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Abstract

We consider surface reconstruction schemes in which the
discontinuities are included explicitly by means of weak
continuity constraints. It is essential that such a scheme
be viewpoint invariant. We explain how this can be
achieved. Two schemes are described: an invariant mem-
brane and an invariant plate, where the regularising terms
are respectively surface area and surface curvature. Re-
sults are presented of detection of discontinuities in range
data, both simulated and from a laser range finder.

1 Introduction

Much work has been carried out on the problem of
reconstructing surfaces from three dimensional data.
Grimson'! discusses the interpolation of smooth surfaces.
He shows how surface interpolation can be done by min-
imising a suitably defined energy functional. The interpo-
lating surface that results is biharmonic and under most
conditions is defined uniquely. Terzopoulos'? extended
this work by using finite elements and generalising the
interpolating surface to be a mixture of “membrane” and
“thin plate”. The computation involved relaxation which
is widely used for minimisation problems in computer
vision'4, largely because of its inherent parallelism.

However, there are two fundamental problems with these
optimisation approaches. Firstly, the schemes do not la-
bel discontinuities explicitly. They can only be located by
examining the gradient, after the surface has been fitted.
Discontinuities can be included explicitly if the optimi-
sation formulation uses weak continuily constraints. A
weak constraint is one that is usually obeyed but may be
broken on occasion - when there are pressing reasons to
do so. This is discussed more fully in?.

The second problem is that such schemes are not invari-
ant. The reconstructed scheme will “wobble” as the view-
point varies?. This is because instead of using the invari-
ant quantities of surface area and surface curvature!, the
schemes use approximations to these quantities which are
not invariant to change of viewpoint. Consequently the
energy of the minimum energy surface changes with view-

point. The advantage of using approximations is that en-
ergy can be minimised by solving locally coupled linear
equations, and that there is a unique minimum in each
frame.

In this paper we discuss two reconstruction schemes for
surface approximation which incorporate weak continuity
constraints. For a weak constraint a penalty is charged
each time a constraint is broken. The penalty is weighed
against certain “other costs”. If breaking a constraint
leads (somehow) to a total saving in “other costs” that ex-
ceeds the penalty, then breaking that constraint is deemed
worthwhile. The energy of the “other costs” must be in-
variant otherwise the existence and position of disconti-
nuities will depend on viewpoint.

Invariant schemes incorporating weak continuity con-
straints are harder to minimise than the earlier schemes
because

e The cost function is non - convex so that naive de-
scent tends to stick at local minima.

e They do not give rise to linear equations.

The first scheme we consider is an invariant membrane
with weak (C°) continuity constraints. Here the “other
costs” mentioned above consist of a “closeness of fit” term
and a term involving surface area. Minimising the energy
is a trade off between fitting the data closely, reducing
the surface area, and including discontinuities.

In the second scheme the “other costs” are a measure of
closeness of fit and a term involving surface curvature.
There are two types of discontinuity - a discontinuity in
surface depth and a discontinuity in surface orientation.

Apart from reconstructing the surface an important use
of the schemes is in localising discontinuities. Local edge
detection operators (such as the Canny®) can have poor
localisation in noisy data (where a large support must be
used to improve the signal to noise ratio) . The problem
is accentuated if the underlying step in the data is not
symmetrical (for example a step with a finite gradient
on one side). However, the localisation of discontinuities



using weak continuity constraints is very good even under
these circumstances’.

In our numerical implementation we have used the Grad-
uated Non-Convexity (GNC) Algorithm®® as an approx-
imate method for obtaining the global minimum. This
allows the discretised energy to be minimised by local it-
erative methods. The GNC algorithm has been applied
to dense range data obtained from a CSG body modeller
and also from a laser range finder.

2 Invariant Membrane

The non-invariant schemes are

In 1D - a weak string:

E= /{(u AP+ 22u)}dz+P (1)

In 2D - a membrane:

E=/{(u—d)2+)\2(vu)2}d:cdy+P )

In each case there are three terms

1. A measure of faithfulness to data (the spring term).

2. A regularising term which depends on the gradient
of the function.

3. A penalty term. In 1D this adds a penalty of « for
each step discontinuity. In 2D the penalty is o mul-
tiplied by the length of the discontinuity.

The manner in which the parameters A and « influence
the behaviour is found by comparing the minimum energy
solutions both with and without discontinuities for certain
simple data®. The weak membrane will adopt the lowest
energy configuration. The main conclusions are that

e The parameter X is a characteristic length.

e The ratio hg = 1/2a/A is a contrast threshold, de-
termining the minimum contrast for detection of an
isolated step edge.

e The ratio g = ho/2) is a limit on gradient, above
which spurious discontinuities may be marked. If
the gradient exceeds g; one or more discontinuities
may appear in the fitted function.

In the first place we consider the modifications needed
to make the weak string invariant, and describe how this
affects the contrast threshold and gradient limit. This is
then generalised to the (2D) invariant weak membrane.

112

«

’,/u(xy) - dx.y)eoss

dxy)

Figure 1: Invariant distance measurement: under the as-
sumption that the surfaces u,d are roughly parallel, a fair
estimate of perpendicular distance between them at (z,y) is
|u — d|cosa.

2.1 Invariant weak string

The invariant version of (1) is

E=/{(u—d)2cosza+/\2}ds+P (3)

where
ds = \/1+ (v')%2dz = seco dz.

There are two changes from (1)

(4)

1. The spring term is multiplied by cos?c (where
tano = u’).

2. The arc length is used instead of (u')? in the regu-
larising term.

Ideally instead of (u — d), which is tied to a particu-
lar reference frame, the perpendicular distance between
u(z) and d(z) (which is invariant) should be used. The
cos? o ds term in (3) is an imperfect attempt to do this.
(this is illustrated in figure 1). The inclusion of the
cos? o ds term reduces the contribution of the spring term
especially when cos o is small. This occurs when the data
has high gradient. Consequently the reconstructed func-
tion will be further away from the data in high gradient
regions, especially if the data is noisy.

Such a correction is appropriate under the assumption
that “noise” in the system derives from the surface, from
surface texture for example. However this is inappropri-
ate if the noise derives from the sensor itself, because the
noise then “lives” in the viewer (sensor) frame. Instead,
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Figure 2: An isolated step (a) of height h. There are are two possible minima for the invariant weak string - a continuous
function where u(z) is close to d(z) as in (a); or a step discontinuity (b).

the energy in that case is

E:/{@_@%4aﬁ¥@v de+P  (5)

The regularising term in (1) is the most obviously non-
invariant part of the energy since it depends on gradient,
which is clearly viewpoint dependent. The gradient can
be small in one frame and (in theory) unbounded in an-
other (for example at extremal boundaries - see later).
Using the length as a regulariser, as in (3) and (5), en-
tirely removes these problems.

Just as in the non-invariant case, there is a contrast
threshold for the system. Its value is found by compar-
ing the two possible minimum energies for data consisting
of an isolated step of height h (see figure 2). If there is
no discontinuity then to a first approximation (assuming
A & h) the energy is due solely to the length of the data

(6)

where h is the length of the vertical part of the step and
C is the length of the horizontal part. If there is a dis-
continuity at the step then the minimum energy is

E=X%(C +h)

E=)XC+a )
Comparing the energies (6) and (7), the lowest energy
solution will have a discontinuity if h > a/A2.

Note there is some remission of the gradient limit g;. This
is simply because, when the surface gradient g = u’ > 1,
the length integrand above  |g|, rather than g2 as for the
non-invariant string. This is of most benefit near extremal
boundaries where g becomes very large. This can be seen

by considering a cylinder of radius r. From any view-
point there will be an extremal boundary, and the gradi-
ent there will be extremely high (in theory unbounded).
In the non-invariant string the gradient limit will certainly
be exceeded and spurious discontinuities will be marked.
However, in the invariant case the regularising term will
be bounded by A27r and so the problem is avoided. This
point is clearly illustrated in the results of the range data
segmentation (figure 4).

2.2 2D a weak membrane

In 2D the invariant energy is

E:/{(u—-d)zcos2a'+)\2}d5 + P (8)

where

dS =secodzdy =/1+u +uldxdy

and
P = & x (actual length of discontinuities),
Each of the terms has been made invariant
. The spring term has been corrected as in the 1D case.
o is the the surface slant.
. The regularising term depends on the surface area.

. The penalty involves the actual length of the discon-
tinuity - not simply the projected length.



Note that as for the non-invariant membrane the energy
is invariant to rotations in the zy plane’.

Again it is the regularising term which has the most se-
vere effect if it is not invariant. The arguments in 1D
concerning the contrast threshold and remission from the
gradient limit are equally applicable here.

The penalty term could be made invariant by incorporat-
ing slant and tilt dependent compensation as was done by
Brady and Yuille®, for perimeter measurement under back
projection. However in-many circumstances the change
in length of a discontinuity will be small when the view-
point varies (Consider, for example, the projection of a
circle changing to an ellipse under rotation).

3 Invariant plate

In this section the invariant forms of the plate (and, in
1D, the rod) are described. For the rod the non-invariant
energy is given by

(9)

This differs from the energy of a weak elastic string (1)
in including the second derivative of u rather than the
first. The energy FE is “second order”. Furthermore, P
incorporates a penalty § for each crease (discontinuity in
du/dz) and a penalty a for each step (discontinuity in u).

E= [{(w-a?+ s}z + P

The 2D version comes in two varieties!!

Quadratic variation:

E= /{(u —d)? + pt(ul, +2ui, +ul )} dzdy +P
(10)

Square laplacian:

E= / {(u = d)? + 4 (upo + uyy)?} dzdy + P. (11)

In fact any linear combination of these two is a feasible
plate energy.

The invariant version for the rod is

E= /{(u —d)?cos’ o + p*(k)*}ds + P (12)

where & is the curvature

ull

e IO ()

The invariant equivalent of the square laplacian (11) is

E= /{(u —d)?cos® o + pt(k1 + K2)*}dS + P (14)
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where k1, k2 are principal curvatures. The squared sum
of curvatures

(Atge — 2Bugy + Cuyy)?
D3 !

(k1 + K2)? =

(15)
where

A=1+ul B=uyu, C= 1+ 42 and D = sec? o,
from!®. Note that A, B,C,D are all functions of 1st
derivatives of u only. If sum of squared curvatures is to
be used (the invariant form of quadratic variation) then

K,f + K,% = (k1 + n2)2 — 2K1K32,

(16)
where, from!® the gaussian curvature

2
UggUyy — uw

D2

Ki1Kg =

The effect of the D in the denominator is to reduce the
influence of the regularising term. This has most effect
when the surface gradients are large (for example noisy
regions). In such regions the degree of smoothing in the
viewer frame will be considerably reduced.

It can be shown? that, expressing the energy E as
E= /E(uz: Uy, Ugz, Uzy, uyy) dzdy + P

E is a non-convex function of ug, .... So even with a fixed
set of discontinuities, it is not known whether there is an
optimal u to be found*3.

To overcome this problem we suggest the following ap-
proximate method. First, estimates for us(z,y), uy(z,y)
are obtained by fitting an invariant weak membrane (8)
to the rangefinder data. This yields estimates of u,, uy
which can be inserted as constants into E which is then
convex with respect to Ugzz, Uzy, Uyy.

Another possibility is to use gradient information directly
in an invariant scheme for detecting creases. There are
then two passes for detecting both crease and step dis-
continuities. For example in 1D the invariant weak string
with a small A (3) is used to detect steps and provide
some noise rejection. The gradient estimates u'(x) have
been regularised and thus are well behaved (bounded).
These are used for the data in a scheme with energy

E=/{(u'—d’)2coszd+p2 [ ]2} ds +P

(1)
This has the additional benefit numerically that both
schemes are first order (rather than second) so that the
convergence of the iteration schemes is typically improved
by at least an order of magnitudeS.

"

(1 #h (d/)2)3/2
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Figure 3: CSG image of two cylinders - (b) is (a) rotated by 15 degrees.
2) . .
© ﬂ g

Figure 4: Edges detected in the depth data for the CSG cylinders (figure 3) . (a) and (b) are from a non-invariant membrane
the double edges are where the gradient threshold is exceeded at the extremal boundaries. (c) and (d) are the edges detected
using an invariant membrane.
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Figure 5: (a) data from a laser range finder for a hammer; (b) its edges using a non-invariant membrane; (c) its edges using an
invariant membrane.



4 Results :
range data

segmentation of

Figure 3a shows pictures of two cylinders generated by a
body modeller. Depth data, generated for this model,
was segmented using both non-invariant and invariant
membranes (figure 4). In both cases the localisation of
the step discontinuities, both occluding and extremal, is
good (even though the steps are not symmetric). At the
extremal boundaries the non-invariant membrane incor-
rectly marks double edges (because the gradient thresh-
old is exceeded) - but this is cured in the invariant case.
Figure 3b is the model in 3a rotated by 15 degrees.

Finally figure 5 shows the laser range data for a hammer
and its segmentations using the non-invariant and invari-
ant membranes. Again the invariant membrane locates
the extremal boundaries accurately despite the presence
of considerable noise in some regions of the data.

The invariant scheme for the rod (17) has also been im-
plemented. Both steps and creases are located accurately.
Although the creases are very sensitive to noise. The in-
variant plate, using the approximate method described
above, is currently being implemented.
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