of areas with the corresponding orientations.
Matching used three dimensional data and was largely a constrained cor-
relation. His method was successful with some curved objects, but ignored
the object’s structural features, and might fail for complicated or non-convex
objects.

In general, recognition results have been limited to complete image un-
derstanding of simple geometric objects (e.g. [139]) or partial understanding
of complex assemblies of simple objects, such as airplanes [42]. Irregular
objects are not well understood at this level, in part because of problems
with object modeling and in part because of the difficulty in obtaining useful
image data.

Once an initial object position has been estimated, object models can be
used to predict the location and appearance of the remaining image features.
Falk [60] predicted lines in a blocks world domain, and Freuder [75] predicted
image region locations in two dimensions with procedural models of hammers.
More recently, Brooks [42] showed how a range of image positions could be
predicted using partial constraints on object location. Hogg [91] used edge
point information to verify the positional parameters of a generalized cylinder
human model over time in a natural scene. Individual evidence was weak, but
requiring evidence for the whole complex model led to good results. Aylett et
al. [11] used constraints similar to Grimson and Lozano-Perez [78] to match
stereo-derived three dimensional edges to predicted model edges. The model
edges were predicted from a constructive solid geometry object model in a
known position and the goal was to eliminate known features from a scene.

Understanding occlusion in three dimensions has had few results to date.
Blocks world scenes have been successfully analyzed by Guzman’s heuristics
[80]. These included the paired-TEE occlusion identification and image re-
gion pairing heuristics. Fisher [66] and Adorni and Trucco [4] have extended
and applied these ideas to three dimensional scene analysis. Koenderink and
van Doorn [104] characterized occlusion on curved surfaces by their local
surface relationships, and showed how the occlusion signatures progressively
vary as viewpoints change. This micro-level occlusion understanding could
help predict local surface shape for the verification of hypothesized occlusion.

Most model-based three dimensional vision systems are slow. Goad [76]
described a very efficient three dimensional model edge to two dimensional
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data straight edge matching algorithm (achieving several second recogni-
tion). He represented a discrete set of object orientations (tessellations of a
viewsphere) as a boolean bit string, thus allowing fast geometric operations.
Matching used a tree search, and Goad pre-expanded the tree branching
on the outcome of visibility prediction and feature detection. Impossible
branches were pruned at compile time using a combination of geometric,
reliability and plausibility analysis. Relative feature positions could be pre-
computed for the tessellations, allowing fast run-time absolute feature pre-
diction.

9.6 Discussion

There is an “idealism” embedded in the matching assumptions, with the
goal of accounting for all model features. This most stringent criterion is ul-
timately not practical because position estimate errors will make location of
smaller features difficult and segmentation may not isolate the desired struc-
tures, or isolate them at a different level of analytic scale. Other phenomena
that cause the loss of data include occlusion, faulty objects, sensor noise and
generic object variations. The result is that bad or unexpected evidence will
cause failure, such as when a surface is too fragmented.

In general, numerical techniques (e.g. least-squared error) could probably
improve the methods used here, provided the problems could be reformulated
to allow the degrees-of-freedom needed for partially constrained relationships,
such as joint angles. This seems like a suitable extension for a final geometric
reasoning refinement phase, after all evidence has been accumulated.

The programs account for several expected difficulties, such as when two
surfaces are not properly segmented (as in the upper arm edge surfaces), or
when thin cylindrical features (e.g. chair legs) are too distant to be considered
cylinders. Further, variation in segmentation is allowed by not examining
boundary placement when matching surfaces.

Some special case reasoning seems acceptable, but incompleteness of evi-
dence should also be permitted. Unfortunately, this leads to heuristic match
evaluation criteria, or explicit designation of required versus auxiliary evi-
dence. More generally, a full model of an object should also have descriptions
at several scales and the construction process should match the data across
the levels.

Another major criticism is that the recognition process only uses surfaces.
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The traditional “edge” is still useful, especially as surface data does not rep-
resent reflectance variations (e.g. surface markings). Volumetric evidence
could also be included. Relationships between structures, such as line par-
allelisms and perpendicularities can provide strong evidence on orientation,
particularly when occlusion leaves little visible evidence.

Object knowledge could help the recognition of subcomponents. Each
subcomponent is currently recognized independently and then aggregated
in a strictly bottom-up process. However, one subcomponent may invoke
the object, which could partially constrain the identity and location of the
other subcomponents. Since these objects often obscure each other in un-
predictable ways, there may not be enough evidence to invoke and identify
a subcomponent independently, whereas additional active top-down object
knowledge might overcome this.

The level of detail in a model affects the quantity of evidence required.
Hierarchical models that represent finer details in lower levels of the model
lead to hypothesis construction processes that add the details once the coarser
description is satisfied (if the details are needed). This symbolic coarse-to-
fine recognition approach has not been well explored yet, but some modeling
systems (e.g. ACRONYM [42], SMS [70]) have experimented with scale de-
pendent models.

Final Comments

This chapter has investigated model matching mechanisms that use sur-
faces as the primary recognition evidence. Previous work has demonstrated
how to use surfaces, but their approaches, while using real data, did not use
all available data (including surface curvature), understand the visibility of
model features or richly exploit hierarchical models. This chapter showed
how to use models, surfaces and associated positional information to:

• estimate the reference frame for objects,

• deduce the visibility of all model features,

• predict where to find all visible features,

• explain missing data as instances of occlusion, and

• ensure consistent data.



Chapter 10

Hypothesis Verification

The model invocation and hypothesis construction processes are largely based
on processing symbolic structural descriptions and do not closely examine
the input data. Further, tolerances are allowed in the matching process
to overcome noise, segmentation variations and imperfect descriptive pro-
cesses. Consequently, it is possible for coincidental scene arrangements to
lead to spurious object hypotheses. Many of these false hypotheses will have
been eliminated by the geometric constraints examined during hypothesis
construction, but some may remain. This chapter discusses additional con-
straints on solid physical objects that help guarantee object existence and
identity.

10.1 What Should Verification Do?

Models are invoked by attributes suggesting objects; thus invocation is neces-
sarily coincidental. Hypothesis construction is more constraining, requiring
geometric coordination among features as dictated by the model, but can
still leave spurious, well advanced, hypotheses that need to be eliminated.
Hence:

verification aims to ensure that what is recognized is only what
is contained in the scene.

In a philosophical sense, verification should try to maximally confirm
the validity of the hypothesized identity of an image structure, to the limits
of the object representation. The point is to ensure that the object both

287
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physically exists and has the requisite properties, by extending the depth of
the subordinate concept structure beyond merely superficial attributes. In a
sense, this is a true “seeing” of the object. Previous stages of analysis only
considered subsets of the features in a “suggestive” sense, whereas verification
should now look for all features and can report what it finds.

More practically, verification should also eliminate hypotheses that arise
from coincidental arrangements of image features. This approach leads to
defining a set of constraints that an object must satisfy to be said to exist and
have a given identity. These, in turn, entail knowing both what is important
in an object and its representation, and what makes it appear as it does.

We would like reasonable criteria for ensuring correct object hypotheses,
with “reasonable” encompassing both richness of detail and conceptual ap-
propriateness. Unfortunately, “ensuring” is impossible because all interpre-
tations of sensory data are necessarily imperfect and because no real object
can be completely and uniquely characterized. Practical problems are re-
lated and stem from impoverished models and descriptive terms and lack of
resolution in the data. However, some verification is both necessary and of
value and should remove the most obvious cases of misidentification.

Existence Verification

Little work has addressed the question of: “Does the object exist, or are
the features merely coincidental?”. Geometric constraints increase the cer-
tainty by showing that the image features are consistent with a particular ob-
ject instance, but they do not guarantee that the features are causally related.
Figure 10.1 shows three orthogonal planes that invoke a cube model, but fail
to meet the general physical requirements of connectedness. Hence, we can
help ensure existence by requiring the objects to be completely bounded by
a connected set of surfaces.

Because of philosophical and practical difficulties, the work will only con-
sider how to eliminate ASSEMBLYs whose features are definitely unrelated.

Identity Verification

Identity verification is needed because similar models could be invoked
and successfully constructed. This suggestive “recognition” is appropriate
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Figure 10.1: Unrelated Planes Invoke Cube

for artistic vision systems, but inappropriate for precise object recognition,
which is the intent of this research.

Verification could be achieved by synthesizing an image from the model
and then doing detailed surface comparisons, but this is both computation-
ally expensive and unnecessary. Considering all object features would be
ideal for verifying identity. Unfortunately, practicality and finite termination
requires using only a limited subset of all possible properties. Verification
should be carried out at a conceptual level that is efficacious, representation-
ally appropriate, and efficient. As this research has concentrated on object
shape, our verifying properties are based on shape and structural relation-
ships. Further, as the data is already segmented, we will use the segments
themselves (as compared to the raw data).

Our segmentation assumptions imply that surface class, curvature pa-
rameters and boundary location define the surfaces (though they do not dis-
tinguish subtle differences in shape). Comparison requires knowing the sur-
face’s three dimensional position and which observed boundaries correspond
to model boundaries (as distinct from obscuring or extremal boundaries).
However, as position estimates may be slightly erroneous and segmentation
boundaries may not be precisely placed (as at curvature discontinuities), de-
tailed boundary and surface comparison is inappropriate.

For ASSEMBLYs, identity is maximally verified if all the predicted vis-
ible features are found in the correct places. The subcomponent identities
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and their relative geometric positions were verified previously by the hypoth-
esis construction process. Hence, to increase our certainty, we must check
that their observed interrelationships (e.g. adjacencies, self-occlusions) cor-
respond to those predicted by the model.

The hypothesis construction process understands occlusion and records
missing structures whose locations were predicted, but which were declared
obscured based on other evidence. Verification of partially obscured struc-
tures must show that the remaining visible portions of the object are consis-
tent with what is predicted given the model, its spatial location, the occlusion
annotations and the image evidence.

As certainty of identity is impossible, the goal of identity verification is
to falsify hypotheses that do not satisfy all identity constraints.

In summary, verification must:

1. consider SURFACEs and ASSEMBLYs,

2. question both existence and identity and

3. verify both shape and configuration.

10.2 Constraining Object Existence and Iden-

tity

The input to verification is a fully instantiated object hypothesis.
SURFACEs necessarily exist as they are inputs to recognition, so only

ASSEMBLY existence needs to be verified. The goal is to reject hypotheses
that are coincidental, which means showing that the surfaces associated with
the hypothesis cannot be organized into a solid. Solidity is based on complete
connection of all visible surfaces, which requires a topological examination
of the evidence.

Identity is based on object-specific properties. The level of detail for most
previous three dimensional object recognition systems was superficial and so
an object meeting the criteria was identified as far as the computation was
concerned, but, unfortunately, not for us as observers. Here, identification is
complete to the level of description embodied in the model, so increasing the
level of verification entails increasing the level and structure of the evidence.
Hence, associated with each model is a set of constraints that the data must
satisfy, and any structure that meets these is accepted as a model instance.
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The main goal of verification is to reject false hypotheses, and this ul-
timately requires comparison between the object and model shapes. This
can be done efficiently by comparing the symbolic characterizations of the
surfaces (the boundaries, the curvature axes and the curvature magnitudes)
and the relationships of these features in the object reference frame.

Following ACRONYM [42], it seems sensible to specify property require-
ments using numerical constraints on the values of an object’s properties.
Each satisfied property gives some measure of certainty and together they
help ensure correct identification.

10.2.1 SURFACE Verification

Invocation of SURFACEs is largely based on summary characteristics (e.g.
areas), rather than detailed shape. As surface regions are characterized by
their boundaries and internal shapes, verification could then ensure that:

• The observed surface has the same shape as that of the forward-facing
portions of the oriented model SURFACE.

• The surface image boundaries are the same as those predicted by the
oriented model.

Several problems complicate this approach: unmodeled extremal bound-
aries on curved surfaces, inexact boundary placement at surface curvature
discontinuities, and information lost because of occlusion.

As extremal boundaries are not modeled, they should not be considered,
except perhaps for verifying that the surface has the appropriate curvature
directions.

The second problem causes variable sized surface regions and hence makes
it difficult to compare surfaces and boundaries exactly. But, some possibili-
ties remain. In particular, all model boundaries are either orientation or cur-
vature discontinuity boundaries. The former should remain stable and appear
as either predictable shape segmentation or front-side-obscuring boundaries.
Detailed shape analysis may distinguish front-side-obscuring boundaries aris-
ing from orientation discontinuities from extremal boundaries. Curvature
discontinuity boundaries should probably be ignored.

Occlusion causes data loss, but is detectable as the back-side-obscuring
boundaries associated with the surface indicate the initial point of occlu-
sion. As the visible data must be a subset of the predicted data, the back-
side-obscuring boundary must be internal to the predicted surface. Concave
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boundaries are also ambiguous regarding surface ordering, so may not be
true surface boundaries.

Figure 10.2 illustrates these points, which are summarized as:

[S1] All data boundaries labeled as front-side-obscuring and surface orienta-
tion discontinuity should closely correspond to portions of the bound-
aries predicted by the model. The back-side-obscuring and concave
boundaries must lie on or be internal to the predicted region.

[S2] The data surface should have the same shape as a subset of the oriented
model SURFACE, except where near curvature discontinuities. This
entails having similar areas, surface curvatures and axis orientations.

Because of errors in estimating SURFACE reference frames, it was diffi-
cult to predict surface orientation and boundary locations accurately enough
for direct comparison. As a result, only test S2 was implemented:

[S2] Surface Shape Verification Test

Let:

S and Ŝ be the predicted and observed surface shape class

M and M̂ be the predicted and observed major curvatures
m and m̂ be the predicted and observed minor curvatures

~a and ~̂a be the predicted and observed major curvature axes
τc, τa be thresholds

If:

S is the same as Ŝ,

| M − M̂ |< τc, (τc = 0.05)
| m − m̂ |< τc, and

| ~a ◦ ~̂a |> τa (τa = 0.80)
(planar surfaces do not use this last test)

Then: the proposed identity of the surface is accepted.

10.2.2 Rigid ASSEMBLY Verification

Rigid ASSEMBLYs should meet both existence and identity requirements.
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Figure 10.2: Boundary and Surface Comparison
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Figure 10.3: Indeterminate Surface Connectivity Behind Obscuring Struc-
ture

Most real objects are compact solids and one manifestation of this is
connectedness of all object surfaces. Hence, surfaces composing the object
must somehow be directly or transitively connected to each other without
using unrelated surfaces.

Unfortunately, it is difficult to always determine if two surfaces are di-
rectly or indirectly connected. Convex surface orientation discontinuity bound-
aries definitely mean connectedness, but concave boundaries are ambiguous
regarding surface connectivity. Because of self-occlusion, direct connections
may not be visible, as when one subcomponent overlaps another. Finally,
obscuring objects can prevent observation of adjacency, though surface re-
construction (Chapter 4) eliminates some cases of this. Other cases, like that
in Figure 10.3 are not solved by this.

Because of these difficulties, hypotheses will be rejected if it is certain
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that they cannot be fully connected, i.e., if there are subcomponents be-
tween which no connection exists. (Of course, two isolated objects could be
connected by hidden structure to a common background, but here we assume
objects are seen in general position.)

The implemented test is:

[E1] All Surfaces Must Be Potentially Connecting

Let:
{Di} be the subcomponents used in the hypothesis
PC(Da, Db) means that Da and Db are potentially directly

connecting and holds if:
a) Da and Db share any type of boundary or
b) there is a surface cluster with a front-side-obscuring

or concave relation to both Da and Db

TC(Da, Db) be the transitive closure of PC(Da, Db)
If:

for some Da and Db, TC(Da, Db) does not hold

Then: the hypothesis is incorrectly formed.

This test rejects the false cube seen in Figure 10.1.
For rigid objects, the essence of identity is shape, and surface images make

this information directly available. Given the surface image, the observed
shape could be compared to that of each object from each viewpoint, but
this approach is computationally infeasible. A more parsimonious solution
follows, which also considers weak segmentation boundaries and occlusion.

Intuitively, correct object identification is assumed if all the right struc-
tures are found in the right places. Given the connectivity guaranteed by
the above test, merely having the correct components is likely to be ade-
quate, because the subcomponents of most objects only fit together rigidly
and completely in one way (disregarding highly regular objects, like blocks).
But, because there are likely to be a few counter-examples, especially with
symmetric objects and misidentifications of similar surfaces, geometric, as
well as topological, consistency is required. The requirement of consistent
reference frames will eliminate many arbitrary groupings (and was demon-
strated in the previous chapter).

Surfaces that are connected according to the model should be connected
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in the scene. This does not always imply adjacency is observable, because
object boundaries are not visible from all viewpoints.

Occlusion affects verification because some surfaces may be partially or
completely missing or a surface may be broken up by closer surfaces. More-
over, true surface boundaries may be obscured. The remaining true surface
boundaries will be connected to back-side-obscuring boundaries in different
locations. Since these are not model features, they are ignored.

Based on these ideas, the rigid object identity constraints are:

[R1] – Each data subcomponent can have at most one visible forward-facing
model subcomponent paired with it. (The converse may not hold be-
cause of fragmentation or occlusion).

[R2] – The position of observed subcomponents relative to each other is as
predicted for the corresponding model subcomponents.

[R3] – Model subcomponent adjacency implies data subcomponent adja-
cency and vice versa.

These constraints were implemented as the following tests:
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Let:
{Fi} be the visible forward-facing model SURFACEs
{Ii} be the image surfaces

~Pi and
~̂
P j be the predicted and observed center-of-mass for

the corresponding model and image surfaces Fi and Ij

~Ni and
~̂
N j be the predicted and observed surface orientations

at the centers-of-mass for the corresponding
model and image surfaces Fi and Ij

τt and τr be thresholds
Then:

[R1] For each Ii there is at most one corresponding Fj.
[R2] For each corresponding Ii and Fj:

| ~Pi − ~̂
P j |< τt (τt = 20.0)

| ~Ni ◦ ~̂
N j |> τr (τr = 0.8)

[R3] Let:
Ia, Ib be two non-tangential data surfaces
Fa, Fb be the corresponding model SURFACEs

If:
Fa and Fb are observably adjacent, Ia and Ib are not

observably adjacent, and there is no surface
cluster partially obscuring both Ia and Ib,

or
Fa and Fb are not observably adjacent and Ia and Ib

are observably adjacent
Then: the hypothesis is incorrectly formed

Occlusion also has distinctive characteristics, and thus the hypothesis that
an object is partially or fully obscured should be subject to some verification.
Back-side-obscuring boundaries usually signal this occurrence, though not
always. When a curved surface goes from facing the viewer to facing away,
self-occlusion occurs without back-side-obscuring boundaries. When back-
side-obscuring boundaries are present, though, three new constraints can be
added:

[O1] – the back-side-obscuring boundary should lie inside the image re-
gion predicted for the SURFACE. Alternatively, the predicted image
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Figure 10.4: Occlusion Boundaries Lie Inside Predicted Model Boundaries

boundary should lie on or outside the observed image region. Figure
10.4 illustrates this.

[O2] – Back-side-obscuring boundary segments that bound the surface image
region must end as the crossbar of a “TEE” junction. This implies that
there must be at least three image regions at the junction. Figure 10.5
illustrates this.

[O3] – A non-tangential image surface should be predicted as partially self-
obscured during visibility analysis (Chapter 9) if and only if the cor-
responding data surface has at least one back-side-obscuring boundary
whose closer surface is also an object surface.

Constraint O1 was not applied because parameter estimation errors made
it difficult to check this condition reliably (e.g. predicted model and data sur-
faces did not overlap adequately). Constraint O2 was guaranteed assuming
image labeling was correct, which was the case here.
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Figure 10.5: Occlusion Boundaries End on TEEs at Surfaces
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Because of parameter estimation errors, it is likely that there are self-
occlusions predicted during raycasting that are not observed (because of sur-
faces becoming slightly obscured). Hence, the test of verifying predicted self-
occlusions was not performed. While it is also possible for slightly obscured
data surfaces to be predicted as not obscured, if a self-occlusion was signifi-
cant enough to be observed, then prediction was likely to show it even with
parameter estimation errors. Hence, only the reverse test was implemented:

[O3] Observed Self-obscured SURFACEs Are Predicted

Let:
{Di} be the non-tangential partially obscured data surfaces
{Cij} be the closer data surfaces across obscuring

boundaries around Di

Si be the model SURFACE corresponding to Di

{Mk} be the other model SURFACEs
front(X,Y ) holds if model SURFACE X is directly or indirectly

in front of Y . This is found by raycasting and taking
the transitive closure.

If:
For each Di and each Cij

If there is a Mk corresponding to Cij,
then front(Mk, Si)

Then: the self-occlusion is as predicted by the model.

One application of O3 was particularly significant. The robot upper and
lower arms are nearly symmetric, so there are two values for the upperarm
position and joint angle where the lowerarm can be nearly in the position
shown in the test scene. The difference between the two cases is whether
the lowerarm is in front of or behind the upperarm. Though the depths
of the component reference frames are different in the two cases, parameter
tolerances did not completely reject the second alternative. Happily, test O3

did discriminate.

10.2.3 Non-rigidly Connected Object Verification

Non-rigidly connected object verification is trivial in comparison to the previ-
ous structures. By virtue of the hypothesis construction process, all subcom-
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ponents have been previously verified. Further, because of the coordinate
frame matching process, the reference frames of the subcomponents must
have the appropriate alignment relationships with the whole ASSEMBLY.
Occlusion relationships were verified by the test O3 given above. What re-
mains is to verify that the variable joint parameters meet any given con-
straints. These are constrained using the general method given in the next
subsection.

10.2.4 Numerical Constraint Evaluation

Many numerical values are associated with hypotheses. The most important
of these are the property values described in Chapter 6, but there could also
be other values such as the object position or joint angles. Constraints can be
specified on these values and they must hold for the verification to succeed.

The constraints were mainly used for eliminating spurious SURFACE
hypotheses and usually tested absolute surface area.

The constraints are specified as part of the model definition process, as a
set of statements of the form:

CONSTRAINT < name > < constraint >

The < constraint > must apply in the context of structure < name >.
Here:

< constraint > ::= < pconstraint >
|< constraint > AND < constraint >
|< constraint > OR < constraint >
|(< constraint >)

< pconstraint > ::= < value >< relation >< number >
< relation > ::= <|>|=|<=|>=| !=
< value > ::= < variable >|< property >(< name >)

The < value > refers to a variable or a property (possibly of a substruc-
ture) in the context of the structure being constrained. Other constraint ex-
pressions could have been easily added. The verification of these constraints
is trivial.

An example of such a constraint for the elbow joint angle jnt3 in the robot
armasm ASSEMBLY is:

CONSTRAINT armasm (jnt3 < 2.5) OR (jnt3 > 3.78);
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which constrains the joint angle to 0.0 – 2.5 or 3.78 – 6.28. Another constraint
is:

CONSTRAINT uside ABSSIZE(uside) < 1900.0

which constrains the absolute surface area of uside to be less than 1900 square
centimeters. The choice of the verification bounds is up to the modeler.

10.3 Verification Performance and Discussion

The goals of verification are:

1. no true hypotheses are rejected, and

2. among false hypotheses, only low level (e.g. SURFACEs), symmetric
or ambiguous hypotheses are accepted.

However, as tolerances are needed to allow for segmentation variations,
position parameter misestimation, and obscured surface reconstruction, some
invalid verifications are expected. Some invalid SURFACEs are verified be-
cause of variability in surface shape matching and having no other constraints
on their identity at this point. The effect of these hypotheses is reduced
performance rates and increased chances of invocation of higher level false
objects. However, verified higher false hypotheses are not likely to occur as
the surfaces must then meet grouping, relative orientation and location con-
straints in hypothesis construction, and the verification constraints discussed
in this chapter.

Table 10.1 summarizes the causes for rejection of SURFACE hypotheses,
and Table 10.2 summarizes the causes for rejection of ASSEMBLY hypothe-
ses. The tables record the rejection criterion as given in Section 10.2, except
for those designated by “N”, which means rejection by a modeled numerical
constraint (Section 10.2.4), by “H”, which means failure to establish a ref-
erence frame (Chapter 9), or by “A” which means all slots that should have
been filled were not.

Some rejected curved SURFACE hypotheses had the correct identity but
an inconsistent reference frame. Some false ASSEMBLY hypotheses were
rejected in hypothesis construction because no consistent reference frame
could be found for them. These hypotheses are included in the analysis of
rejected hypotheses given below.
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Table 10.1: SURFACE Hypothesis Rejection Summary

IMAGE REJECTION

SURFACE REGIONS RULE INSTANCES

uedgeb 19,22 N 2

lsidea 19,22 N 1

lsideb 19,22 N 1

robbodyside 9 N 4

robbodyside 8 S2 2

robshould1 12 S2 1

robshould2 12 S2 1

robshoulds 27 S2 2

tcaninf 9 S2 2

Table 10.3 lists and analyzes all remaining verified hypotheses that were
not “correct”. The most common causes of incorrectly verified hypotheses
were symmetric models, leading to multiple reference frames, and nearly
identical models. The incorrect models normally were not used in larger
ASSEMBLYs, because of reference frame inconsistencies.

These results show that verification worked well. Two true ASSEMBLY
hypotheses were rejected because of deficiencies in geometric reasoning. All
verified false hypotheses were reasonable, usually arising from either a simi-
lar or symmetric object model. Most rejected SURFACE hypotheses failed
the value constraint (usually surface area – see Appendix A). Curved SUR-
FACEs were rejected when their curvature axis was inconsistent with other
orientation estimates. Most ASSEMBLYs were rejected because no consis-
tent reference frame could be found. (Many of these hypotheses arose because
hypothesis construction has a combinatorial aspect during initial hypothesis
construction.)
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Table 10.2: ASSEMBLY Hypothesis Rejection Summary

IMAGE REJECTION

ASSEMBLY REGIONS RULE INSTANCES NOTE

lowerarm 12,18,31 H 30

lowerarm 17,19,22, A 1

25,32

lowerarm 17,19,22, H 1

25,32

upperarm 17,19,22, H 6

25,32

armasm 12,17,18, R3 2

19,22,25

31,32

armasm 12,17,18, O3 1

19,22,25

31,32

robshldbd 16,26 H 3

robshldsobj 29 H 1 +1

robbody all appt. H 3 +1

robot all appt. H 5

+1 valid hypothesis rejection because of geometric reasoning error
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Table 10.3: Incorrectly Verified Hypotheses Analyzed

MODEL TRUE IMAGE

USED MODEL REGIONS NOTE

uside uside 19,22 +3

uends uends 25 +2

lsidea lsideb 12 +1

lsideb lsideb 12 +2

ledgea ledgea 18 +2

ledgeb ledgea 18 +1

lendb lendb 25 +2

robbodyside robbodyside 8 +2

robshould1 robshould2 16 +1

robshould2 robshould2 16 +2

lowerarm lowerarm 12,18,31 +2

upperarm upperarm 17,19,22, +2

25,32

robbody robbody 8 +2

trashcan trashcan 9,28,38 +2

+1 true model similar to invoked model
+2 symmetric model gives match with another reference frame
+3 error because substantially obscured
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10.4 Related Work

Historically, verification has meant several different things in the context of
vision. The fundamental notion is that of confirming the existence of an
oriented object, but this is often reduced to merely confirming the presence
of a few object features.

Typical verification methods predict image features (e.g. lines) given
the model and current state of analysis, which then strengthen or weaken
the hypothesis according to the presence or absence of confirming evidence
(e.g. [60]). Additionally, the discrepancy between the observed and predicted
position can be used to refine the position estimates [170].

The best verification work has been applied in the context of two di-
mensional industrial scenes, as in parts location systems (e.g. [35, 109]).
Object silhouettes are most often used, because they make the object con-
tours explicit; however, edge detected grey level images also produce similar
information. The most common verification feature is the edge, and usually
just the straight edge is used, though small slots and holes at given dis-
tances from test features have also been used [35]. The main advantages of
these features are that their shape, location and orientation are easy to pre-
dict. Prediction also allows more sensitive edge detection ([148, 168]), when
searching for confirming evidence.

In two dimensional scenes, overlapping parts weaken the utility of con-
tours, because only part of each object’s outline is visible, and it is also
joined with those of the other objects in the pile. Since most two dimensional
recognition systems are dependent on contours, this produces a serious loss
of information. Yin [169] hypothesized objects based on visible corners and
linear features and verified them by ensuring that all unlocated corners were
within the contours of the collected mass.

Verification in three dimensional scenes has not received much attention.
Some work similar to the two dimensional line verification has been done
in the context of three dimensional blocks world scenes by Falk [60] and
Shirai [148]. ACRONYM’s [42] prediction graph informed on the observable
features, their appearance and their interrelationships in the context of more
complicated objects (e.g. wide-bodied airplanes). Hogg [91] verified three
dimensional generalized cylinder model positions by counting oriented edge
points within image boxes. The boxes were predicted using the projected
outlines of generalized cylinders.

Occlusion is an even greater problem in three dimensions, as scenes have
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natural depth and hence objects will often self-obscure as well as obscure
each other. Brooks [42] suggested that a model-based geometric reasoning
vision system could predict what features will be self-obscured from a given
viewpoint. In the context of the blocks world scene analysis, occlusion hy-
potheses were verified by detecting single TEE junctions to signal the start
of occlusion (e.g. [162]) and pairs of TEEs indicated which edges should be
associated (e.g. [80]).

10.5 Discussion

The most important deficiency of verification is its approach to identity. For
verification, objects are probably more suitably represented by listing desir-
able and undesirable properties, rather than an exact geometric model, es-
pecially as verification thoroughness is probably proportional to the individ-
uality of the object and the degree of generic identification desired. Human
faces need detailed shape comparisons for precise identification, but just to
say it was human requires less. On the other hand, chairs have a tremendous
variety of shapes, but there is no prototype chair model, even given division
into functional groupings. If the only common factors were support for back
and seat at given heights, sizes and orientations, then a pile of boxes would
also be satisfactory, and this may not always be an appropriate identification.

One key benefit of the approach described in this chapter is that the spe-
cific verification criteria are linked to the geometric model, which promotes
more general applicability.

There is some overlap between the functions of hypothesis construction
(Chapter 9) and verification. The construction and verification sequence fol-
lows the classical Artificial Intelligence “generate and test” paradigm. The
goal of the construction process is to: (1) find evidence for all model features
and (2) assign a reference frame. To prevent (1) from causing a combinatorial
explosion, some constraints were applied when searching for image evidence.
On the other hand, verification ensures that the whole object satisfies all
constraints, including some previously applied. Hence, there could be some
shifting of constraint analysis to verification, particularly if hypothesis con-
struction and verification became more of a parallel process (i.e. akin to a
Waltz filtering process [162]).

Verification of partially obscured or partially back-facing SURFACEs is
weak. For these SURFACEs, only individual summary characteristics were
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Figure 10.6: Partially Obscured Square Verification

checked, leaving other tests until the SURFACE was combined with others
in an ASSEMBLY. More detailed symbolic comparisons could be made, as in
Figure 10.6. Here, a square is somewhat obscured. Verification could easily
show that it was not a circle, and that it is likely to be a square, by com-
paring descriptions of the boundary. This technique could also be used for
the full and partial boundary comparisons, as proposed above, because com-
paring symbolic descriptions is faster and easier than creating the predicted
boundary path.

More practical constraints will be needed for richer object domains, par-
ticularly for natural objects, where within-class variation presents problems.
This is apparent with faces, whose shape changes between people and ex-
pressions. This research allowed some variation by using only approximate
curvature and position in constraints (S2 and R2), but this is weak and may
not generalize properly. Further, flexible surfaces will also have variable seg-
mentation, which will lead to difficulties with constraints based on curvature
or correspondence.

Final Comments

To summarize, this chapter extended verification to cover fully visible and
partially obscured SURFACEs and ASSEMBLYs in three dimensional scenes.
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This required understanding how object location, external occlusion and self-
occlusion affect appearance. Constraints that helped guarantee the existence
and identity of the modeled objects were formulated and demonstrated.



Chapter 11

Discussion and Conclusions

This book has described an Artificial Intelligence approach to the problem
of three dimensional object recognition, based on methods that lead to gen-
eral purpose vision systems rather than to limited single application systems.
While efficiency is ultimately important, competence must come first. Only
a few researchers have used 21

2
D sketch-like surface data, and the work de-

scribed here has attempted to explore the whole path from surfaces to objects.
The structure of the approach mirrors classical edge-based recognition pro-
cesses, but the use of surface data required new definitions of the processes
and their interconnections.

Some of the interesting aspects of the individual recognition processes
were:

1. object modeling

• a surface modeling method based on distinct curvature class patches.

• criteria for how to group model SURFACEs into ASSEMBLYs.

2. surface data

• proposed criteria for segmentation of surface image data into sur-
face patches useful for object recognition.

3. surface hypothesizing

• analysis of surface occlusion cases to show what cases occur, how
to detect them and how to hypothetically reconstruct the missing
data. Because the research used three dimensional surface image

310
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data, the reconstruction is more robust than that based on only
two dimensional image data.

4. surface cluster formation

• the use of the surface cluster as an intermediate representation
between the surface image and the object hypotheses.

• rules for aggregating the surface patches into the surface clusters
corresponding to distinct objects.

5. description

• a collection of data description modules that exploited the three
dimensional character of the raw data.

6. model invocation

• a network formulation that incorporated both image property ev-
idence and relationship evidence from class and structural asso-
ciations. The formulation was incremental, used operations that
were based on general reasoning rather than strictly visual re-
quirements and supported a low-level, object independent generic
vocabulary.

7. hypothesis construction

• new methods for estimating the three dimensional placement of
objects from data associated with surface patches and the inter-
surface relationships specified by the object model.

• methods for predicting and verifying the visibility of SURFACEs,
including back-facing, tangential and partially or fully self-obscured
front-facing structure.

• rules for explaining missing structure as instances of occlusion by
external, unrelated structure.

• methods for joining non-rigidly connected structures and simulta-
neously estimating the connection degrees-of-freedom.

• methods for completely instantiating hypotheses for both solid
and laminar structures.
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8. verification

• criteria for verifying the physical existence of a hypothesis.

• criteria for verifying the identity of an object based on surface
evidence.

The research also emphasized the strong distinction between, but equally
strong dependence on, the suggestive “seeing” of model invocation and the
model-directed hypothesis construction and verification. Finally, the effect
of occlusion was considered throughout the visual process, and methods were
developed that helped overcome data loss at each stage.

When applying the recognition processes described in this book to the
(hand) segmented range image shown in Figure 3.10, the IMAGINE I sys-
tem correctly recognized all modeled objects in the test scene (the robot
and trash can, and their subcomponents). No misidentifications of solids
occurred, though several individual surfaces were misidentified. Since the
model base included 16 ASSEMBLYs, all of about the same size, includ-
ing several objects not in this scene (a chair and its subcomponents), this
was a good result. The original geometric reasoning module gave decent,
but not ideal position and joint angle estimation (seen in Figure 9.16) and a
new network-based geometric reasoning method improved on this (see Figure
1.11).

Three test scenes were analyzed. The one used in this book was the
most interesting, because it contained articulated objects with some curved
surfaces, laminar surfaced objects, partially constrained degrees-of-freedom
(joints) and considerable self-occlusion.

The success of the recognition process was largely because of the richness
of the 21

2
D sketch data, but the use of the surface-based hierarchical mod-

els, shape segmented surface patches and hierarchical surface cluster data
representation made the results easier to obtain.

This recognition process was clearly successful on the test image. How-
ever, much research is still needed, and the following section tries to make
explicit some of the problems that remain. I welcome others to add to the
list and to solve them all.



313

11.1 Summary of Outstanding Problems

Input Data

The data used in this research were unrealistic in several respects. Be-
cause the depth and orientation values and the segmentation boundaries were
hand-derived, they had few of the errors likely to be present in real data. The
segmentations also made nearly perfect correspondence with the models, and
thus ignored problems of data variation and scale. Data variations, particu-
larly for objects with curved surfaces, cause shape segmentation boundaries
to shift. Further, as the analytic scale changes, segmentation boundaries also
move, and segments may appear or disappear.

Object Modeling

The object representation was too literal and should not always be based
on exact sizes and feature placement. The object surfaces could be more
notional, designating surface class, curvature, orientation and placement and
largely ignore extent. Object representation could also have a more concep-
tual character that emphasizes key distinguishing features and rough geo-
metric placement, without a literal CAD-like model (as used here). Finally,
the models could allow alternative, overlapping representations, such as hav-
ing two surfaces used individually and as part of a connecting orientation
discontinuity.

As data occurs at unpredictable scales, the models might record the fea-
tures at a variety of scales. The models should also include other data el-
ements such as references to solids (e.g. generalized cylinders), reflectance,
surface shape texture and distinguished axes (e.g. symmetry and elongation),
etc. The representation could have used a more constraint-like formulation,
as in ACRONYM [42], which would allow inequality relationships among
features, and also allow easier use of model variables. Many of these inade-
quacies were subsequently overcome in the SMS representation approach [70]
described in Chapter 7.

Surface Reconstruction
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An open question about the surface reconstruction process is whether
to replace the representation of two partially obscured surfaces by a single
merged surface (as was done) or to keep both alternatives. Keeping the extra
hypotheses causes redundant processing and may lead to duplicated invoca-
tion and hypothesis construction, but allows correct processing if the merging
was inappropriate. Keeping only the merged surface may cause invocation
and matching failures, or require a more intelligent hypothesis construction
process that uses the model to decide if the two surfaces were incorrectly
merged.

Surface Cluster Formation

The surface cluster formation process has a similar problem. When one
surface cluster overlaps another, then a third surface cluster merging the two
is created as well. This was to provide a context within which all components
of a self-obscured object would appear. The problem is how to control the
surface cluster merging process when multiple surface clusters overlap (as is
likely in a real scene), which causes a combinatorial growth of surface clusters.

Data Description

While shape is very informative, many additional description types could
be added to help characterize objects: reflectance and shape texture (both
random and patterned), reflectance itself, translucency, surface finish, etc.

Model Invocation

Invocation evaluated a copy of the network in every image context. This
is computationally expensive, considering the likely number of contexts (e.g.
100) and the number of models (e.g. 50,000) in a realistic scene. Parallel
processing may completely eliminate the computational problem, but there
remains the problem of investigating just the relevant contexts. There should
probably be a partitioning of the models according to the size of the context,
and also some attention focusing mechanism should limit the context within
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which invocation takes place. This mechanism might apply a rough high-
level description of the entire scene and then a coarse-to-fine scale analysis
focusing attention to particular regions of interest.

Redundant processing might arise because an object will invoke all of
its generalizations. The invocations are correct, but the duplication of effort
seems wasteful when a direct method could then pursue models up and down
the generalization hierarchy.

As currently formulated, the invocation network must be created sym-
bolically for each new scene analyzed, as a function of the scene, model base
and evidence computations. It would be interesting to investigate how the
network might re-organize itself as the image changed, maintaining the fixed
model dependent relationships, but varying the image dependent ones.

The variety of objects in the natural word suggests that there may not
be a “rich” description hierarchy, nor a deep subcomponent hierarchy for
most objects, nor a general subclass hierarchy. Though these factors con-
tribute substantially, it appears that there are relatively few object types in
our everyday experience. Instead, there are many individuals and consid-
erable variation between individuals. Thus, the most important aspect of
object representation may be the direct property and primitive description
evidences, which would then differentiate individuals.

Hypothesis Construction

The major criticism of the hypothesis construction process is its literality.
In particular, it tried to find evidence for all features, which is probably
neither fully necessary, nor always possible.

Literality also appeared in the dependence on the metrical relationships
in the geometric model (e.g. the surface sizes and boundary placements).
These were used for predicting self-occlusion and for spatially registering the
object. While these tasks are important, and are part of a general vision sys-
tem, they should have a more conceptual and less analytic formulation. This
would provide a stronger symbolic aspect to the computation and should also
make the process more capable of handling imperfect or generic objects.

The Recognition Approach as a Whole
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One significant limitation of the recognition approach is the absence of
scale analysis. Objects should have different conceptual descriptions accord-
ing to the relevance of a feature at a given scale, and recognition then has to
match data within a scale-dependent range of models.

A more relational formulation would help, but there does not seem to
be a matching method that neatly combines the tidiness and theoretical
strengths of graph matching with the efficiency and prediction capability of
model-based geometric matching.

The proposed recognition model ignored the question of when enough
evidence was accumulated. Recognition need not require complete evidence
or satisfaction of all constraints, provided none actually fail, and the few ob-
served features are adequate for unique identification in a particular context.
However, the implementation here plodded along trying to find as much ev-
idence as possible. An object should be recognizable using a minimal set
of discriminating features and, provided the set of descriptions is powerful
enough to discriminate in a large domain, the recognition process will avoid
excessive simplification. Recognition (here) has no concept of context, and
so cannot make these simplifications. On the other hand, the additional ev-
idence provides the redundancy needed to overcome data and segmentation
errors.

The evaluation on hand-collected and segmented data did not adequately
test the methods, but research using this approach is continuing and some
simpler genuine range data scenes have been successfully analyzed.

11.2 The IMAGINE II System

Experience with the IMAGINE I program has led to a redesign embodied
in the IMAGINE II system. Though the re-implementation is not com-
plete, the design of the system and its key representations and processes are
summarized here. Figure 11.1 shows a block diagram of the main modules of
the IMAGINE II system. The system is intended to interpret data deriving
from scenes containing self and externally obscured complex, non-polyhedral
man-made objects including possible degrees-of-freedom (e.g. robot joints).

As in IMAGINE I, data comes from a segmented 21
2
D sketch, except

that curve and volumetric scene features may be part of the input, too. The
data may be fragmented or incomplete. The input data structure is a REV
(Region, Edge, Vertex) graph. The system output is, as before, a list of
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object hypotheses with position and parameter estimates and a set of image
evidence and justifications supporting the object hypothesis.

Building the VSCP Structure

The first new representation is the VSCP structure (Volume, Surface,
Curve, Point), which is constructed from the REV by knowledge-based struc-
ture completion processes. The goal of this process is to group curve and sur-
face features from the REV to overcome fragmentation and occlusion effects
and to remove non-structural artifacts (e.g. reflectance edges). The original
raw data might be interrogated to help verify deductions.

An example of an occlusion rule is:

• If two valid TEE junctions lying on the boundary of the same surface
can be extended (using the local boundary shape) until they intersect,
and the curve extensions lie behind closer surfaces, then hypothesize
that the original shape of the partially obscured surface is that of the
extended surface.

An example of a fragmentation rule is:

• If two surface patches are “adjacent”, have similar shape, depth and
orientation and there are not intervening space curves (e.g. from patch
edges or closer surfaces), then merge the two patches.

Here “adjacent” is a heuristic concept because the surface characterization is
assumed to be neither complete nor dense (i.e. there may be missing surfaces
and there might be substantial gaps between nearby patches).

Building the Contexts Structure

Invocation and matching occur in data contexts, only now contexts exist
for curves and volumes as well as surfaces and surface clusters. Contexts
improve matching efficiency by grouping related data and thereby isolating
irrelevant data, and create a structure that can accumulate plausibility for
model invocation.

The context structures are hierarchical in that contexts can be grouped
to form larger contexts. Contexts are designed to support recognition of
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Figure 11.1: IMAGINE II Modules and Data Structures
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curves, surfaces, volumes and larger groupings of features. For example, the
information contained in a surface context might link to both curve fragments
and surface patches, because either might help define a complete surface.

Examples of context-forming rules are:

• If a set of adjacent surface patches are completely isolated by depth
discontinuity boundaries and there are no such boundaries internal to
the group, then these surfaces form a context for recognizing an AS-
SEMBLY.

• If a set of space curves roughly surrounds a region of two dimensional
image space and the curves are not radically different in depth, then
hypothesize that a surface context lies within the curves.

Structure Description

Model invocation and hypothesis construction require property estimates
for image features, and because we are using 2 1/2D sketch data, three di-
mensional properties can be directly measured. These properties are similar
to those used for IMAGINE I (Chapter 6), and include:

• curve fragment properties: length, curvature, ...

• surface fragment properties: area, curvature, elongation, ...

• curve fragment pairs: relative orientation, relative size, ...

• surface fragment pairs: relative orientation, relative size, ...

Model Invocation

Model invocation is nearly the same as in IMAGINE I (Chapter 8).
A network implements the computation in a manner suitable for parallel
evaluation. Nodes represent the pairing between individual model and data
features, and are connected to other nodes according to the type of relation.
Relations include: structural (e.g. “subcomponent of”), generic (e.g. “visual
specialization of”), class (e.g. “non-visual specialization of”), inhibiting and
general association. Direct evidence comes from a measure of the fit between
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data and model properties.

Object Models

The SMS models are used, as described in Chapter 7. They are primarily
structural with model primitives designed to match with either curve, surface
or volumetric data as alternatives. The models are hierarchical, building
larger models from previously defined substructures. All model dimensions
and reference frame transformations may involve variables and expressions,
and algebraic constraints can bound the range of the variables.

The models have viewpoint dependent feature groups, which record the
fundamentally distinct viewpoints of the object. They also identify (1) model
features visible from the viewpoint and (2) new viewpoint dependent features
(such as occlusion relationships, TEE junctions or extremal boundaries).

Hypothesis Construction

Initial selection of the model may come bottom-up from invocation or
top-down as part of another hypothesis being constructed. Hypothesis con-
struction then attempts to find evidence for all model features.

Feature visibility information comes from a viewpoint dependent feature
group, which is selected according to the estimated orientation of the object.

Construction is largely hierarchical, grouping recognized subcomponents
to form larger hypotheses. The most primitive features are designed to be
recognized using either curve, surface or volumetric data, depending on what
is available. At all stages, geometric consistency is required, which also re-
sults in more precise position estimates and estimates for embedded variables
(such as a variable rotation angle about an axis).

Construction is a heuristic process whereby various approaches are tried
to find evidence for a feature. For example, some heuristics for surface finding
are:

1. Use an image patch if it has the predicted position, orientation, shape
and size.

2. Use a smaller image patch if it has the predicted position, orienta-
tion and shape and no patch of the correct size is found (i.e. accept
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fragmented patches).

3. Do not look for the surface if it is small and far away.

Application of the heuristics is controlled through routines that know what
approaches are available for finding features (and when to try them) and has
somewhat of an “expert system” character.

Geometric Reasoning

The network-based geometric reasoning was described in Section 9.2.4.
The geometric relationships between model features, model and data pair-
ings and a priori scene knowledge are represented algebraically and are im-
plemented as networks expressing the computational relationships between
the variables.

Analysis of the types of geometric relationships occurring in scene anal-
ysis showed that most relationships could be expressed using only a small
set of standard relationships (e.g. “a model point is paired with a data
point”). The standard relationships are then be used to create standard
network modules, which are allocated and connected as model matching pro-
duces new model-to-data pairings.

Agenda Management

To facilitate experimentation with different control regimes, the hypothe-
sis construction processes are activated from a priority-ordered agenda. The
processes take inputs from and return results to a global blackboard. An
agenda item embodies a request for applying a specified hypothesis con-
struction process on a given datum or hypothesis. The activated process may
then enter other requests into the agenda. We use the agenda to implement
a mixed control regime involving both top-down and bottom-up hypothesis
construction.

Hypothesis Verification
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Because data can be fragmented or erroneous, object hypotheses may be
incomplete. Further, spurious hypotheses may be created from coincidental
alignments between scene features. Hypothesis construction and geometric
reasoning eliminate some spurious hypotheses, but other instances of global
inconsistency may remain.

This module considers two problems: (1) global consistency of evidence
(e.g. connectedness and proper depth ordering of all components) and (2)
heuristic criteria for when to accept incomplete models.

11.3 Conclusion

This concludes our description of the IMAGINE I vision system. Starting
from surface depth and orientation information for the visible surfaces in the
scene, it could:

• produce an identity-independent segmentation of the objects in the
scene,

• describe their three dimensional properties,

• select models to explain the image data,

• methodically pair the data to model features (while extracting the ob-
ject’s spatial position and explaining missing features arising from oc-
clusion or object position) and

• verify the existence and identity of the instantiated hypotheses

for non-polyhedral solids, laminar structures and non-rigidly connected struc-
tures, without sacrificing a detailed understanding of the objects or their
relationships to the scene.

Three dimensional object recognition is obviously a complex problem, and
this research has attempted to address many issues. A skeletal exploration
seemed appropriate because the use of surface data for recognition was and
still is relatively untried. Thus, examining the whole problem exposed many
areas for future research, some of which are being investigated as IMAGINE
II is being developed. Consequently, the results presented have not solved
the problem of three dimensional scene understanding, but they are a few
more steps on the way.
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The following abbreviations are used:

ANCAI - American National Conference on Artificial Intelligence
IJCAI - International Joint Conference on Artificial Intelligence
SRI - Stanford Research Institute
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Appendix A

A Portion of the Model Base

The following is an annotated portion of the full model used for the recog-
nitions. Because the full model base is somewhat tedious, only the portion
related to the robot is reproduced here. Chapter 7 describes the geometric
model and other descriptions in more detail, and Chapter 8 describes the
model invocation definitions. The full model contains about 900 lines for 25
specific surface models, 22 generic surface types, and 16 solid object models.

The model file starts with a declaration of the model names and types.
The specific surfaces come first:

TITLE = "combined model file";

SRFTYPE uside;

SRFTYPE uedges;

SRFTYPE uedgeb;

SRFTYPE uends;

SRFTYPE uendb;

SRFTYPE lsidea;

SRFTYPE lsideb;

SRFTYPE ledgea;

SRFTYPE ledgeb;

SRFTYPE lendb;

SRFTYPE handend;

SRFTYPE handsidel;

SRFTYPE handsides;

SRFTYPE robbodyside;

SRFTYPE robshould1;

340



A PORTION OF THE MODEL BASE 341

SRFTYPE robshould2;

SRFTYPE robshldend;

SRFTYPE robshoulds;

The declaration of the generic surfaces:

GSRFTYPE quad;

GSRFTYPE trapezium;

GSRFTYPE llgram;

GSRFTYPE rectangle;

GSRFTYPE circle;

GSRFTYPE plane;

GSRFTYPE cylpatch;

GSRFTYPE torus;

GSRFTYPE cylinder;

GSRFTYPE lside;

GSRFTYPE ledge;

GSRFTYPE robshouldg;

GSRFTYPE sapiby2a;

GSRFTYPE sapiby2b;

GSRFTYPE sapiby2c;

GSRFTYPE sapia;

GSRFTYPE sapib;

GSRFTYPE sa3piby2;

GSRFTYPE sapiby2andpi;

The declaration of the solid assemblies:

OBJTYPE hand;

OBJTYPE lowerarm;

OBJTYPE upperarm;

OBJTYPE armasm;

OBJTYPE robshldbd;

OBJTYPE robshldsobj;

OBJTYPE robshould;

OBJTYPE link;

OBJTYPE robbody;

OBJTYPE robot;
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The variables used for joints:

VARTYPE jnt1 DEFAULT 0.0;

VARTYPE jnt2 DEFAULT 0.0;

VARTYPE jnt3 DEFAULT 0.0;

ENDDEC

After the declarations comes a listing of the interobject relationships, as
needed for model invocation. The first listed are the description relationships:

DESCRIPTION OF uedges IS rectangle 1.0;

DESCRIPTION OF uedgeb IS rectangle 1.0;

DESCRIPTION OF uside IS plane 2.0;

DESCRIPTION OF quad IS plane 1.0;

DESCRIPTION OF trapezium IS quad 2.0;

DESCRIPTION OF llgram IS trapezium 2.0;

DESCRIPTION OF rectangle IS llgram 2.5;

DESCRIPTION OF lside IS plane 3.0;

DESCRIPTION OF robshouldg IS cylinder 2.0;

DESCRIPTION OF lendb IS cylinder 2.0;

DESCRIPTION OF ledgea IS ledge 5.0;

DESCRIPTION OF ledgeb IS ledge 5.0;

DESCRIPTION OF ledge IS rectangle 1.0;

DESCRIPTION OF robshldend IS circle 3.0;

DESCRIPTION OF circle IS plane 1.0;

DESCRIPTION OF handsidel IS plane 1.0;

DESCRIPTION OF handsides IS rectangle 1.0;

DESCRIPTION OF robbodyside IS cylinder 2.0;

DESCRIPTION OF lsidea IS lside 5.5;

DESCRIPTION OF lsideb IS lside 5.5;

DESCRIPTION OF robshould1 IS robshouldg 7.0;

DESCRIPTION OF robshould2 IS robshouldg 7.0;

DESCRIPTION OF uside IS sapiby2b 2.0;

DESCRIPTION OF uends IS sapiby2c 1.0;

DESCRIPTION OF uendb IS sapiby2a 1.0;

DESCRIPTION OF lside IS sapiby2b 1.0;

DESCRIPTION OF lendb IS sapiby2c 1.0;

DESCRIPTION OF ledge IS sapiby2c 1.0;
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DESCRIPTION OF handsides IS sapiby2andpi 1.0;

DESCRIPTION OF handsidel IS sapiby2andpi 1.0;

DESCRIPTION OF handend IS sapiby2andpi 1.0;

DESCRIPTION OF robshldend IS sapiby2b 1.0;

DESCRIPTION OF robshouldg IS sapiby2a 0.5;

DESCRIPTION OF robshoulds IS sapib 0.5;

DESCRIPTION OF cylinder IS cylpatch 2.0;

DESCRIPTION OF uendb IS cylinder 2.0;

DESCRIPTION OF uends IS cylinder 2.0;

The subcomponent relationships:

SUBCOMPONENT OF hand IS handend 0.90;

SUBCOMPONENT OF hand IS handsidel 0.90;

SUBCOMPONENT OF hand IS handsides 0.90;

SUBCOMPONENT OF link IS robshould 1.00;

SUBCOMPONENT OF link IS armasm 1.00;

SUBCOMPONENT OF lowerarm IS hand 0.90;

SUBCOMPONENT OF lowerarm IS ledgea 0.90;

SUBCOMPONENT OF lowerarm IS ledgeb 0.90;

SUBCOMPONENT OF lowerarm IS lendb 0.90;

SUBCOMPONENT OF lowerarm IS lsidea 0.90;

SUBCOMPONENT OF lowerarm IS lsideb 0.90;

SUBCOMPONENT OF robbody IS robbodyside 0.90;

SUBCOMPONENT OF robot IS link 1.00;

SUBCOMPONENT OF robot IS robbody 1.00;

SUBCOMPONENT OF robshldbd IS robshldend 0.90;

SUBCOMPONENT OF robshldbd IS robshould1 0.90;

SUBCOMPONENT OF robshldbd IS robshould2 0.90;

SUBCOMPONENT OF robshldsobj IS robshoulds 0.90;

SUBCOMPONENT OF robshould IS robshldbd 0.90;

SUBCOMPONENT OF robshould IS robshldsobj 0.90;

SUBCOMPONENT OF upperarm IS uedgeb 0.90;

SUBCOMPONENT OF upperarm IS uedges 0.90;

SUBCOMPONENT OF upperarm IS uendb 0.90;

SUBCOMPONENT OF upperarm IS uends 0.90;

SUBCOMPONENT OF upperarm IS uside 0.90;

SUBCOMPONENT OF armasm IS lowerarm 0.80;

SUBCOMPONENT OF armasm IS upperarm 0.80;
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The supercomponent relationships:

SUPERCOMPONENT OF hand IS lowerarm 0.10;

SUPERCOMPONENT OF handend IS hand 0.10;

SUPERCOMPONENT OF handsidel IS hand 0.10;

SUPERCOMPONENT OF handsides IS hand 0.10;

SUPERCOMPONENT OF ledgea IS lowerarm 0.10;

SUPERCOMPONENT OF ledgeb IS lowerarm 0.10;

SUPERCOMPONENT OF lendb IS lowerarm 0.10;

SUPERCOMPONENT OF link IS robot 0.10;

SUPERCOMPONENT OF lowerarm IS armasm 0.10;

SUPERCOMPONENT OF lsidea IS lowerarm 0.10;

SUPERCOMPONENT OF lsideb IS lowerarm 0.10;

SUPERCOMPONENT OF robbody IS robot 0.10;

SUPERCOMPONENT OF robbodyside IS robbody 0.10;

SUPERCOMPONENT OF robshldbd IS robshould 0.10;

SUPERCOMPONENT OF robshldend IS robshldbd 0.10;

SUPERCOMPONENT OF robshldsobj IS robshould 0.10;

SUPERCOMPONENT OF robshould IS link 0.10;

SUPERCOMPONENT OF robshould1 IS robshldbd 0.10;

SUPERCOMPONENT OF robshould2 IS robshldbd 0.10;

SUPERCOMPONENT OF robshoulds IS robshldsobj 0.10;

SUPERCOMPONENT OF uedgeb IS upperarm 0.10;

SUPERCOMPONENT OF uedges IS upperarm 0.10;

SUPERCOMPONENT OF uendb IS upperarm 0.10;

SUPERCOMPONENT OF uends IS upperarm 0.10;

SUPERCOMPONENT OF upperarm IS armasm 0.10;

SUPERCOMPONENT OF armasm IS link 0.10;

SUPERCOMPONENT OF uside IS upperarm 0.10;

The general association relationships:

ASSOCIATION OF upperarm IS lowerarm 1.0;

ASSOCIATION OF lowerarm IS upperarm 1.0;

The competitor relationships amongst generic types:

COMPETITOR OF plane IS cylpatch 1.0;

COMPETITOR OF cylpatch IS plane 1.0;
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COMPETITOR OF torus IS plane 1.0;

COMPETITOR OF plane IS torus 1.0;

COMPETITOR OF cylpatch IS torus 1.0;

COMPETITOR OF torus IS cylpatch 1.0;

COMPETITOR OF lside IS ledge 1.0;

COMPETITOR OF lside IS robshouldg 1.0;

COMPETITOR OF ledge IS lside 1.0;

COMPETITOR OF ledge IS robshouldg 1.0;

COMPETITOR OF robshouldg IS lside 1.0;

COMPETITOR OF robshouldg IS ledge 1.0;

ENDNET

After the relationships comes the listing of the visibility groups and what
features are seen in each. This information is used to help create the invo-
cation network.

SUBCGRP OF robot = robbody link;

SUBCGRP OF link = robshould armasm;

SUBCGRP OF armasm = upperarm lowerarm;

SUBCGRP OF upperarm = uside uends uedgeb uedges;

SUBCGRP OF upperarm = uside uendb uedgeb uedges;

SUBCGRP OF lowerarm = lendb lsidea ledgea;

SUBCGRP OF lowerarm = lendb lsideb ledgea;

SUBCGRP OF lowerarm = lendb lsideb ledgeb;

SUBCGRP OF lowerarm = lendb lsidea ledgeb;

SUBCGRP OF hand = handend handsides handsidel;

SUBCGRP OF robbody = robbodyside;

SUBCGRP OF robshould = robshldbd robshldsobj;

SUBCGRP OF robshldbd = robshould1 robshldend;

SUBCGRP OF robshldbd = robshould2 robshldend;

SUBCGRP OF robshldsobj = robshoulds;

ENDGRP

The next section lists the unary property evidence constraints, which
are used for property evaluations during model invocation. Binary evidence
constraints were not explicit in IMAGINE I. There may not always be
many properties listed for an object, because (1) it may be a generic object,
(2) the other properties are represented in a description or (3) the property
is irrelevant.
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UNARYEVID 2 < NUMLINB(quad) < 5 PEAK 4 WEIGHT 0.5;

UNARYEVID NUMARCB(quad) < 1 PEAK 0 WEIGHT 0.5;

UNARYEVID 1 < NUMARCB(circle) < 3 WEIGHT 0.5;

UNARYEVID NUMLINB(circle) < 1 PEAK 0 WEIGHT 0.5;

UNARYEVID 0 < DBPARO(trapezium) PEAK 1 WEIGHT 0.5;

UNARYEVID 1 < DBPARO(llgram) PEAK 2 WEIGHT 0.5;

UNARYEVID 2 < NUM90B(rectangle) < 5 PEAK 4 WEIGHT 0.5;

UNARYEVID -0.001 < MINSCURV(plane) < 0.001 WEIGHT 0.5;

UNARYEVID -0.001 < MAXSCURV(plane) < 0.001 WEIGHT 0.5;

UNARYEVID -0.001 < MINSCURV(cylpatch) < 0.001 WEIGHT 0.5;

UNARYEVID -0.001 < MAXSCURV(cylpatch) < 0.001 ABSENT WEIGHT 0.5;

UNARYEVID -0.001 < MINSCURV(torus) < 0.001 ABSENT WEIGHT 0.5;

UNARYEVID -0.001 < MAXSCURV(torus) < 0.001 ABSENT WEIGHT 0.5;

UNARYEVID 1 < NUMARCB(cylinder) < 4 PEAK 2 WEIGHT 0.5;

UNARYEVID 0 < NUMLINB(cylinder) < 4 PEAK 2 WEIGHT 0.5;

UNARYEVID 1.5 < NUM90B(cylinder) < 4.5 PEAK 4 WEIGHT 0.5;

UNARYEVID 0 < NUMEQLB(cylinder) < 3 PEAK 2 WEIGHT 0.5;

UNARYEVID 1.4 < SURSDA(sapiby2b) < 1.8 PEAK 1.57 WEIGHT 1.0;

UNARYEVID 1.5 < SURSDA(sapiby2a) < 1.65 PEAK 1.57 WEIGHT 1.0;

UNARYEVID 1.35 < SURSDA(sapiby2c) < 2.3 PEAK 1.57 WEIGHT 1.0;

UNARYEVID 3.04 < SURSDA(sapia) < 3.24 WEIGHT 1.0;

UNARYEVID 2.5 < SURSDA(sapib) < 3.7 PEAK 3.14 WEIGHT 1.0;

UNARYEVID 4.64 < SURSDA(sa3piby2) < 4.78 WEIGHT 1.0;

UNARYEVID 3.04 < SURSDA(sapiby2andpi) < 3.24 WEIGHT 1.0;

UNARYEVID 1.5 < SURSDA(sapiby2andpi) < 1.64 WEIGHT 1.0;

UNARYEVID 0.4 < RELSIZE(uside) < 0.72 WEIGHT 0.5;

UNARYEVID 1000 < ABSSIZE(uside) < 2200 WEIGHT 0.5;

UNARYEVID 2 < SURECC(uside) < 3.2 WEIGHT 0.5;

UNARYEVID 0.025 < DCURV(uside) < 0.065 WEIGHT 0.5;

UNARYEVID 0.11 < DCURV(uside) < 0.15 WEIGHT 0.5;

UNARYEVID 10 < DCRVL(uside) < 25 WEIGHT 0.5;

UNARYEVID 27 < DCRVL(uside) < 47 WEIGHT 0.5;

UNARYEVID 0.07 < DBRORT(uside) < 0.27 WEIGHT 0.5;

UNARYEVID 1.29 < DBRORT(uside) < 1.67 WEIGHT 0.5;

UNARYEVID 0.09 < DCURV(uends) < 0.17 WEIGHT 0.5;

UNARYEVID -0.003 < DCURV(uends) < 0.003 WEIGHT 0.5;

UNARYEVID 5 < DCRVL(uends) < 25 WEIGHT 0.5;

UNARYEVID 1.4 < DBRORT(uends) < 1.8 WEIGHT 0.5;
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UNARYEVID 1.8 < SURECC(uends) < 2.6 WEIGHT 0.5;

UNARYEVID 130 < ABSSIZE(uends) < 250 WEIGHT 0.5;

UNARYEVID 0.04 < RELSIZE(uends) < 0.11 WEIGHT 0.5;

UNARYEVID 0.11 < MAXSCURV(uends) < 0.15 WEIGHT 0.5;

UNARYEVID 0.08 < RELSIZE(uendb) < 0.16 WEIGHT 0.5;

UNARYEVID 210 < ABSSIZE(uendb) < 430 WEIGHT 0.5;

UNARYEVID 2.8 < SURECC(uendb) < 4 WEIGHT 0.5;

UNARYEVID 1.47 < DBRORT(uendb) < 1.67 WEIGHT 0.5;

UNARYEVID 5 < DCRVL(uendb) < 15 WEIGHT 0.5;

UNARYEVID 27 < DCRVL(uendb) < 37 WEIGHT 0.5;

UNARYEVID 0.025 < DCURV(uendb) < 0.065 WEIGHT 0.5;

UNARYEVID 2.8 < SURSDA(uedges) < 3.4 WEIGHT 1.0;

UNARYEVID 1.4 < SURSDA(uedges) < 1.8 WEIGHT 0.5;

UNARYEVID 5 < DCRVL(uedges) < 25 WEIGHT 0.5;

UNARYEVID 1.47 < DBRORT(uedges) < 1.67 WEIGHT 0.5;

UNARYEVID 0.04 < RELSIZE(uedges) < 0.15 WEIGHT 0.5;

UNARYEVID 140 < ABSSIZE(uedges) < 260 WEIGHT 0.5;

UNARYEVID 1.8 < SURECC(uedges) < 2.6 WEIGHT 0.5;

UNARYEVID 2.9 < SURSDA(uedgeb) < 3.1 WEIGHT 1.0;

UNARYEVID 1.45 < SURSDA(uedgeb) < 1.85 WEIGHT 1.0;

UNARYEVID 0.11 < RELSIZE(uedgeb) < 0.22 WEIGHT 0.5;

UNARYEVID 290 < ABSSIZE(uedgeb) < 570 WEIGHT 0.5;

UNARYEVID 3.6 < SURECC(uedgeb) < 5.2 WEIGHT 0.5;

UNARYEVID 1.47 < DBRORT(uedgeb) < 1.67 WEIGHT 0.5;

UNARYEVID 5 < DCRVL(uedgeb) < 15 WEIGHT 0.5;

UNARYEVID 38 < DCRVL(uedgeb) < 48 WEIGHT 0.5;

UNARYEVID 0.51 < RELSIZE(lside) < 0.65 WEIGHT 0.5;

UNARYEVID 460 < ABSSIZE(lside) < 910 WEIGHT 0.5;

UNARYEVID 2.3 < SURECC(lside) < 3.3 WEIGHT 0.5;

UNARYEVID 1.07 < DBRORT(lside) < 1.47 WEIGHT 0.5;

UNARYEVID 1.37 < DBRORT(lside) < 1.77 WEIGHT 0.5;

UNARYEVID 3.6 < DCRVL(lside) < 24 WEIGHT 0.5;

UNARYEVID 32.8 < DCRVL(lside) < 54 WEIGHT 0.5;

UNARYEVID 0.06 < DCURV(lside) < 0.12 WEIGHT 0.5;

UNARYEVID 1.8 < SURECC(lendb) < 2.9 WEIGHT 0.5;

UNARYEVID 70 < ABSSIZE(lendb) < 200 WEIGHT 0.5;

UNARYEVID 0.07 < RELSIZE(lendb) < 0.18 WEIGHT 0.5;

UNARYEVID 0.97 < DBRORT(lendb) < 2.17 WEIGHT 0.5;
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UNARYEVID 4 < DCRVL(lendb) < 13 WEIGHT 0.5;

UNARYEVID 13 < DCRVL(lendb) < 27 WEIGHT 0.5;

UNARYEVID 0.07 < DCURV(lendb) < 0.14 WEIGHT 0.5;

UNARYEVID 33 < DCRVL(ledgea) < 55 WEIGHT 0.5;

UNARYEVID 3.6 < DCRVL(ledgea) < 13.6 WEIGHT 0.5;

UNARYEVID 3.6 < DCRVL(ledgeb) < 13.6 WEIGHT 0.5;

UNARYEVID 32 < DCRVL(ledgeb) < 54 WEIGHT 0.5;

UNARYEVID 0.26 < RELSIZE(ledge) < 0.38 WEIGHT 0.5;

UNARYEVID 230 < ABSSIZE(ledge) < 470 WEIGHT 0.5;

UNARYEVID 4.6 < SURECC(ledge) < 6.6 WEIGHT 0.5;

UNARYEVID 1.4 < DBRORT(ledge) < 1.8 WEIGHT 0.5;

UNARYEVID 0.20 < RELSIZE(handsides) < 0.28 WEIGHT 0.5;

UNARYEVID 56 < ABSSIZE(handsides) < 76 WEIGHT 0.5;

UNARYEVID 1 < SURECC(handsides) < 1.3 WEIGHT 0.5;

UNARYEVID 1.47 < DBRORT(handsides) < 1.67 WEIGHT 0.5;

UNARYEVID 2.7 < DCRVL(handsides) < 13.6 WEIGHT 0.5;

UNARYEVID 0.30 < RELSIZE(handsidel) < 0.38 WEIGHT 0.5;

UNARYEVID 80 < ABSSIZE(handsidel) < 110 WEIGHT 0.5;

UNARYEVID 1.2 < SURECC(handsidel) < 1.6 WEIGHT 0.5;

UNARYEVID 1.47 < DBRORT(handsidel) < 1.67 WEIGHT 0.5;

UNARYEVID 1 < DBPARO(handsidel) < 3 WEIGHT 0.3;

UNARYEVID 2.7 < DCRVL(handsidel) < 18.5 WEIGHT 0.5;

UNARYEVID 0.21 < DCURV(handsidel) < 0.25 WEIGHT 0.5;

UNARYEVID 0.21 < MAXSCURV(handend) < 0.25 WEIGHT 0.5;

UNARYEVID 0.32 < RELSIZE(handend) < 0.52 WEIGHT 0.5;

UNARYEVID 96 < ABSSIZE(handend) < 136 WEIGHT 0.5;

UNARYEVID 1 < SURECC(handend) < 1.2 WEIGHT 0.5;

UNARYEVID 1.47 < DBRORT(handend) < 1.67 WEIGHT 0.5;

UNARYEVID 3.6 < DCRVL(handend) < 18.5 WEIGHT 0.5;

UNARYEVID 0.21 < DCURV(handend) < 0.25 WEIGHT 0.5;

UNARYEVID 4.5 < SURSDA(robbodyside) < 4.9 WEIGHT 0.5;

UNARYEVID 2.5 < SURSDA(robbodyside) < 3.7 WEIGHT 0.5;

UNARYEVID 0.09 < MAXSCURV(robbodyside) < 0.14 WEIGHT 0.5;

UNARYEVID 0.9 < RELSIZE(robbodyside) < 1.1 WEIGHT 0.5;

UNARYEVID 1200 < ABSSIZE(robbodyside) < 1600 WEIGHT 0.5;

UNARYEVID 1.57 < SURECC(robbodyside) < 3.5 WEIGHT 0.5;

UNARYEVID 1.17 < DBRORT(robbodyside) < 1.97 WEIGHT 0.5;

UNARYEVID 1 < DBPARO(robbodyside) < 3 WEIGHT 0.3;
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UNARYEVID 20 < DCRVL(robbodyside) < 36 WEIGHT 0.5;

UNARYEVID 40 < DCRVL(robbodyside) < 60 WEIGHT 0.5;

UNARYEVID -0.003 < DCURV(robbodyside) < 0.015 WEIGHT 0.5;

UNARYEVID 0.05 < DCURV(robbodyside) < 0.16 WEIGHT 0.5;

UNARYEVID 0.11 < RELSIZE(robshldend) < 0.40 WEIGHT 0.5;

UNARYEVID 156 < ABSSIZE(robshldend) < 248 WEIGHT 0.5;

UNARYEVID 0.9 < SURECC(robshldend) < 1.5 WEIGHT 0.5;

UNARYEVID 3.04 < DBRORT(robshldend) < 3.24 WEIGHT 0.5;

UNARYEVID 0 < DBPARO(robshldend) < 2 WEIGHT 0.3;

UNARYEVID 20.1 < DCRVL(robshldend) < 40 WEIGHT 0.5;

UNARYEVID 0.08 < DCURV(robshldend) < 0.15 WEIGHT 0.5;

UNARYEVID 0.105 < MAXSCURV(robshouldg) < 0.145 WEIGHT 0.5;

UNARYEVID -0.003 < MINSCURV(robshouldg) < 0.01 WEIGHT 0.5;

UNARYEVID 0.55 < RELSIZE(robshouldg) < 0.79 WEIGHT 0.5;

UNARYEVID 428 < ABSSIZE(robshouldg) < 828 WEIGHT 0.5;

UNARYEVID 1.5 < SURECC(robshouldg) < 3.5 WEIGHT 0.5;

UNARYEVID 1.4 < DBRORT(robshouldg) < 1.8 WEIGHT 0.5;

UNARYEVID 0.8 < DBRORT(robshouldg) < 1.1 WEIGHT 0.5;

UNARYEVID 0.9 < DBRORT(robshouldg) < 1.5 WEIGHT 0.5;

UNARYEVID 1 < DBPARO(robshouldg) < 3 WEIGHT 0.3;

UNARYEVID 5 < DCRVL(robshouldg) < 16 WEIGHT 0.5;

UNARYEVID 11 < DCRVL(robshouldg) < 21 WEIGHT 0.5;

UNARYEVID 18 < DCRVL(robshouldg) < 37 WEIGHT 0.5;

UNARYEVID 0.071 < DCURV(robshouldg) < 0.15 WEIGHT 0.5;

UNARYEVID -0.003 < DCURV(robshouldg) < 0.035 WEIGHT 0.5;

UNARYEVID 0.105 < MAXSCURV(robshoulds) < 0.145 WEIGHT 0.5;

UNARYEVID -0.003 < MINSCURV(robshoulds) < 0.01 WEIGHT 0.5;

UNARYEVID 0.9 < RELSIZE(robshoulds) < 1.1 WEIGHT 0.5;

UNARYEVID 60 < ABSSIZE(robshoulds) < 140 WEIGHT 0.5;

UNARYEVID 2 < SURECC(robshoulds) < 4 WEIGHT 0.5;

UNARYEVID 1.8 < DBRORT(robshoulds) < 2.6 WEIGHT 0.5;

UNARYEVID 1.5 < DBRORT(robshoulds) < 2.3 WEIGHT 0.5;

UNARYEVID -1 < DBPARO(robshoulds) < 1 WEIGHT 0.3;

UNARYEVID 6 < DCRVL(robshoulds) < 18 WEIGHT 0.5;

UNARYEVID 18 < DCRVL(robshoulds) < 30 WEIGHT 0.5;

UNARYEVID 0.03 < DCURV(robshoulds) < 0.131 WEIGHT 0.5;

ENDINV
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The next section gives the geometric model for the specific surfaces. The
syntax of the models is described in Chapter 7. The DEFAULT values are a
position that can be used for drawing the models.

SURFACE uside DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(19.6,0,0) BO/LINE

PC/(61.8,7.4,0) BO/CURVE[7.65,0,0]

PC/(61.8,22.4,0) BO/LINE

PO/(19.6,29.8,0) BO/LINE

PO/(0,29.8,0) BO/CURVE[-22.42,0,0]

PLANE

NORMAL AT (10,15,0) = (0,0,-1);

SURFACE uedges DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(19.6,0,0) BO/LINE

PO/(19.6,10,0) BO/LINE

PO/(0,10,0) BO/LINE

PLANE

NORMAL AT (10,5,0) = (0,0,-1);

SURFACE uedgeb DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(42.85,0,0) BO/LINE

PO/(42.85,10,0) BCW/LINE

PO/(0,10,0) BO/LINE

PLANE

NORMAL AT (21,5,0) = (0,0,-1);

SURFACE uends DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BCW/LINE

PO/(10,0,0) BO/CURVE[0,0,-7.65]

PO/(10,15,0) BCW/LINE

PO/(0,15,0) BO/CURVE[0,0,-7.65]

CYLINDER[(0,7.5,1.51),(10,7.5,1.51),7.65,7.65]

NORMAL AT (5,7.5,-6.14) = (0,0,-1);

SURFACE uendb DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(10,0,0) BO/CURVE[0,0,-22.42]

PO/(10,29.8,0) BO/LINE
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PO/(0,29.8,0) BO/CURVE[0,0,-22.42]

CYLINDER [(0,14.9,16.75),(10,14.9,16.75),22.42,22.42]

NORMAL AT (5,15,-5.67) = (0,0,-1);

SURFACE lsidea DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(44,0,0) BN/LINE

PO/ (44,8.6,0) BN/LINE

PO/(2,17,0) BN/CURVE[-10.96,1.29,0]

PLANE

NORMAL AT (22,6,0) = (0,0,-1);

SURFACE lsideb DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(-44,0,0) BN/LINE

PO/(-44,8.6,0) BO/LINE

PO/(-2,17,0) BO/CURVE[10.96,1.29,0]

PLANE

NORMAL AT (-22,6,0) = (0,0,-1);

SURFACE ledgea DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(44,0,0) BN/LINE

PO/(44,8.6,0) BO/LINE

PO/(0,8.6,0) BO/LINE

PLANE

NORMAL AT (22,4.3,0) = (0,0,-1);

SURFACE ledgeb DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(42.8,0,0) BN/LINE

PO/ (42.8,8.6,0) BO/LINE

PO/ (0,8.6,0) BO/LINE

PLANE

NORMAL AT (22,4.3,0) = (0,0,-1);

SURFACE lendb DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/CURVE[0,0,-11.04]

PO/(17,0,0) BO/LINE

PO/(17,8.6,0) BO/CURVE[0,0,-11.04]

PO/(0,8.6,0) BO/LINE

CYLINDER [(8.5,0,7.04),(8.5,8.6,7.04),11.04,11.04]

NORMAL AT (8.5,4.3,-4) = (0,0,-1);
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SURFACE handsides DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(7.7,0,0) BCW/LINE

PO/(7.7,8.6,0) BO/LINE

PO/(0,8.6,0) BO/LINE

PLANE

NORMAL AT (3.8,4.3,0) = (0,0,-1);

SURFACE handsidel DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/LINE

PO/(0,8.6,0) BO/LINE

PO/(7.7,8.6,0) BO/CURVE[3.04,3.04,0]

PN/(12,4.3,0) BO/CURVE[3.04,-3.04,0]

PO/(7.7,0,0) BO/LINE

PLANE

NORMAL AT (6,4.3,0) = (0,0,-1);

SURFACE handend DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,0,0) BO/CURVE[0,-3.04,-3.04]

PN/(0,4.3,-4.3) BO/CURVE[0,3.04,-3.04]

PO/(0,8.6,0) BCW/LINE

PO/(8.6,8.6,0) BO/CURVE[0,3.04,-3.04]

PN/(8.6,4.3,-4.3) BO/CURVE[0,-3.04,-3.04]

PO/(8.6,0,0) BCW/LINE

CYLINDER [(0,4.3,0),(8.6,4.3,0),4.3,4.3]

NORMAL AT (4.3,4.3,-4.3) = (0,0,-1);

SURFACE robbodyside DEFAULT ((0,0,1000),(0,0,0)) =

PO/(-9,0,0) BO/CURVE[-6.364,0,-6.364]

PN/(0,0,-9) BO/CURVE[6.364,0,-6.364]

PO/(9,0,0) BN/LINE

PO/(9,50,0) BO/CURVE[6.364,0,-6.364]

PN/(0,50,-9) BO/CURVE[-6.364,0,-6.364]

PO/(-9,50,0) BN/LINE

CYLINDER [(0,0,0),(0,50,0),9,9]

NORMAL AT (0,25,-9) = (0,0,-1);

SURFACE robshldend DEFAULT ((0,0,1000),(0,0,0)) =

PN/(-8,0,0) BO/CURVE[-5.66,5.66,0]

PN/(0,8,0) BO/CURVE[5.66,5.66,0]

PN/(8,0,0) BO/CURVE[5.66,-5.66,0]

PN/(0,-8,0) BO/CURVE[-5.66,-5.66,0]
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PLANE

NORMAL AT (0,0,0) = (0,0,-1);

SURFACE robshoulds DEFAULT ((0,0,1000),(0,0,0)) =

PO/(-8,0,0) BO/CURVE[-5.66,0,-5.66]

PN/(0,0,-8) BO/CURVE[5.66,0,-5.66]

PO/(8,0,0) BO/CURVE[0,-6.32,-6.32]

PO/(0,8,-8) BO/CURVE[0,-6.32,-6.32]

CYLINDER [(0,0,0),(0,1,0),8,8]

NORMAL AT (0,4,-8) = (0,0,-1);

SURFACE robshould1 DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,-8,0) BO/CURVE[0,-5.66,-5.66]

PN/(0,0,-8) BO/CURVE[0,5.66,-5.66]

PO/(0,8,0) BN/LINE

PO/(29,8,0) BO/CURVE[0,5.66,-5.66]

PN/(29,0,-8) BO/CURVE[0,-5.66,-5.66]

PO/(29,-8,0) BN/LINE

PO/(27,-8,0) BO/CURVE[0,-6.32,-6.32]

PO/(19,0,-8) BO/CURVE[0,-6.32,-6.32]

PO/(11,-8,0) BN/LINE

CYLINDER [(0,0,0),(1,0,0),8,8]

NORMAL AT (10,0,-8) = (0,0,-1);

SURFACE robshould2 DEFAULT ((0,0,1000),(0,0,0)) =

PO/(0,-8,0) BO/CURVE[0,-5.66,-5.66]

PN/(0,0,-8) BO/CURVE[0,5.66,-5.66]

PO/(0,8,0) BN/LINE

PO/(-29,8,0) BO/CURVE[0,5.66,-5.66]

PN/(-29,0,-8) BO/CURVE[0,-5.66,-5.66]

PO/(-29,-8,0) BN/LINE

PO/(-27,-8,0) BO/CURVE[0,-6.32,-6.32]

PO/(-19,0,-8) BO/CURVE[0,-6.32,-6.32]

PO/(-11,-8,0) BN/LINE

CYLINDER [(0,0,0),(-1,0,0),8,8]

NORMAL AT (-10,0,-8) = (0,0,-1);

Then come the geometric models for the ASSEMBLYs:

ASSEMBLY robot DEFAULT ((0,0,1000),(0,0.7,4)) =

robbody AT ((0,0,0),(0,0,0))
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link AT ((0,50,0),(0,0,0))

FLEX ((0,0,0),(0,jnt1,3.14159));

ASSEMBLY link DEFAULT ((0,0,1000),(0,0.7,4)) =

robshould AT ((0,0,0),(0,0,0))

armasm AT ((0,8,-19),(0,0,0))

FLEX ((0,0,0),(jnt2,0,0));

ASSEMBLY armasm DEFAULT ((0,0,1000),(0,0.7,4)) =

upperarm AT ((0,0,0),(0,0,0))

lowerarm AT ((43.5,0,0),(0,0,0))

FLEX ((0,0,0),(jnt3,0,0));

ASSEMBLY upperarm DEFAULT ((0,0,1000),(0,0.7,4)) =

uside AT ((-17,-14.9,-10),(0,0,0))

uside AT ((-17,14.9,0),(0,3.14,1.5707))

uendb AT ((-17,-14.9,0),(0,1.5707,3.14159))

uends AT ((44.8,-7.5,-10),(0,1.5707,0))

uedges AT ((-17,-14.9,0),(0,1.5707,4.7123))

uedges AT ((-17,14.9,-10),(0,1.5707,1.5707))

uedgeb AT ((2.6,-14.9,0),(0.173,1.5707,4.7123))

uedgeb AT ((2.6,14.9,-10),(6.11,1.5707,1.5707));

ASSEMBLY lowerarm DEFAULT ((0,0,1000),(0,0.7,4)) =

lsidea AT ((-9.4,-7.7,0),(0,0,0))

lsideb AT ((-9.4,-7.7,8.6),(0,3.14,0))

lendb AT ((-9.4,-7.7,0),(1.4536,1.5707,1.5707))

ledgea AT ((-9.4,-7.7,8.6),(0,1.5707,4.7123))

ledgeb AT ((-7.4,9.3,0),(6.083,1.5707,1.5707))

hand AT ((34.6,-3.8,4.3),(0,0,0));

ASSEMBLY hand DEFAULT ((0,0,1000),(0,0.7,4)) =

handsidel AT ((0,-4.3,-4.3),(0,0,0))

handsidel AT ((0,4.3,4.3),(0,3.14,1.5707))

handsides AT ((0,-4.3,4.3),(0,1.5707,4.71))

handsides AT ((0,4.3,-4.3),(0,1.5707,1.5707))

handend AT ((7.7,-4.3,-4.3),(0,1.57,0));

ASSEMBLY robbody DEFAULT ((0,0,1000),(0,0.7,4)) =

robbodyside AT ((0,0,0),(0,0,0))

robbodyside AT ((0,0,0),(0,3.14,0));

ASSEMBLY robshould DEFAULT ((0,0,1000),(0,0.7,4)) =

robshldbd AT ((0,0,0),(0,0,0))

robshldsobj AT ((0,0,0),(0,0,0));
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ASSEMBLY robshldbd DEFAULT ((0,0,1000),(0,0.7,4)) =

robshould1 AT ((0,8,-19),(0,1.5707,0))

robshould2 AT ((0,8,-19),(0,1.5707,3.14159))

robshldend AT ((0,8,10),(0,3.14,0));

ASSEMBLY robshldsobj DEFAULT ((0,0,1000),(0,0.7,4)) =

robshoulds AT ((0,0,0),(0,1.5707,0))

robshoulds AT ((0,0,0),(0,1.5707,3.14159));

ENDSTR

Lastly, there are the additional property constraints used by verification:

CONSTRAINT uside MAXSCURV(uside) < 0.05

CONSTRAINT uside ABSSIZE(uside) < 1900.0

CONSTRAINT uside ABSSIZE(uside) > 1050.0

CONSTRAINT uends ABSSIZE(uends) < 250.0

CONSTRAINT uendb ABSSIZE(uendb) < 430.0

CONSTRAINT uedges ABSSIZE(uedges) < 260.0

CONSTRAINT uedges SURECC(uedges) < 3.0

CONSTRAINT uedgeb ABSSIZE(uedgeb) < 570.0

CONSTRAINT lsidea ABSSIZE(lsidea) < 910.0

CONSTRAINT lsidea ABSSIZE(lsidea) > 300.0

CONSTRAINT lsideb ABSSIZE(lsideb) < 910.0

CONSTRAINT lsideb ABSSIZE(lsideb) > 300.0

CONSTRAINT lendb ABSSIZE(lendb) < 200.0

CONSTRAINT ledgea ABSSIZE(ledgea) < 470.0

CONSTRAINT ledgea ABSSIZE(ledgea) > 200.0

CONSTRAINT ledgeb ABSSIZE(ledgeb) < 470.0

CONSTRAINT ledgeb ABSSIZE(ledgeb) > 200.0

CONSTRAINT handsides ABSSIZE(handsides) < 76.0

CONSTRAINT handsidel ABSSIZE(handsidel) < 110.0

CONSTRAINT handend ABSSIZE(handend) < 136.0

CONSTRAINT robbodyside ABSSIZE(robbodyside) < 1600.0

CONSTRAINT robshldend ABSSIZE(robshldend) < 248.0

CONSTRAINT robshldend SURECC(robshldend) < 1.5

CONSTRAINT robshould1 ABSSIZE(robshould1) < 828.0

CONSTRAINT robshould2 ABSSIZE(robshould2) < 828.0

CONSTRAINT robshoulds ABSSIZE(robshoulds) < 130.0

CONSTRAINT robbodyside SURECC(robbodyside) > 2.0
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CONSTRAINT robbodyside MAXSCURV(robbodyside) > 0.095

ENDCON

STOP


