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Abstract

Stereoscopic VISIon delivers a sparse map of the range
to various "matched" points or contours, in the field of
view. This paper addresses the problem of explicitly
reconstructing a smooth surface that interpolates those
points and contours. It is argued that any scheme for
surface reconstruction should be viewpoint-invariant; oth­
erwise the reconstructed surface would "wobble" as the
viewpoint changes.

Progress has been made towards obtaining viewpoint­
invariant reconstruction. A scheme has been implemented
in 2-D and found to be relatively invariant to changes of
viewpoint. Some remaining theoretical problems are out­
lined.

1 Introduction,

In this paper we consider aspects of the task of generating
geometrical information from stereo vision, extending the
conclusions of a previous paper [4]. The aim is to derive
as rich a geometric description as possible of the visible
surfaces of the scene - a "viewer-centred representation
of the visible surfaces" [12]. Principally this is to consist
of information about surface discontinuities and surface
orientation and curvature. Ideally it would be desirable
to label discontinuities, and generate smooth surfaces be­
tween them, all in a single process. Some preliminary
work has been done towards achieving this [3] but here we
restrict discussion to reconstruction of smooth surfaces.

Grimson [9] discusses the task of interpolating smooth
surfaces inside a known contour (obtained from stereo
e.g. [13], [11], [9], [2]). He shows how surface interpola­
tion can be done by minimising a suitably defined sur­
face energy, the" quadratic variation". The interpolating
surface that results is biharmonic and under most con­
ditions is defined uniquely. Terzopoulos [18] derives, via
finite elements, a method of computing a discrete repre­
sentation of the surface; the computation uses relaxation
which is widely favoured for minimisation problems in
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computer vision [22], largely because of its inherent par­
allelism. Both Grirnson and Terzopoulos suggest that the
surface computed represents the configuration of a th in
plate under constraint or load.

In this paper we first point out that the faithfulness of the
computation to the physical thin plate holds only under
stringent assumptions - assumptions that do not apply
for the intended use in representing visible surfaces. It is
argued that physical thin plates do not anyway have the
right properties for surface interpolation - it is not desir­
able to try and model one. Secondly, the effect of bihar­
monic interpolation is investigated in its own right. We
show that it lacks 3-D viewpoint-invariance and de1110n­
strate, with 2-D examples, that this results in an appre­
ciable "wobble" of the reconstructed surface as the view­
paint is varied.

An alternative method of surface reconstruction is pro­
posed, minimising a surface energy that is invariant to
changes of viewpoint. However there is a problem of non­
uniqueness: there may be more than one minimising sur­
face - a surface that locally minimises the surface energy.
As viewpoint changes, the surface delivered by an optimi­
sation process could "flip" from one local minimum to an­
other, resulting in loss of viewpoint-invariance. The best
compromise seems to be the mixed membrane/plate. 'I'he
membrane on its own is stable and viewpoint-invariant,
with unique minimum energy solutions, but the recon­
structed surface is not smooth. The plate, on the other
hand, is smooth but not viewpoint-invariant. A mixture
of the two energies gives a controlled trade-off between
smoothness and viewpoint-invariance.

2 The thin plate

Accurate mathematical modelling of a thin plate is
fraught with difficulties and, in general, generates a some­
what intractable, non-linear problem. Under certain as­
sumptions however the energy density on the plate can
be approximated by a quadratic expression; minimising
the total energy in that case is equivalent to solving a
linear partial differential equation with linear boundary
conditions. The partial differential equation determines
the displacement u(x, y) of the plate, in the z-direction
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(the viewer direction), that interpolates a set of ma~ched
points. These matched points are assumed to be available
as the output of stereopsis. With an approximate repre­
sentation of the plate in a discrete (sampled) space, using
finite differences or finite elements, the linear differential
equation becomes a set of simultaneous linear equations.
These can be solved by relaxation. The assumptions nec­
essary to approximate the surface energy by quadratic
variation are analysed by Landau and Lifshitz [10] and
we enumerate them:

One conclusion from the foregoing review of assumptions
is that that faithfulness of visible surface reconstruction
to a physical thin plate model is undesirable. This is
because of the stretching energy discriminating against
spherical surfaces , which is not generally appropriate in
surface reconstruction. In fact , happily enough, we saw
that quadratic variation is not an accurate description
of the surface energy of a thin plate precisely because it
omits stretching energy, so biharmonic interpolation does
not exhibit this discrimination.

under certain boundary conditions. For instance when
the edges of the surface are fixed (constrained, for exam­
ple , by stereo-matched points) the condition is th at

We now declare ourselves free from any obligation to ad­
here to a physical thin plate model and will explore th e
geometrical properties of biharmonic interpolation .

(4)

(2)

(3)f is fixed and 8 2f /8n2 =0,

Biharmonic interpolation3

where a/an denotes differentiation along the normal to
the boundary. Consider the effect on a simple shape such
as a piece of the curved wall of a cylinder , assuming th at
the surface is fixed on the piece's boundary. It is easy to
show that a cylindrical surface defined by

subject to the constraints that f(x , y) passes through the
stereo-matched points", Landau and Lifshitz show [10]
that the solution to this minimisation satisfies the bihar­
monic equation

We now examine biharmonic interpolation in its own
right . A variety of forms of such interpolation are possi­
ble and the one preferred by Grimson [9] is to const ruct
that surface z = f(x , y) that (uniquely) minimises the
quadratic variation5. The deflection of the plate is everywhere small com­

pared with its thickness

4. The deflection of the plate is everywhere small com­
pared with its extent .

3. The normal to the plate is everywhere approximately
in the z-direction.

Assumption 3 is clearly unacceptable: any scene (for ex­
ample, a room with walls, floor, table-tops etc .) is liable
to contain surfaces at many widely differing orientations.
By no means will they all be in or near the frontal plane
(i.e. normal to the a-direction), though it seems that hu­
man vision may have a certain preference for surfaces in
the frontal plane (Marr , 1982). In particular, surfaces to
which the z-axis is almost tangential are of considerable
interest: it is important to be able to distinguish, in a
region of large disparity gradient , between such a slanted
surface and a discontinuity of range (caused by occlusion) .

2. The displacements of the plate from its equilibrium
position z = 0 are substantially in the z-direction:
transverse displacement is negligible.

1. The plate is thin compared with its extent.

Assumption 1 is acceptable - indeed intuitively it is prefer­
able to use a thin plate that yields willingly to the pull
of the stereo-matched points . Assumption 2 may also be
acceptable if the pull on the plate from each matched
point is normal to the plate. The remaining assumptions
3-5 are the ones which prove to be stumbling blocks for
reconstruction of visible surfaces.

Assumption 4 and the even stronger assumption 5 are
again unacceptably restrictive. In fact assumption 5 can
be removed at the cost of introducing non-linearity that
makes the problem considerably harder; the non-linear
formulation takes into account the stretching energy of
the plate as well as it bending energy. It is this energy
th at represents the unwillingness of a flat plate to conform
to the surface of a sphere rather than to , say, a cylindrical
or other developable surface. Even without assumption
5, assumption 4 on its own is still too strong because it
requires the scene to be relatively flat - to have an overall
variation in depth that is small compared with its extent
in the xy plane. This is clearly inapplicable in general.

does not satisfy \72\72 f = 0, so we cannot expect the sur­
face to be interpolated exactly. Grimson [9] demonstrates
this: his interpolation of such a boundary conforms to the
cylindrical surface near the boundary ends but sags some­
what in th e.middle.

To return to the definition in (1) , a serious objection to
using quadratic variation to define surface energy is that
it is not invariant under change of 3D coordinate frame .
As (Brady and Horn, 1983) point out , it is isotropic in

1An alternative formulation attaches the surface f(x, v) to
matched points by springs, allowing some deviation of the su rface
from the points.
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2D - invariant under rotation of axes in the xy plane.
However, under a change of coordinate frame in which
the z-axis also moves, the quadratic variation proves not
to be invariant.

Figure 1: Viewpoint-invariant surface reconstruc­
tion. The two solid rings can be interpolated by a "bee­
hive"-shaped surface. Within the cone of viewer directions
shown, the lower ring is not obscured by the upper one.
It is argued that, for viewer directions lying in that cone,
the, interpolated surface should remain static (invariant)
in 3-D.

(7)

(6)

(5)g(x, y, z) = 0

g(x, y, z) = f(x, y) - z

F = j EdS where E =x:i + K~.

4.1 Deriving the energy expr-ession

• EdS is invariant with respect to change of coordinate
frame

In this way we can generate a new energy expression to
replace (1) that does have 3D invariance, because it is
defined in terms of surface properties. The energy is:

and where ~1, ~2 are principal curvatures and dS is the
area of an infinitessimal surface element. This can be
expressed quite straightforwardly, as a non-linear function
of the derivatives [7]. It is not the only possible invariant
energy but is consistent with the old expression (1) when
Ix = fy = 0 - the normal to the surface lieseverywhere
along the viewer direction. It is approximately consistent
if the surface normal is everywhere close to the viewing
direction. This is simply assumption 3, for the thin plate
approximation, appearing again. Indeed, this consistency
property leads to a proof that (1) is not in general an
invariant expression: for a given surface element dS, we
know that

then the single value constraint is applied, that g must
have the form

• Adxdy = EdS in one coordinate frame but not III

certain others

4 A viewpoint-invariant surface
energy

In order to obtain the desired invariance to viewpoint
while still constraining the surface to be single valued
along the direction of projection, the interpolation prob­
lem can be reformulated as follows: first surface energy is
defined for an arbitrary 3D surface, defined by

To demonstrate the wobble effect, surface interpolation
using quadratic variation has been simulated in 2-D (fig
2) over a range of viewpoints. In the 2-D case, biharmonic
interpolation simply fits a piecewise cubic polynomial to
set of points. There is continuity of second derivative
at those points and the second derivative is zero at the
end-points. In other words, interpolation in 2-D reduces
simply to fitting cubic splines [6]. As expected, the wob­
ble effect is strong when boundary conditions are such
that the reconstructed surface is forced to be far from
planar.

viewer positions

-
- -._-~

-
-~-----

no change of occlusion over a range of viewer directions
that lie inside a certain cone. The reconstructed surfaces
of both beehive and table should remain static in 3D as
viewpoint varies within that cone. The point is that, over
such a set of viewpoints, the available information about
the surface does not change; neither then should there be
any change in the estimate of its shape". Without invari­
ance, a moving viewer would perceive a wobbling surface.

2Since the short version of this paper [4] appeared there has
been some Iogomachy in the literature over the tenn "viewpoint­
invariance", It has apparently been misunderstood by some as re­
ferring to invariance over all viewpoints, who proposed instead a
ca.cology that was allegedly more accurate. What our tenn refers
to, of course, is invariance over some set of viewpoints.

Is it altogether obvious that 3D invariance is required?
Certainly the situation is not entirely isotropic in that
the visible surface is single valued in z - any line perpen­
dicular to the image plane intersects the visible surface
only once - the z-direction is special. On the other hand
it is also desirable that the interpolated surface should be
capable of remaining the same over a wide range of view­
points. Specifically, given a scene and a set of viewpoints
over which occlusion relationships in the scene do not al­
ter, so that the points matched by stereo do not change,
the reconstructed surface should remain the same over all
those positions. Such a situation is by no means a spe­
cial case and is easy to generate: imagine, for example,
looking down the axis of a "beehive" (fig 1). There is



106

Figure 2: Biharmonic interpolation scheme. Here is an example of the int erpolati on scheme operat ing in 2-D
rather than 3-D. The curve interpolates 3 points (marked by circles). As the viewer direction varie s from 0 to 30
degrees there is marked mov ement of the interpolating curve. Clearly the scheme is far from invariant to change of
vi ewpoint.

therefore Adxdy cannot be invariant under change of co­
ordinate frame .

The original energy (1) has a unique minimum [9] but
for the new energy the situation is more complicated. To
understand this we will consider, for simplicity, a 2-D
form of the new energy:

(8)

where
E(t, u) =u 2(1+ t2)- 3

and the arc length ds =w(J",) dx with

w(t) = J1+t2.
A standard result from the calculus of variations [1] states
a certain sufficient set of conditions for a minimum of F
to exist , one of which, in the case of (8), is that:

3a > a,p> 1, s.t . "It, u ,E(t , u)w(t) ~ alulP + b. (9)

This condition is not satisfied as E(t ,u) becomes arbi­
trarily small for large enough t. This problem can be cir­
cumvented by restricting f to a family of functions whose
normal is nowhere perpendicular to the line of sight - say
at most 85° away. Now the term in u is bounded below.
However, the boundary of this set of functions (defined
by a condition lui < U for some U) is coordinate-frame
dependent. So a local minimum f of F is guaranteed to
be invariant (to small changes of viewpoint) if it lies in

the interior of this set . If it lies. on the boundary it may
be viewpoint-dependent.

Note that, by the Morse-lemma [14], an f which locally
minimises F in one coordinate frame (u,I) also minimises
F in another frame (u', I'), provided that the change of
frame is a "diffeomorphism". This property is needed for
viewpoint-invariance of f. The change of frame is not dif­
feomorphic if, somewhere on the surface, the gradient be­
comes unbounded in the new frame . This is as expected:
the surface acquires an extremal contour in the new frame
and some of the previously reconstructed surface is lost
to view. Clearly there is no viewpoint-invariance in this
situation.

There remains a more serious problem: that of unique­
ness. The integrand of (8) fails to satisfy a certain suffi­
cient condition for uniqueness [21] because it is not con­
vex. It can easily be shown that its Hessian matrix with
respect to u , I is not positive definite. Therefore the in­
tegrand E(u ,/)w(u) is not convex in u ,l. In the absence
of convexity there may be more than one extremal func­
tion (non-uniqueness). Practical methods of finding local
minima (such as the descent method used in the discrete
computation in the next section) are coordinate frame de­
pendent. Both the initial state (initial estimate of f) and
the path taken from that state depend on the coordinate
frame . This would not matter if there were a unique mini­
mum; in each coordinate frame the descent method would
reach that minimum, albeit via different paths. However
if there are several local minima, the final state may flip
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from one to another as the coordinate frame is varied.
This would cause viewpoint-invariance to be lost.

A certain modification of the energy in (8) can be shown
to make it's integrand convex, at least asymptotically.
The modified energy is

where K is a positive constant. The additional term Kw
adds a component of energy that is simply proportional
to the length of the curve I(x) between endpoints. In
three dimensions this is simply the energy of an elastic
membrane - energy is proportional to surface area. If K
is very large, so that the membrane term dominates the
energy F, the effect, in 2D, is simply to link the interpo­
lated points by straight lines. Moreover the integrand is
convex in the limit of large !<.. That is, the term ]{w(u)
in (10) is convex in u because its second derivative

F = l"" K)wdx

( 2) -3/2!{wuu =K 1 +u

(10)

(11)

the total energy. This situation is typical of optimisa­
tion by parallel relaxation [22]. Computation is further
simplified by approximating the energy (8) within each
polynomial piece. The gradient u, in a polynomial piece,
is approximated by its average value over that piece. A
simple application of the patch test [17] shows that this
is allowable.

The discrete scheme has been applied to the problem of
fig 2, for which interpolation with quadratic variation was
shown to be viewpoint-dependent. In practice, for an
appropriate choice of 1<', the interpolated curve is very
nearly static over viewpoints in the range ±30o (fig 3),
without excessively high curvatures.

6 Conclusion

We have shown that:

is positive everywhere. The convexity result for the mem­
brane holds also in 3D.

The modified energy (10) can easily be extended to the
full 3-D case simply by adding a positive constant I<. to
the integrand, as before. In 3-D, for large K, the sur­
face behaves as a membrane having minimal area (and
creases). An intermediate K achieves a compromise, as
in 2-D.

Interpolation in 2-D, using the mixed membrane/plate
of the previous section, has been implemented on a com­
puter, using a parallel, iterative method. First the energy
is expressed in a discrete form, by a finite element approx­
imation [17]. Trial functions are represented as quadratic
piecewise polynomials. A quadratic spline basis [6] al­
lows the piecewise polynomials to be represented as vec­
tors, each of whose components affects the energy func­
tion only locally. Hence when one of these components is
adjusted only a local computation is necessary to update

The membrane limit may be inappropriate to visible sur­
face reconstruction because gradient discontinuities are
introduced at interpolated points. (A drawn bow-string
has a V-shaped kink at the archer's finger). An intermedi­
ate value of K produces a compromise between invariant
interpolation and avoiding high curvature at interpolated
points. Examples are shown in the next section. Note
that the mixed membrane/plate is only approximately in­
variant. To make it fully invariant, it would be necessary
to find a convex, viewpoint-invariant set in u, 1 space over
which the integrand is a convex function. This is shown,
in the appendix, to be impossible.

1. Biharmonic interpolation does not accurately model
a thin plate and, in any case, a thin plate model
would be inappropriate for use in surface interpola­
tion.

3. A proposed alternative reconstruction scheme uses
an energy that is a function of surface curvature and
area - the mixed membrane/plate. In 2-D simula­
tion the scheme appears to be relatively invariant to
change of viewpoint. However the theoretical basis
for invariance is still incomplete, because of prob­
lems demonstrating uniqueness. A possible line of
investigation to try and resolve this would examine
the Euler equation of the energy integrand. This
would define the extrema. It might reveal, for in­
stance, that for large values of the parameter K, any
extremal surface must approximate to the surface of
minimal area. In that case, reconstruction is, at least
approximately, invariant to change of viewpoint.

4. If the visual task does not require smoothly interpo­
lated surfaces then a computational membrane can
be used which is viewpoint-invariant.

5. Before attempting to proceed to a full 3-D implemen­
tation, it is worth questioning whether it is anyway
appropriate to perform full, explicit reconstruction of
a surface as a range-map. An alternative would be
to represent the surface in terms of prototype (e.g.
quadric) surface patches [8], [15]. Such a represen­
tation could be computed from a range map; but a
more direct route would be to perform surface recon­
struction using the surface patches themselves, thus
eliminating the need for the range map as an inter­
mediate representation. This direct route might be

2. Biharmonic interpolation of the visible surface is not
viewpoint-invariant and that, in specific 2-D cases,
this lack of invariance certainly causes significant sur­
face wobble.

Discrete com.putation in 2-D5
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Figure 3: Implementation of the proposed scheme. Compare results here with those for quadratic vari ation, in fig
2. The new scheme (a) is , for a modest value of the parameter K, fairly independent of vi ewpoint. As the parameter
J{ is decreased there is more viewpoint dependence (0) .
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attained by restricting the admissible family of func­
tions in the finite element method to assemblies of
prototype patches, and finding the member of that
family with lowest energy.

6. The problem of detecting discontinuities has not been
dealt with in this paper. Terzopoulos [19] suggests
labelling zero-crossings of the reconstructed surface
I(x, y) as discontinuities. However, this method
is not viewpoint-invariant (fig 5). Further work
is needed here: one possibility is to incorporate a
penalty for surface discontinuities into the surface
energy function, an extensiorr' of the method in [3].

7. The principle of 3-D invariance appears to be impor­
tant in 2-1/2D sketch processes. Another potential
area of application is shape-from-shading. The in­
ferred shape of a beehive (fig 1) with a lambertian
surface should be viewpoint-invariant, as with shape­
from-stereo.
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is that the hessian be strictly positive definite . Differen­
tiating T twice, we obtain:

1}, = 2w-5 ,

T...... = 5(6u2 -10w-9 +Kw-3
) , (13)

T... / = -10ulw-7 .

The eigenvalues of the Hessian are

~ (1}/ +T...... ) ± J(TII +T...... F - 4(T...u 1}/ - T~l»)
(14)

and, since Til ,T...... are positive, the smallest eigenvalue is
positive iff

Substituting (14) into this condition and simplifying
yields the condition

110

(16)

Making this inequality strict yields a condition for strict
convexity.

If a viewpoint-invariant sufficient condition for convex­
ity could be found, which also formed a convex set in
u, I space , in all coordinate frames , then constrained op­
timisation within that set would be viewpoint-invariant.
No such condit ion exists however . The only viewpoint­
invariant function of u.] is K and, from (16), x-intervals
are not convex sets in the u,l space of any viewer
coordinate-frame.


