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ABSTRACT

The advantages of solving the stereo correspondence problem
by imposing a limit on the magnitude of allowable disparity
gradients are examined. It is shown how the imposition of
such a limit can provide a suitable balance between the twin
requirements of disambiguating power and the ability to deal
with a wide range of surfaces. Next, the design of a very
simple stereo algorithm called PMF is described. In
conjunction with certain other constraints used in many other
stereo algorithms, P:MF employs a limit on allowable
disparity gradients of 1, a value that coincides with that
reported for human stereoscopic vision. The excellent
performance of P1vIF is illustrated on a series of natural and
artificial stereograms. Finally, the differences between the
theoretical justification for the use of disparity gradients for
solving the stereo correspondence problems presented in the
paper and others that exist in the stereo algorithm literature are
discussed.

1 INTRODUCTION

Usefuldepth information about a scene can readily be recovered
from the disparities that arise between a pair of images taken
from different viewing positions, but measuring these
disparities requires a solution to the difficult 'stereo
correspondence problem'. That is, some means must be found
for resolving the considerable ambiguities that typically arise
in trying to match corresponding elements in the two images.
In the present paper we address this problem from the
computational viewpoint (Marr 1982), in that we regard our
goal as that of finding appropriate constraints for solving an
information-processing task. However, the analysis we offer
has been to a considerable extent stimulated by psychophysical
findings about human binocular vision (in particular Burt and
Julesz 1980).

Constraints for solving the stereo correspondence problem
must be derived from properties of surfaces in the world being
viewed and/or the image formation process. For example, in
the theory presented by Marr and Poggio (1976, 1979) the
principal assumption is that correct matches will arise from
the projections of points lying on surfaces that are smooth
almost everywhere, and that this will not be the case for
incorrect matches. A surface continuity assumption was also
exploited by Mayhew and Frisby (1981), but they used it to
justify a figural continuity matching rule. The advantage of
the latter scheme was that it did not assume surface
smoothness beyond the scale at which the image primitives
were themselves described. The constraint that provides the
disambiguating power in the theory presented here is that the
disparity gradients that exist between correct matches will be
small almost everywhere. The analysis we present in section
2 shows that, given camera geometry approximating the
arrangement.of human eyes, a disparity gradient limit of about
1 will almost always be satisfied between the correct matches
arising from a large class of the surfaces that form our visual

world, whereas this is not true of incorrect matches. The value
of 1 is not in itself critical - all that is required is a limit that
balances satisfactorily the competing requirements of
disambiguating power and ability to deal with as wide a range
of surfaces as possible (section 2). However, we have chosen
1 because this seems to be roughly the limit found for the
human visual system (Burt and Julesz 1980).

In SUbsequent sections we describe the design and performance
of an algorithm called P:MFthat is based upon this constraint,
and several others that have been identified previously1.
Finally we briefly discuss how the theory underlying PMF
relates to other computational theories of how to solve the
stereo correspondence problem.

2 THE DISPARITY GRADIENT LIMIT

Consider a simple stereogram made up of two dots in each
field (figure 1). Burt and Julesz (1980) have provided evidence
that if both dots are to be binocularly fused simultaneously by
the human visual system, then the ratio of the disparity
difference between the dots to their cyclopean separation must
not exceed a limit of about 1. This ratio is known as the
disparity gradient and the existence of a disparity gradient limit
implies that even small absolute disparity differences will not
produce fusion if the spatial separation between dots is also
small. This is why the notion of a disparity gradient limit
represents a substantial departure from the classical concept of
Panum's fusional area, which is expressed in terms of a limit
not on gradients but on absolute disparities.

The concept of a disparity gradient limit provides an elegant
and parsimonious description of various psychophysical
phenomena (Burt and Julesz 1980); see also Tyler (1973) for
an estimation of the disparity gradient limit for horizontal
sinusoidal variations in depth. However, its functional
significance has yet to be established. The possibility we have
investigated is that the human visual system introduces a
disparity gradient limit in order to solve the stereo
correspondence problem. The reason for entertaining 'thisidea
is, in brief, that for most naturally occurring scene surfaces,
including quite jagged ones, the disparity gradients between the
correct matches of image primitives (deriving from texture
markings, swface edges, etc in the scene) are usually less than
1, whereas this is seldom the case for incorrect matches formed
from the same image elements.

In order to understand why correct matches generally lie within
a disparity gradient of 1 it is helpful to begin by visualising
this limit as imposing within disparity space a cone-shaped
'forbidden zone' for fusions around any given match [the zone
is cone-shaped because the limit is isotropic (Burt and Julesz
1980)]. This cone is shown in figure 2 which also illustrates

1 See also Pollard, Mayhew and Frisby (1990), paper [11] in this
book, for further details and a description of refinements added to
PMF since the present paper was published.
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how it implies a further cone restricting the nature of surfaces
in the viewed world that can satisfy the disparity gradient
limit. Because the gradient of the world cone is approximately
that of the disparity cone scaled by the ratio of the viewing
distance, z, to the interocular separation, I (Appendix I), the
world cone does not impose a very severe constraint on the
natureof surfaces that can satisfy it.

this frame is given by [x, y, z). The projections of P into the left
and right image planes are given by (L, r) and (R, r) respectively.
A cyclopean disparity space has also been constructed with its
origin coincident with that of the world viewed space. In this
space the point Pe corresponding to P in the viewed world space is
located at (C, r, d), where C is the mean horizontal component of
the projection into the left and right images given by l'2(L+R), and
d is the disparity defined as d = R - L.

Turning to nonplanar surfaces. the disparity gradient limit will
in general be satisfied on many types of surfaces provided they
do not recede too rapidly from the viewer. Furthermore,
surfaces satisfying the requirements need not be Cl smooth (ie
they need not be everywhere differentiable with continuous
derivative): mathematically, the disparity and world cones can
be described as determining Lipschitz functions of order 1 with
K = 1 and K = z/I respectively (Appendix 2).

From the definition of disparity gradient given in figure 1 it
follows that the illustrated cone-shaped 'forbidden zone' will exist
within the cyclopean disparity space around the point Pe. Other
points that lie between the forbidden cone will violate the
disparity gradient limit with respect to Pe. A second cone is shown
in the viewed world space to illustrate that the forbidden cone in
disparity space imposes an approximately similarly-shaped
restriction on the allowable depth relationship between points
lying on the surfaces that constitute the visual world. It is shown
in Appendix 1 that the gradient of this second cone is
approximately related to that of the first by ztl , Hence at any
reasonable viewing distance the constraint imposed upon the
structure of the world by a disparity gradient limit of1 is not very
severe . Note that the geometry in figure 2 is only schematic.
Moreover, the described approximate relationship between world
and disparity gradients holds only if z is large with respect to x, y,
and I (see Appendix 1).

So far it has been demonstrated that the correct matches derived
from the elements arising from most planar and many jagged
surfaces will lie within a disparity gradient limit of 1.0 (given
always small interocular separation with respect to viewing
distance). But, as implied above, disambiguation needs also to
rely upon there being a low probability that this limit will be
s~tisfied by.inc~rrect matches by chance. The convergent-to­
divergent disparity range allowed between a pair of matches in
order that they satisfy a disparity gradient limit of 1.0 is
exactly twice their cyclopean separation. From this it follows
!hat the probability that two points from one image can find
mcorre~t matches. that satisfy the disparity gradient limit by
chance IS almost directly proportional to their cyclopean image

For example, planar surfaces with maximal slopes of up to
740 will be tolerated at a viewing distance of 6 interocular
units. rising to 840 for 10 interocular units. Hence, at any
reasonable viewing distance only a small proportion of planar
slopes will have disparity gradients upon them that violate the
limit of 1.

Intuitively, one can say that K = 1 in disparity space will
permit world surfaces to be 'jagged but not too jagged' . The
amount of allowable 'jaggedness' will depend upon the
relationship of interocular distance to viewing distance. As
will be illustrated later, such a rule provides considerable
disambiguating power in terms of solving the stereo
correspondence problem while not being overly restrictive
about allowable scene surfaces. Furthermore, it is not
necessary to assume that the disparity gradient limit need be
satisfied between all correct matches in order that
disambiguation can be achieved. Hence the Lipschitz
condition provides only a conservative estimate of the class of
surfaces that satisfy our constraint.
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Figure 1 Defin ition of disparity gradient. Cons ider a
stereogram comprising the left and right halves shown in the
fi gure. When AL is matched to AR, and similarly for B, the
disparity gradient between them, as defined by Burt and Jules z
(1980), is the difference in the disparity divided by their cyclopean
separation, S. The latter is give by the distance between the
midpoints of the two pairs of dots (located at Ae and Be
respectively). Hence:

As the changes in disparity between the two matches is x' - x, the
cyclopean disparity gradient, rD , between Ae and Be is given by:

(c)

Figure 2 Forbidden cones shown schematically in cyclopean
disparity space and viewed world space. Consider the imaging
geometry shown in (a), with top and side elevations of the same
shown in (b) and (c) to aid the presentation. The principle axes of
the left and right imaging devices are parallel and have a
interocular separation I. The left and right image planes are
shown in front of the respective optical centres OLand OR for the
pictorial simplicity. A world viewed space is defined with respect
to a coordinateframe located midway between 0L and OR with axes
arranged as in the figure. The location ofpoint P with respect to

Left Image

0

4 -:J( Y -
~~pe~x' Rigtu image

disparity space 4
la)

0,



proximity [Appendix 3]. Hence at close proximities it is very
unlikely that a pair of matches will 'accidentally' satisfy the
disparity gradient limit. Thus a distinguishing feature that
allows the identification of correct matches from the pool of
'possibles' is that the disparity gradients between the former
almost always lie within a limit of 1.0. whereas between the
latter this is not the case, especially at close image
proximities.

Burt and Julesz (1980) pointed out that one way of viewing a
disparity gradient is as a measure of figural disparity between a
pair of matches because its size reflects both figural
dimensions on which such a 'dipole' can differ - orientation and
length. Similarly, it is possible to characterise the degree of
satisfaction of the disparity gradient limit between matches in
a fused binocular structure as a measure of the figural
similarity of the projections of that structure into the two
stereo halves. Hence an alternative description of stereo
projections that will satisfy the disparity gradient limit is that
they conform to a 'constraint of figural similarity'. and simple
observation of stereograms of most natural scenes shows that
they satisfy this requirement almost everywhere. Hence it is
possible to summarise this section by saying that, for a wide
range of surface structures. because of the similarity of the
vantage points of the two eyes the projected figural structures
that constitute the left and right images will in general be
sufficiently similar to allow corresponding points to be
identified by using the strategy of finding the best figural
matches available.

3 ADDITIONAL CONSTRAINTS UTILISED BY
PMF

As well as the disparity gradient constraint discussed in the last
section. PMF also exploits two other constraints: (i) the
epipolar constraint. a limitation on the possible locations of
matching points; and (ii) the uniqueness constraint. a
limitation on the number of matches allowed for a single
image entity. Both these constraints are used in a variety of
other stereo algorithms.

3.1 The epipolar constraint
For the class of stereo imaging geometries with which we are
concerned, ie those in which the optical axes of the two
imaging devices lie in the same plane, all matching primitives
appear on left/right pairs of (straight) epipolar lines (Baker
1982; see figure 3). Thus points along one member of the
epipolar pair can only match with points situated along the
other member. and vice versa. In the special case where the
principal axes are in fact parallel, all epipolar pairs will be
horizontal and matching points will be found on corresponding
rasters.

As with many other algorithms PMF uses this constraint to
restrict the search for possible matches to one dimension. In
current versions of PMF it is assumed that the camera
geometry is in fact parallel or at least approximately so. In
the natural scene stereograms considered below the inter-camera
separation was at least one tenth the distance to the fixation
point Given that our images are 128 x 128 pixels square and
cover a visual angle of at most 10 deg, a vertical disparity of
no more than a half a pixel will exist at the very corners of the
image. Hence for the work reported here seeking matches
along corresponding rasters is an adequate approximation to the
correct epipolar geometry.

In PMF all potential matches within the (large) disparity range
of +/- 30 pixels (corresponding to a Panum's fusional area of
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up to 5 deg) that satisfy a matching criterion for left/right

Figure 3 Epipolar Geometry and the stereo correspondence
problem. In the imaging geometries with which we are concerned
the optical axes of the left and right imaging devices (LF and RF
respectively) lie in a single plane and thus intersect at the fixation
point F (possibly at infinity). Consider the plane, lLR, formed
by a single point in that space, labelled 1, and the optical centres
of the two imaging devices, L and R. The plane 1LRis then said to
intersect the two image plates along a pair of epipolar lines.
Furthermore, as a result of the fact that all points along 1L and all
the points along 1R are (by definition) limited to lie in the plane
1LR, all possible ghost matches associated with the point 1 must
also lie in that plane and therefore project to the same pair of
epipolar lines. The same is also true for all and only all the other
points that lie in that same plane, for example points 2, 3, and 4
in the figure . In short, matching points can only be found along a
corresponding pair of epipolar lines . The poss ible ghost matches
that exist in this case are shown in the figure as open circles, with
closed circles portraying the physically existing points that gave
rise to them.

image primitives are selected for subsequent disambiguation.
The choice of matching criterion depends upon the nature of
the adopted primitives, a decision which is in turn domain­
dependent. PMF makes no specific requirements about what
the nature of these should be, except that they should reflect
scene entities. For artificial stereograms we simply use the
points defined when the stimuli are being created (see figures
4-6, 9 and 10). For natural images we have found it
convenient to use edge-like primitives given by zero crossings
identified after the application of a single high-frequency Marr­
Hildreth operator (Marr and Hildreth 1980; see figures 7 and 8).
For the latter, potential matches have been restricted to those
that can be formed between zero crossings of the same contrast
sign and roughly similar orientation. In some domains it may
also be possible to determine a measure of the 'goodness' of a
match (eg degree of figural similarity of its constituent
primitives) that can be made use of in the disambiguation
procedure by weighting the relative importance of potential
matches.

3 .2 The uniqueness constraint
Owing to the fact that only rarely will a feature project into
one member of a stereo pair such that it neatly masks an
identical feature farther away which nevertheless remains
visible in the other stereo half, it follows that matches of
image primitives extracted from the two images should be
unique, ie each image primitive will participate in just one
~atch. Only in the unlikely case just mentioned, which
Violates the general position assumption with regard to



viewpoint, would it be legitimate for a single primitive from
one image to be matched with two primitives in the other.

Notice that the uniqueness constraint is itself implied by a
disparity gradient limit of 1 (Burt and Julesz 1980). If a single
point identified in one image is allowed to match with a pair
of points identified in the other (cf Panum's limiting case),
then the disparity gradient between the two matches is 2.

4 THE PMF ALGORITHM

We have developed a stereo correspondence algorithm called
PMF based on the foregoing considerations. It has two
distinct stages of processing.

First , the matching strength of each potential match is
computed from the sum of contributions received from all
potential matches in its neighbourhood that satisfy the
disparity gradient of 1 with respect to it. We find a
neighbourhood defined by a circle of radius 7 pixels
satisfactory for all textures so far considered. Because the
probability of a neighbouring match falling within the limit
by chance increases (almost linearly) with its distance away
from the match under consideration (section 2 and Appendix
3), the contribution of a match is weighted inversely by its
distance away. Uniqueness is exploited at this stage by
requiring that at most one match associated with a single
primitive in one or other image makes a contribution to the
matching strength.

Second, on the completion of this procedure, correct matches
are chosen on the basis of matching-strength scores by using a
form of discrete relaxation (Rosenfeld et alI976). At the first
iterat ion any matches which have the highest matching
strength for both of the two image primitives that formed
them are immediately chosen as 'correct', ie matches are
selected whose primitives have no higher matching-strength
scores with any other matches they can form . Then , in
accordance with the uniqueness constraint, all other matches
associated with the two primitives that formed each chosen
match are eliminated from further consideration. This allows
further matches, that were not previously either accepted or
eliminated, to be selected as correct because they now have the
highest strengths for both constituent primitives. Usually
only four or five iterations are needed to propagate the
uniqueness constraint in this way to the point at which the
disambiguation process of PMF is complete and satisfactory
(see section 6).

It is important to emphasise the fact that PMF is only
interested in the quantity of within -disparity-gradient-limit
support that exists for a particular match. Hence the extent to
which the disparity gradient limit is offended in the
neighbourhood of a candidate match does not directly affect the
selectionprocedure ofPMF. This design feature is perfectly in
line with the justification given in section 2 for seeking
within-disparity-gradient-limit support as the disparity gradient
limit need not necessarilybe satisfied everywhere.

We have also thought it sensible not to weight contributions
by the actual magnitude of their disparity gradients, but instead
to treat all within-disparity-gradient-limit contributions
homogeneously . This makes sense for the stereo
correspondence problem, as there seems to be no reason to
penalise any perturbations that lie within the range that is to
be expected in the stereo projections of interest. However,
many other functions using disparity gradients could be
employed. In one interesting example suggested by Prazdny
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(1985), the strength of the support that flows between a pair of
matches is scaled in a gaussian fashion with respect to the size
of the disparity gradient between them.

A further point to notice in this implementation of PMF is
that within-disparity-gradient-limit support is sought
independently from all possible matches in the neighbourhood
of the match under consideration. This means that it is
possible that two or more matches that give within-disparity­
gradient-limit support might not themselves share a within- ,
limit disparity gradient. This design feature has been dictated
by considerations of computational efficiency. Further
research is in hand with the object of examining the
desirability of insisting on within-neighbourhood support
consistency.

Although the use of a disparity gradient limit in PMF was
stimulated by observations of the human visual system,
various details of its design were shaped by more practical
constraints introduced by the need to achieve reasonable
efficiency and robustness on [nearl-state-of-the-arr computer
machinery. The speed criterion is met by the intrinsically
parallel nature of the structure of PMF: each matching strength
could, on appropriate computer architecture, be computed
independently. Extensive examination of its performance on
various artificial and natural stereo images bears out
satisfaction of the robustness requirement. These two factors
suggest that PMF might prove valuable for industrial
application in the short term.

5 HORIZONTAL SECTIONS

Our current implementation does not address fully the special
difficulties posed by horizontal edge segments, a characteristic
shared with all other stereo algorithms we know, many of
which simply ignore horizontal sections altogether. Such
segments have the dual problems of being difficult to locate
(their locations can easily migrate onto an adjacent
raster/epipolar line) and of being intrinsically ambiguous
(points along a horizontal edge segment in one image can
potentially match all points along the corresponding edge
segment in the other image) . The first of these problems will
be met in future implementations of PMF by the inclusion of
a small two-dimensional search window for near-horizontal
sections. As for the second, it is clear that for long segments
it will be difficult or impossible to identify matches correctly
using only information based upon disparity gradients and
hence some later stage of interpolation seems mandatory.
Note, however, that horizontal segments can still provide
figural similarity information for other matches if not always
for themselves, which means that they should not be excluded
from consideration by the early stages of PMF.

6 PERFORMANCE EXAMPLES

No common basis exists in the literature for assessing the
performance of stereo algorithms in terms of either the
images/scenes to beused or measures of performance for them.
This deficiency represents a severe problem in evaluating
different algorithms. Here we report some examples of the
quantitative performance of PMF on a series of artificial
stereograms and we show some qualitative results for a variety
of natural scene stereograms which are not amenable to
quantitative assessment at the present time.

For the artificial images, where the points to be matched can
be specified accurately, we report the percentages of points (i)
matched correctly, (ii) matched incorrectly, and (iii) left



unmatched. We provide these measures for a range of surfaces
chosen to sample the hardest problems typically found in
many natural scenes, such as steep slopes, shears, and
transparencies.

In the case of natural images, there are difficulties in providing
quantitative measures because there is no simple definition of
what constitutes a point to be matched. In most tests of stereo
algorithms on natural scenes the points used are the outputs of
an edge operator of some kind, which poses problems about
whether it is the operator or the stereo algorithm which is
deficient. In common with most other papers in the field,
therefore, we simply present illustrations of P~'s treatment
of natural images without attempting any quantitative
assessment, using for this purpose primitives provided by a
high-spatial-frequencyMarr-Hildreth edge operator.

For the representative cross-section of performance examples
presented in this section (both natural and artificial), P:MFwas
run with the set of parameter values for allowable matching
range, neighbourhood support zone, etc., described earlier.
Alterations in any or all of these produced little appreciable
change in the performance of P11F as long as extremes were
avoided. Furthermore, the performance of P:MF was largely
unaffected by the addition of even quite large quantities of
noise (eg the addition of more than 30% extra unmatched
points to either or both halves of the artificial stereograms).

6 .1 Artificial stereograms
The primitives of the pair of images that formed the artificial
stereograms (figures 4-6) were positioned at the intersections
of a 128 x 128 pixels square grid. Each grid point had the
same probability (0.1) of carrying an image primitive, subject
to the same number of points occurring on each line (n =13).
The ambiguity problem posed by these stereograms (as
measured by the density of possible matches) was generally
greater than that observed in the natural images .(figures 7 and
8). This was partly because the densities of the primitives
themselves were greater, and partly because the primitives were
all identical so that it was not possible to restrict the set of
initial matches by requiring left/right primitives for a match to
be similar in contrast and orientation. For the various
examples of artificial images shown below, each primitive had
on average six possible matches in the other image.

6.1.1 Sloping surfaces As shown in section 2, stereo
images of sloping surfaces will satisfy a disparity gradient
limit of 1.0 provided the slope they depict is not too great (and
assuming camera geometry typical of human stereo vision).
Furthermore, even if the slope in one direction violates the
disparity gradient limit it need not necessarily be violated in all
other directions, and hence it is still possible that P:rv1F may
be successful. This needs to be borne in mind when
considering the fact that PMF often does better than the limit
would seem on the face of it to allow.

The performance of PMF for slopes was examined on surfaces
of the kind shown in figure 4a, which depicts a surface whose
vertical cross-section is a triangular wave. In this case the
stereogram has a peak-to-trough separation of 20 pixels and a
peak-to-trough disparity difference of 10 pixels; hence the
disparity gradient in the vertical direction is approximately 0.5
and in the horizontal direction zero. Measures of the
performance ofPMF for such surfaces were obtained for peak­
to-trough disparities ranging from 4 pixels to 36 pixels with
2-pixel intervals (corresponding to a range in vertical
component of disparity gradient of 0.2 to 1.8). The result of
running Pl\1F on 4a is given in 4b with intensity used to code
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disparity (with crossed-eye viewing darker points are closer).
Over 99% of the disparity values recovered from this
stereogram are correct with the few errors being almost equally
divided between incorrectly matched and unmatched points.
The percentage of points matched correctly is plotted in figure
4c against the size of the vertical component of the disparity
gradient present over the whole range of such images.

As can be seen from the graph, the performance of P:MF is
excellent for disparity gradients up to about 1.0, always being
able to identify an excess of 98% of the true matches. Beyond
this imposed limit, performance tends to fall off with only
about 50% of correct matches being obtained for a disparity
gradient of 1.8. As explained above, the fact that P:MF copes
at all with disparity gradients larger than the limit of 1 is a
result of the fact that the disparity gradients are not as large in
other directions.

6.1.2 Depth discontinuities and lacy surfaces
The depth profile of the stereogram in figure 5a consists of a
vertical square wave. Hence the surface it depicts includes a
number of depth discontinuities. Figures 5b and 5c show that
PMF copes quite well at the corresponding disparity shears,
although it can be seen that it fails to match a small number
of the points correctly. Similar results were also obtained for
vertically oriented square waves, with the exception that some
points close to the disparity shears are obscured in one or other
image and thus remain correctly unmatched.

The good level of performance achieved for depth
discontinuities illustrates the fact that P:MF is able to make
use of the within-disparity..gradient-lirnit structure that lies to
either side of the shear and at the same time ignore the fact that
the limit is exceeded across it. The desirability of this
characteristic is clear-cut (see earlier remarks in section 4
regarding the objective of not penalising perturbations lying
within the range to be expected in the stereo projections of
interest). The underlying reason whyP:M:F'achieves this goal
is that it takes advantage of such within..disparity-gradient­
limit support as exists; it does not impose a cost if
neighbouring primitives fall outside the limit (cf Prazdny
1985).

The same property is apparent in the way in which PMF is
able to deal with the lace surface portrayed in figure 6. Here
the within-limit neighbourhoods that facilitate disambiguation
are actually superimposed on top of each other. Whilst it is
clear that the performance ofp~ is considerably worse for
this lace surface, in that only two thirds of the points in each
depth plane are matched correctly, the results are qualitatively
in keeping with human performance (comfarable quantitative
data not being available for human vision) .

6.2 Natural images
Figures 7 and 8 portray the stages of stereo processing for two
very different natural image pairs, each of which is 128 x 128
pixels square. Zero crossings serving as edge-like primitives
were extracted from each image with the use of a single high­
frequency (w = 4 pixels) Marr-Hildreth operator (Marr and
Hildreth 1980). In the figures the resulting edge primitives are
portrayed with a grey level proportional to their contrast
strengths (darker primitives have a greater absolute contrast
value). The orientation and the contrast polarity associated
with a primitive were used to restrict the initial set of matches.

2 This issue is considered in more detail in Pollard and Frisby
(1990) Transparency and the Uniqueness Constraint in Human and
Computer Stereo Vision. Nature (in press).
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Figure 4 Random-dot stereograms used to test the capacity of PMF to deal with sloping faces . (a) An example of a stereogram
portraying a triangular waveform oriented horizontally, with peak-to-trough disparity amplitude equal to 10 pixels (each stereo half
comprised of 128 x 128 pixels , of which about 10% are shown as black dots) and with maximum disparity gradient, T.max' on each
slopingface equal to 05. (b) The result of applying PMF to (a), 99% of correct matches were found by PMF and these are shown with
their disparities coded by intensity [darker points shown as the closest when (a) is viewed with cross-eye fusion}, (c) The correctly
located matches recovered by PMF for triangular waveforms with varying rm a c- See text for further details.
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Figure 5 Random dot stereogram used to test the capacity of PMF to deal with depth shears. (a) Stereogram portraying a square
wave orientated horizontally and with peak-to-trough amplitude of5 pixels. (b) Over 95% ofpoints are matched correctly , with 4.5
matched incorrectly and afurther 0.5% being left incorrectly unmatched . (c) A reconstruction of the stereogram displayed in (a) after
processing with PMF. Dots matched correctly are shown white (hence the mid-grey back-ground), and the remainder are shown black.
It can be seen that the performance of PMF is in general good with a few incorrect or missing matches confined to some parts of the
borders of the shears. See text for fur ther details .
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Figure 6 Random-dot stereogram used to test the capacity of PMF to deal with superimposed transparent surfaces. (a) Stereogram
portraying two superimposed planar surfaces with a disparity difference of 5 pixels. (b) The correct matches (64%) located by PMF
for this stereogram . Of the remainder. 355% were matched incorrectly and 0.5% were left incorrectly unmatched. (c) A
reconstruction of the stereogram displayed in (a) after processing with PMF . Dots matched correctly are shown white and the
remainder are shown black. See text for further details.
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Figure 7 The performance ofPMF on a stereo pair comprised ofnatural images ofan office scene. (a) Stereo pa ir arranged suitably
for cross-eyed fusion. (b) Edge-like primitives extracte d with the use of a Marr-Hildreth operator. (c) Matches found by PMF, with
intensity used to code relative disparities (dark = near , faint = far). See text f er details.
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Figure 8 A further example of the performance of PMF on natural images, this time a rocky terrain viewed from above. Details asfor figure 7.
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The disparity gradient limit was again used to determine the
allowable differences in orientation: a matched edge segment
was not allowed between left and right zero crossings whose
orientations were so different as to imply that the disparity
gradient existing along a binocular line formed from those
orientations would exceed the disparity gradient limit.

The 'goodness' of each match was given by the contrast
strength of the weakest of its two constituent edges rather than
as a function of the similarity of their orientation and contrast
values. A goodness measure of the latter kind was thought to
be inappropriate, given that changes in orientation and contrast
do occur between the stereo projections with which we are
concerned. Using a simple contrast measure has the advantage
that it gives preference to the more reliable data, given that
strength of an edge (its absolute contrast value) is directly
related to its reliability (whether or not it is likely to be
noise).

The disparity information (approximating for present purposes
to relative depth) recovered from the matches identified as
correct by PMF is displayed in the form of a cyclopean edge
image in which disparity is encoded by edge intensity (darker
points are closer to the imaging device). These points that
remained unmatched by PMF are not displayed in these
images.

Figure 7 is of a simple office scene, the edges recovered from
which are quite sparse in comparison to those encountered in
the artificial stereograms above. Nevertheless, despite the
fairly small neighbourhood window exploited in PMF, it is
able to cope quite easily with this scene. Figure 8 involves a
natural scene that is more like those encountered in the
artificial stereograms as it has a dense distribution of image
primitives. It portrays a rocky terrain viewed from above,
presenting therefore a similar task to that solved by human
operators in the field of photogrammetry from aerial
photographs. For both of these stereograms it can be seen that
for the most part the resulting disparity output is at least
qualitatively correct, the main exception being the horizontal
sections located in the office scene (see remarks in section 5).

The accuracy to which depths can be measured in natural
scenes is directly dependent upon the accuracy to which edges
can be located in their images. In the example above, edges
are only located to the nearest pixel, but it would be easy to
locate the majority of strong edges to a tenth or even a
hundredthof a pixel. The use of more accurately located image
primitives would not interfere with the robustness of PMF.

7 HOW PMF RELATES TO OTHER THEORIES
OF STEREOPSIS

As we have already stated, the theoretical justification for PMF
is the fact that, for the stereo projections for which it is
designed, the majority of disparity gradients that exist between
correct matches will be less than 1. In this section we discuss
how this constraint relates to others that have been considered
in the literature on stereo algorithms. We do not , however,
give a full review of the field as the theoretical aspects of .,
many stereo algorithms have little in common with PMF.

7.1 The constraint of surface continuity
As outlined in the introduction, Marr and Poggio (1976) chose
to base their theory of stereo disambiguation upon the
observation that "matter is cohesive, it is separated into
[reasonably large] objects", from which they derived their
constraint of local surface smoothness. Whatever they might

want to imply in detail by the notion of 'surface smoothness',
it is clear that the way a disparity gradient limit is imposed in
PMF explicitly allows many jagged (ie 'non-smooth') surfaces.
An illustration of the 'degree of jaggedness' allowed by a
disparity gradient limit of 1 is given by the random-dot
stereogram portrayed in figure 9. At no point do any disparity
gradients in this stereogram exceed 1 and yet the perceived
surface is not obviously well described as smooth. This
surface satisfies the Lipschitz condition discussed above and, as
can be seen from the figure, the performance of PMF on it is
extremely good. An example of the performance of PMF on a
stereogram which depicts a surface that does not satisfy the
Lipschitz condition is given in figure 10. The performance for
this stereogram is rather better than may be expected for a
surface that is so far from smooth, providing a further
illustration that the Lipschitz condition is a rather conservative
estimate of the class of surfaces suitable for PMF.

This suggestion that the use of a disparity gradient by PMF is
not usefully characterised as imposing a surface smoothness
constraint is further supported by the observation that there
exist perfectly smooth surfaces that violate the disparity
gradient limit of PMF. Even a planar surface can provide
many violations of this limit if it recedes sufficiently rapidly.
This is therefore another reason for distinguishing between
Marr and Poggio's surface smoothness constraint and that
developed here in terms of surfaces needing (conservatively) to
meet a Lipschitz criterion.

7.2 The ordering constraint
It has been pointed out that stereo projection almost always
preserves the order of primitives extracted from the two images
along matching epipolar lines (Baker 1982; Mayhew 1983).
The underlying reason for this is that it is geometrically
impossible for points arising from the same opaque surface to
be differently ordered in the two images (different orderings can
come about only for scenes comprised of surfaces of small
extent such as isolated small blobs or thin wires). Hence order
has been exploited explicitly to constrain the selection of
matches in a number of stereo algorithms (eg Baker and
Binford 1981; Arnold 1982; Ohta and Kanade 1983).

It has been frequently noted that order reversals correspond to
disparity gradients of magnitude greater than 2 (eg Burt and
Julesz 1980; Mayhew 1983). Hence a limit of 1 will prevent
matches that violate the ordering constraint from mutually
supporting each other and to that extent a limit of 1 can be
said to be a conservative implementation of the ordering
constraint. However, we think there are some difficulties with
that notion, particularly if it is used to justify the design of
PMF.

First, the ordering constraint and its associated disparity
gradient limit of 2 are concerned only with events along
epipolar lines. The disparity gradient limit between epipolars
can be in principle infinite even for opaque surfaces. PMF
uses its limit isotropically , and justification for this cannot
logically be sought just in terms of the physical limits that are
possible along epipolars.

Second, we have found that a limit of 2 is not sufficiently
restrictive for disambiguating purposes. Hence some other
justification for a lower limit is required, even if attention is
directed only to disparity gradients between points on the
epipolars themselves. It may be helpful to point out in this
context that a limit of 1 prevents the separation of a pair of
points along an epipolar line in one image from being greater
than three times the separation of a corresponding pair in the
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Figure 9 Random-dot stereogram used to test the capacity of PMF to deal with jagged surfaces. (a) A stereogram in which the
disparities were randomly selected from a range of 6 pixels except that they everywhere had to satisfy a disparity gradient limit of 1.
(b) Dots matched by PMF are shown on the right-hand side with intensity used to code relative disparity (again, dark = near,faint =
far, for the cross-eyed fusion of the original stereogram). For comparison the correct relative disparities are shown on the left-hand
side with the same intensity code being used. The similarity between these figures brings out the fact that PMF found the vast
majority of correct matches (93%). To help further in this regard, the positions of the dots in these two images have been adjusted
such that when the two are fused as though there were a stereo pair, the correct matches are seen to lie in a plane, with the very few
incorrect matches seen as dots lying outside the plane occupied by the majority. (c) A reconstruction of the stereogram displayed in

.(a) af ter its processing by PMF. Dots matched correctly are shown white and the remainder are shown black. See text for f urther
details.
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Figure 10 A second random-dot stereogram used to test the capacity ofPMF to deal with jagged surfaces. (a) A stereogram made by
selecting disparities at random from a gaussian distribution of zero mean disparity and standard deviation 2 pixels with no limit on
allowable disparity gradients. Hence there are many severe local variations in disparity. Despite this, PMF manages to match
correctly over 79% of dots; (b) and (c) display this competence on using the method offigures 9b and 9c. The text gives further
details.



other; a gradient limit of 2 on the other hand allows the
separation in one image to be infmitely larger than that in the
other.

7.3 The constraint of figural continuity
Our previous stereo algorithm (STEREOEDGE: Mayhew and
Frisby 1980, 1981) was based on taking advantage of the
figural continuity that existed between the two images. Edge­
like primitives were matched on the basis of their continuity
and the similarity of their geometrical structure. That
-algorithm was justified in terms of the surface continuity
constraint, and we continue to believe that that justification
was appropriate for that algorithm. When surfaces do happen
to be locally spatially continuous, then their edges and
extended surface markings must be spatially continuous also:
hence the rationale for the stereo combination rule of
STEREOEDGEof preferring disparity matches which preserve
figural continuity (see also Grimson 1984).

As we have already discussed in section 2, it is clear that a
disparity gradient limit also provides a limit upon the
allowable geometrical deformation that exists locally between
the two images. For instance, if the disparity gradient limit
were in fact zero, then the two images would have to be
locally figurally identical. Imposing a limit of 1 allows some
dissimilarity in the figural structures that constitute the two
images. Hence, PMF can be viewed as effecting a correlation
between stereo halves in which the figural distortions that
characterise the differences between left and right stereo
projections are not allowed to lower the correlation score.
This way of considering PMF shows that it is a natural
development of the STEREOEDGE algorithm. However,
P1v1F has the advantage that its matching primitives are not
restricted to extendededge segments.

8 SUMMARY

We have demonstrated the considerable disambiguating power
that results from imposing a limit on the magnitude of
allowable disparity gradients in order that matches are allowed
to support one another. Imposing such a limit does not
greatly limit the class of allowable surfaces. We have
developed a simple stereo algorithm that utilises disparity
gradients in a cooperative manner (Fender and Julesz 1967;
Julesz 1971) to solve the stereo disambiguation problem and
have illustrated its performance on a variety of natural and
artificial stereograms. The rationale underlying the use of the
disparity gradient limit has been contrasted with other
computational treatments of the stereo correspondence
problem.

Note added in proof Since the submission of this paper
further results have been obtained regard ing the mathematical
details of the imposition of a disparity gradient limit (see Trivedi
and Lloyd 1985; Pollard et alI985).
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