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Abstract

Piecewise continuous reconstruction of real-valued data
can be formulated in terms of non-convex optimisation
problems. Both stochastic and deterministic algorithms
have been devised to solve them. The simplest such re-
construction process is the “weak string”. Exact solutions
can be obtained for it, and are used to determine the
success or failure of the algorithms under precisely con-
trolled conditions. It is concluded that the deterministic
algorithm (Graduated Non-Convexity) outstrips stochas-
tic (Simulated Annealing) algorithms both in computa-
tional efficiency and in problem-solving power. Piecewise
continuous reconstruction of real-valued data can be for-
mulated in terms of non-convex optimisation problems.
Both stochastic and deterministic algorithms have been
devised to solve them. The simplest such reconstruction
process is the “weak string”. Exact solutions can be ob-
tained for it, and are used to determine the success or
failure of the algorithms under precisely controlled con-
ditions. It is concluded that the deterministic algorithm
(Graduated Non-Convexity) outstrips stochastic (Simu-
lated Annealing) algorithms both in computational effi-
ciency and in problem-solving power.

1 Introduction

Visual Reconstruction is the reduction of noisy visual
data to stable descriptions. An'early stage in this pro-
cess involves approximating data by continuous or piece-
wise continuous functions. In particular this paper is
concerned with optimisation formulations for such tasks.
Work in this area has included analysis of shading [29,
15, 13, 4], stereo [11, 27] and optic flow [14, 24]. More
recently such methods have been extended to deal with
discontinuities [3, 10, 22, 5, 6, 28, 23, 2, 8, 9, 18].

Both deterministic (relaxation) algorithms and stochas-
tic ones (simulated annealing) have been used for visual
reconstruction with discontinuities. Intuitively it might
seem that stochastic algorithms, using random perturba-
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tions, should be less efficient than deterministic ones. We
will show in carefully controlled comparisons that this is
indeed the case.

The problem chosen for study is the “weak string” which
is a 1D reconstruction process susceptible both to de-
terministic and stochastic algorithms. It is a means of
approximating a noisy function d(z) by a piecewise con-
tinuous function u(z). It admits of an exact solution -
an important property for benchmarking purposes. Note
that u(z) is real-valued, not restricted to a few levels or
colours. This is an important point, as in many visual
applications real-valued quantities are involved and must
be estimated by a reconstruction process. Moreover the
deterministic algorithm to be tested (GNC [3, 8]) does
not lend itself to discrete valued problems.

Evaluation of Simulated Annealing in one particular prob-
lem [12] showed that it succeeds only if the characteristic
“scale” or “smoothing parameter” of reconstruction is not
too great. Another study [16] shows that the determin-
istic GNC algorithm requires about the same computa-
tional effort to solve the real-valued “weak membrane”
problem as does Simulated Annealing to perform a simi-
lar but boolean-valued reconstruction. However the state-
space for a real-valued problem is so much larger (i.e. un-
countable) that it is reasonable to expect that more com-
putational effort might be required than in the boolean
case. This also accords with experience of deterministic
algorithms [27, 8] in which increasing precision of recon-
struction results in increased computational load. Those
studies also reveal other important factors in the compu-
tational load. Computation time is strongly dependent
both on scale of reconstruction and on the noise content
of the data. Both factors will be examined in this paper.

Benchmarks used in the paper are for 1D reconstruction,
using the weak string. Although results are for 1D data,
there is some justification for the conjecture that they will
apply to 2D - for example to the weak membrane whose
computational structure is a direct 2D analogue of the
weak string. Of course there exist phenomena in certain
interaction models (e.g. phase transitions in Ising mod-
els) that occur only in 2D, not in 1D. However, relevant
properties for piecewise continuous reconstruction (scale
and sensitivity properties, resistance to noise, “gradient
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Figure 1: An isolated antisymmetric step (a) in random, un-
correlated gaussian noise of standard deviation 16 units (b)
reconstructed by a weak string at small scale (c) and large
scale (d).

limit”) are common both to 1D and to 2D [8]. More-
over, performance of classical optimisation (i.e. with fixed
rather than variable discontinuities) is known to be quali-
tatively similar in 1D and in 2D. And in the non-classical
case, convergence of the GNC algorithm has been ob-
served to be qualitatively similar both in 1D and in 2D.

The organisation of the paper is as follows. Section 2.
defines the weak string problem and the algorithms to
solve it, both deterministic and stochastic. Section 3. de-
scribes a new, exact dynamic programming solution for
the weak string, to be used as an “assay” for benchmarks.
Section 4. sets out results, using the benchmarks, of mea-
surements of computational effort for deterministic and
stochastic algorithms.

2 The weak string: problem and
algorithms

In this section the weak string reconstruction problem is
briefly described; a more detailed description is given in
[8]. It is also more or less the simplest form of recon-
struction for 1D signals that is capable of detecting and
localising discontinuities. It is sufficiently simple that ex-
act solutions can be computed (see next section) but suffi-
ciently complex to be genuinely representative of a family
of 1D and 2D reconstruction problems. An example of re-
construction by the weak string is given in figure 1.

120

2.1 The weak string

As with continuous reconstruction [11, 27] the weak string
is defined in terms of functions and functionals. Given
data d(z) a reconstruction u(z) is obtained by minimis-
ing an energy E(u,d). This can be converted by means
of “finite elements” [26, 30] to a discrete problem. A re-
construction

u={yi=1,.,N}, 1={l;i=1,.,N -1}

is obtained from data d = {d;, i = 1, .., N} by minimising
the energy E:

miln E, where E=D+ S+ P (1)
Uq,li
and
N
D = Z(u;—d,‘)z,
1
N-1
S = N (wi—win)’1-k),
1
N-1
P = ad i (2)

1

The constant A, the elasticity of the string, controls the
scale of reconstruction. Constant « is a penalty levied
for the inclusion of a breakpoint (discontinuity) and con-
trols resistance to noise. Sensitivity is determined by the
ratio y/a/A. As it stands, the optimisation problem is
“mixed” involving both boolean (I;) and real (u;) vari-
ables. It has been shown [8] that the mixed optimisation
can be reduced to the following problem involving only
real variables:

minF ®
where
N-1
F=D+ Z g(ui — uig1) (4)
1
o N2 it [t < Va/A
_ t* if t| < Va
9(t) = { o otherwise. ()

Optimal values of I; can be obtained explicitly from the
optimal u; as follows:

L ={ 0 if |‘u,'—u.,'+1| <\/E/,\

1 otherwise.
The system can be understood by a mechanical analogy,
in terms of coupled springs as in figure 2. It can also be
understood in probabilistic terms as a “Markov Random
Field” (MRF) whose prior probability density for a given
state is simply exp(—(S+ P)/To), where Tp is a constant.
A sample from the MRF is observed with additive gaus-
sian noise whose probability density is exp(—D/Tp). The
joint posterior probability of a particular set d of observed
data is therefore proportional to

exp(—(S + P)/To) exp(—D/To) = exp(—E/Tp).

(6)

(")
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Figure 2: The weak string is like a system of conventional
vertical springs with “breakable” lateral springs as shown. The
states (a) and (b) are both stable, but the intermediate state
(c) has higher energy than either (a) or (b). Suppose the
lowest state is (b). A myopic fly with vertigo, crawling along
the energy transition diagram (d), thinks state (a) is best. He
has no way of seeing that, over the hump, he could get to a
lower state (b). This is the “non-convexity” problem.
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Minimising the energy FE is therefore equivalent to max-
imising this posterior probability.

The energy E(u,l) is convex with respect to variables u;,
for fixed l;, so that if line-variables l; are fixed, classical
optimisation procedures can be used to determine opti-
mal u; as in [11, 27]. But it is non-convex with respect
to the variables [;, so that when line-variables are treated
as alterable classical optimisation is no longer adequate.
(This is because non-convex functions may have many lo-
cal minima; classical optimisation may lead to any one of
them, which will not necessarily be a global minimimum.)
Similarly, in the alternative form of the problem, F(u) is
non-convex with respect to the u; - classical optimisation
is no use there either. The purpose of this paper is to
quantify the performance of algorithms which are capable
of minimising some non-convex energies, including vari-
ous stochastic algorithms and the deterministic “GNC”
algorithm.

2.2 Stochastic optimisation

Stochastic algorithms for optimising non-convex energies
have been described by various authors [25, 17, 10]. They
use simulated annealing techniques in which the magni-
tude of successively applied random disturbances is con-
trolled by a temperature parameter. Temperature (T')
is lowered gradually according to a fixed “schedule”. At
high temperatures the system is able to jump out of local
minima in the energy function and, as it cools, should
settle into the system’s ground state - its global energy
minimum. The ground state can be achieved, in theory,
[10] if a schedule is followed in which T o 1/log(n) (at
the nth iteration or time-step of the system). Such a
schedule takes an entirely unrealistic length of time. In
practice a truncated logarithmic schedule is usually used
but of course it can no longer be guaranteed that the
ground state will be reached.

In this paper three variants of the simulated annealing
algorithm for mixed variable problems are considered.

e The “Heatbath” (as described by Geman and Geman
[10]) in which the thermal system is maintained in
equilibrium as temperature decreases.

e What we will call the “Metropolis-Heatbath” algo-
rithm in which the u; are updated in the same way
as in the Heatbath but the I; are modified according
to the Metropolis procedure [21].

e “Mixed annealing” [20] in which the u; are updated
according to a deterministic formula, but the I; follow
the Metropolis rule.

The first and last of these are included because they
have been studied by other authors, and the Metropolis-
Heatbath algorithm is interesting because it turns out to



be the most efficient of the three, at least for the weak
string problem. The three algorithms will now be de-
scribed briefly.

Heatbath

Each iteration consists of N visits made to randomly
picked sites i, to update u; and then l;. Successive new
values of u;,l; are generated by a “Gibbs Sampler” [10]
- the values are chosen randomly from their conditional
distibutions. Updating I; is done by setting I; = | where
1 is picked randomly from the distribution

Pyl =

Pli=llu;, j=1,,N; j, i=1,.,N =1, j #4),
for I € {0,1}. For the weak string, this distribution is
easily shown from (1), (2) and (7) to be

P, (1) < exp (_0‘1 +Q1 - 1)(;:' - “i+1)2’\2) . (8)

Similarly u; is updated to a value u chosen randomly from
the distribution

Pu'.(u)z
P(u;=ulu;, j=1,.,N, j#4 l;, j=1,.,N-1).

For the weak string this is

Puw) o oxp (-0 ) 9)
where

i = o (di + A%((1 = Lioa)uior + (1 — k)uigs))  (10)

and
o2 = (2= ko —1)A2+1)7 (11)

These formulae are of course modified for sites near the
ends ¢ = 1, N. Temperature T is lowered according to a
truncated logarithmic schedule

_ - log(2)
T_Tolog(2+n), n> 0. (12)
Metropolis-Heatbath

This algorithm works as the Heatbath except that line-
variables l; are updated according to the Metropolis pro-
cedure as follows. First calculate the energy change

AE = E(uy,.,un; 1, .5lio1, 1=l oy Ived)
= E(U]_,-.,UN; Il)")Il'—lali'all'-}-l;--,IN—l)

which, for the weak string,

= (a— (u;i — u.-+1)2/\2)(1 = 2). (13)

Then do the following:

if AE <0 then ;—1-1I;

butif AE>0 then I —1-1;
with probability
exp(=AE/T) .

That is, if energy would be decreased the change is invari-
ably accepted. Otherwise the decision whether to make
the change is made according to the toss of a (biassed)
coin.

Mixed annealing

Line variables [; are updated as in the Metropolis-
Heatbath, but the wu; are updated deterministically as
follows:

ui — (1 — w)u; +wpi, (14)
where p; is as defined previously. Marroquin [20] uses w =
1 with sequential site visitation. Random site visitation
with “optimal” w (a value dependent on A and in the
interval (1,2) - see below under discussion of the GNC
algorithm) will also be tried.

2.3 The GNC algorithm

The Graduated Non-convexity (GNC) algorithm is a de-
terministic procedure for optimising certain non-convex
energies associated with piecewise continuous reconstruc-
tion problems [3, 5, 8]. It is based on a convex approx-
imation F() to the energy F in (4). A family of func-
tions F(P), p € [0,1] is defined such that F(!) is convex,
FO®) = F, and F®) varies continuously, in a particu-
lar prescribed manner, as p decreases from 1 to 0. For
0 < p < 1the F(® are non-convex - of the whole family,
only F(1) is convex. The F(P) are obtained quite sim-
ply by replacing the local interaction energy terms g(..)
in (4) by new energy terms g()(..) (figure 3). The GNC
algorithm for the weak string is given in table 1. Detailed
explanation of the algorithm will be found in [8], including
such issues as how successive values of p should be chosen
and norms for measurement of convergence. The GNC al-
gorithm is distinguished in that it has been proved, for the
weak string problem, to converge to the global minimum
energy for a significant class of inputs d [8]. The proof
applies more or less for the practical computer implemen-
tation of the algorithm. This is in sharp contradistinction
with stochastic algorithms for which only asymptotic re-
sults have been obtained [19, 10]. The algorithm used in
this paper applies to 1D dense data only. However the
algorithm extends very naturally for 2D data, and also
(but not quite so naturally) for sparse data.

Because the GNC algorithm is deterministic one might
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Choose A, hg (scale and sensitivity).

Set o = hZA/2.

SOR parameter: w = 2/(1+1/X).
Function sequence: p € {1,0.5,0.25,...,1/A}.
Nodes: i € {1,..., N}.

Iteraten = 1,2, ...
Fori=2,..,N —-1:
D =l o (=) 4 (- u22Y)
+9@ (uf” = o)) }/ (24427
where

) 22%¢, if [t|<gq
9P’ (t) = —o(It] —r)sign(t), fg<[t|<r
0, if [t >r

and
o

1
e <4”+'X2'> 4= 37
Initially p = 1. Switch to successive p after convergence at current p.
Appropriate modification is necessary at boundaries:

D = ) o {2 () ) + 6 (u? —f) }/ (24207

and similarly at i = N.

Table 1: The GNC algorithm for the weak string (SOR version).
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Figure 3: The energy of interaction between neighbouring
sites in the weak string computation is governed by the func-
tion shown (2). The central part of the function represents a
Hooke’s law spring, and the outer part a spring pulled past
its breaking point. The GNC algorithm replaces this function
with a sequence of functions (b).

expect that it should be more efficient than algorithms
employing random perturbations. This is precisely what,
by controlled experiment, this paper sets out to demon-
strate. Now in order to demonstrate the success or failure
of an algorithm in reconstruction from a particular set of
data d it is necessary to have some access to the correct
solution u,l. For the weak string problem, the solution
can be obtained from a dynamic programming algorithm
described in the next section.

3 An assay for weak

benchmarks

string

In this section a new dynamic programming algorithm is
presented that delivers an exact solution to the problem of
minimising E(u,1). The time-complexity of the algorithm
is at worst O(N?3) and can be as little as O(N?). This
compares unfavourably however with GNC whose time-
complexity is O(NX) [8]. However, because it is exact
the dynamic programming algorithm can be used as an
“assay” to verify that a particular reconstruction (u, 1) of
data d is indeed optimal (i.e. that it globally minimises
E(u,1)). Readers wishing to take the assay on trust and
look at the results of algorithm evaluation should skip the
remainder of this section.

It has already been pointed out [7] that the problem of
minimising F(u) can be solved by dynamic programming,
provided the real-valued u; are first quantised into M
discrete levels. The time complexity of the resulting al-
gorithm is then O(NM?) so M must not be too large.
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However the effect of coarseness of quantisation on accu-
racy of the solution cannot easily be analysed. Therefore
the method is unusable as an assay. Mumford and Shah
[22] describe an algorithm for the weak string (or at least
for a closely related problem) for which u; are not re-
quired to be quantised. But it relies on an assumption
that breakpoints (values of i for which /; = 1) are spaced
by a distance that is large compared with the character-
istic scale X. Hence it is not usable in general. As neither
of these existing algorithms is suitable for our purpose, a
new one is required.

An exact dynamic programming algorithm will be de-
scribed which requires no quantisation of the u;. In many
cases, moreover, its time-complexity is better than for the
earlier dynamic programmming algorithm. The new al-
gorithm will be described in outline here; some further
details are given in appendix A.

Given data d;, i = 1,.., N and choices of parameters o, A,
our problem is to find a global minimum of E(u,l). The
first step will be to re-express energy E in terms of the
set of breakpoints L = {Lg, k =0, .., K + 1} which take
values (their positions)

Ly €{0,.,N—1}, 1<k <K, withLo=0, Lx4, = N.

The constant K is to be chosen in a manner to be de-
scribed later. Without loss of generality it can be as-
sumed that Ly < Li41. Given breakpoints, line-variables

l; are
l= {

The optimal u; for a given set of break-points could then
be obtained simply by minimising E(u,1) which (remem-
ber earlier) is convex with respect to u. Hence u is ob-
tainable from any classical descent algorithm, or else by
a recurrence relation with time complexity O(N). In fact
we will not be interested in u - only 1 will be required
explicitly.

1 if 3kst.Ly=1
0 otherwise.

Once energy has been obtained in terms of breakpoints
as E(L), it will remain to observe that E(L) is decom-
posable into a sum of functions each involving only two
adjacent breakpoints. Therefore dynamic programming,
can be applied in a standard manner, to find the optimal
breakpoint set L.

3.1 Expressing energy E in terms of
breakpoints

Given a set L of breakpoints, energy F can be expressed
as

K K
E(L) =Y &(Lk, Lisr) + > Z(Lk) (15)
k=0 k=1

where

Z(Lk)z{ a f0<Ly<N

0 otherwise (i.e. when Ly = 0)

(16)
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- the penalty for allowing a discontinuity - and
E(Lg, Li+1) is the energy of the continuous length of re-
constructed string between breakpoints Ly, Lg; which,
from the elastic string model, is:

£(i,5) = (17)
j
- .._d 2
- {ME,.“("M el
j-1
z? Z (um _“m+1)2}
m=i+1
forj>i+2
and
E(i,i) = €(G,i+1)=0. (18)

Note that when Ly = 0, Z(Li) = 0 so that node i = 0
acts as a “garage” for unrequired breakpoint variables
L, where they can rest without incurring any breakpoint
penalty a. By this means the energy F(L) can represent
the energy of any weak string reconstruction with up to
K breakpoints.

It remains actually to construct £(3, j) which is a triangu-
lar array since it is defined only for j > i. It is a function
of d, A, @ and can be constructed by means of recurrence
relations. First the quantity £1(3, j, u;41) is defined:

&1, j,ujp1) = (19)
j+1

min U — A )2

{5 i)

Jj
+A2 Z (um -—um+1)2}

m=i+1
forj>1

and
(20)

Now from this definition it follows that the following re-
cursive property holds, for j > i:

EV(, 4, uig1) = (vigr — diga).

EN(, g, uj41) =
i {€7G,5 = 1,u5) + X2 (uj — ujp1)?
+(uj41 — dj41)?}
It can now be deduced from (21) and (20), by induction

on j, that £(4,4,uj41) is a quadratic expression in uj41.
From (17), (19) and (20) the quadratic expression is:

(21)

EN (i, uj41) = (Y41 —Ti j41) Fipr—i +E(, 5 +1), (22)

where Fy, and %; ; are constant coefficients that must be
computed and, of course, £(, j) is the desired triangular
array whose evaluation is the goal of the entire construc-
tion above. Substitution of (22) into (21) yields mutual
recurrence relations for F,, @; j, £(4,j) (appendix A.)
which enable £(3, j) to be computed.

Having obtained the triangular array £ we are now in a
position to determine K the maximum number of break-
points. The global minimum energy E(L) is clearly less
than the energy in the absence of breakpoints, that is:

E(L) < €(0,N)
but if there are K’ active breakpoints (breakpoints Ly # 0

which incur a penalty «) then

E(L) > f: Z(Li) = K'a.

k=1
Hence 105, 3
K'< £0.0)
a
so it is safe to choose
K= li@a_N_).J (23)

where |..| denotes the integer part of a real-valued quan-
tity.

3.2 Dynamic programming

Now that energy E(L) is in the form of a sum of local
functions (15), dynamic programming [1] can be applied.
Partial energy functions ¢ and policy functions py are
defined:

¢0(L1) = 8(0’ Ll)) (24)
&k(Lk41) = min  @x_1(Le) + E(Lk, Lry1), 1<k< K
Lx<Lk4r

(25)
and pg(Lg+1) is the value of Ly that minimises (25) above.
Construction of all these policy functions (as a set of K
N-element tables) has time-complexity O(KN?). Then
the solution for the optimal breakpoints is given by

Lxky1 =N and Ly = pp(Lg41) for 1<k < K. (26)

4 Measurements of performance

The previous section described an exact algorithm usable
as an assay for weak string benchmarks. In this paper,
the bench used for most performance measurements will
be an antisymmetric step with N = 128 data points:

-

of height h = 64. Varying amounts of uncorrelated, gaus-
sian noise are added as in figure 1. The added noise has
standard deviation ¢ and a relative measure of noise s
will frequently be used

32 for1<i<64

96 for 65 < i < 128 ()

®
Il

Sl

(26)



It can be shown that, in theory [8], as s falls below 1/1/2,
there is a very low probability of “spurious” breakpoints
(i.e. other than the “real” one at i = 64) occurring in the
weak string reconstruction. Moreover, if

1
Zh2x
a < 3

the real breakpoint does appear in the reconstruction
(with high probability). Provided ¢ < 2h, it is also lo-
cated precisely correctly (i.e. at i = 64). These theo-
retical predictions have been corroborated by the assay
for the data above with added noise of relative amplitude
5 =0.1,0.2,0.4, with o = 1600 and a variety of trial val-
ues of A € [2,16]. Numerical details are given in appendix
B. Moreover, when s = 0.8, the exact, weak string recon-
struction contains many spurious breakpoints, also in line
with theoretical expectations.

4.1 Measuring rates of convergence

The GNC algorithm, being deterministic, presents lit-
tle difficulty in measurement of convergence rate. It is
simply a matter of running the algorithm repeatedly at
gradually increasing precision’ (and consequently requir-
ing more and more iterations) until breakpoints in the
output agree with those in the true reconstruction. Note
that only breakpoints, as represented by line-variables 1,
are required to agree - u is not tested. This policy is
justified by the following observations.

e Determination of breakpoints is the difficult part of
the reconstruction problem. Once correct break-
points are obtained, u can be calculated by classi-
cal relaxation procedures. This is true both of dense
data as considered here, and of sparse data [27].

e The u; are real-valued so they could never be ex-
actly correct, only correct to within some tolerance.
Choice of tolerance would be unsatisfactorily arbi-
trary.

The measure of computation time for the GNC algorithm
is then the minimum number of iterations required for a
correct output.

Comparisons between algorithms will be in terms of num-
bers of iterations, ignoring differences in the amount of
computation involved in a single iteration which, in any
case, are not appreciable.

In the case of stochastic algorithms, convergence rate is
much harder to measure because of the random nature of
the process. Convergence profiles vary randomly between
successive runs of an algorithm. For a given run, a pro-
file is obtained by checking, after each iteration, to see

!Precision is measured in terms of “absolute norm” [8] which is,
in turn, computed from “dynamic norm” - a measure of the change
in U in successive iterations.
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whether 1 is in the correct state. Error rate - the propor-
tion of time for which 1 is in a state other than the correct
one (computed using a time window of 100 iterations) - is
plotted as a function of iteration number. Typical exam-
ples are shown in figure 4a,b. They are noisy but show
a clear trend towards the correct state as the algorithm
progresses. The profile in figure 4b was generated from
data with 4 times as much noise as in figure 4a. Increased
noise in the data has clearly led to a noisier convergence
profile. In some cases the profile has been observed even-
tually to decay to zero error rate, although this is not the
case in figure 4a,b.

An error rate threshold of 50% is a natural choice for the
following reason. If it is known that the vector 1) (the
line process at the nth iteration) is in the correct state for
more than half of the iterations n € {ny,..,n2} then it is
sufficient to estimate 1 to be:

o= { 1 T

0 otherwise
where n3 is defined by

>ng (29)

ny =ny +2ng — 1.

In other words the estimated I; is simply the value
adopted by Ig") in the majority of iterations. (This is
similar to the ‘majority vote” criterion used in defining
the class “BPP” of stochastic algorithms.) Convergence
could be defined to occur at the largest n for which error
rate (measured in a suitable time-window) exceeds 50%.
We will adopt a practical lower bound ny, on this value by
recording the smallest n for which the error rate falls be-
low 50%. In this respect estimates of convergence rate for
stochastic algorithms will be optimistic?. In the examples
of figure 4a,b lower bound np, is smaller than convergence
time as defined above by a factor of 3 or so.

To allow for randomness an average rate 7, will be esti-
mated by running the algorithm under test 10 times and
computing the average of ny, for those cases in which the
algorithm succeeds. (Stochastic algorithms can and do
fail by locking out of the correct state - this shows up as
a persistent 100% error rate.)

Cooling schedule

An analysis of optimal cooling schedules is outside the
scope of this paper, but it is worth noting that a lin-
ear schedule is in some ways preferable. Logarithmic and
linear schedules for the same data are compared in fig-
ure 4b,c. Convergence in the linear case occurs later but

2Lundy and Mees [19] suggest recording the first iteration at
which the correct state is hit. This is a still more optimistic measure.
But in the first place this is not really applicable to problems like
ours that involve real variables. In the second place, even treating
1 as the state vector (i.e. ignoring u) so that their measure can be
applied, results turn out to be qualitatively similar to those obtained
by our proposed measure.
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Figure 4: Convergence profiles for individual runs of the
Metropolis-Heatbath algorithm. (a) Logarithmic schedule -
low noise. (b) Logarithmic schedule - higher noise. (c) Linear
schedule - higher noise. Error percentages are averages over
100 successive iterations.
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approximately at the same temperature, roughly 10% of
the starting temperature. In the logarithmic case, final
temperature is strongly determined by initial tempera-
ture. Even after 108 iterations the final temperature is
still about 5% of the initial temperature - see equation
(12). In the linear case the final temperature is zero,
regardless of starting temperature. Hence performance
should be less critically dependent on starting tempera-
ture and the following table of results bears this out.

Percentage of successful runs

Starting temp. || Linear | Logarithmic
To = 2 [[ 60% 0%
To=a [[ 90% 100%
To = 0.5a [ 90% 20%
(Metropolis-Heatbath with A = 4, s = 0.4, out of 10
runs)

Note also that, in the logarithmic case, it appears that
the starting temperature must not be much less than o if
the algorithm is to succeed.

In this study a logarithmic schedule with starting tem-
perature Tp = o will be used throughout.

4.2 Relative performance of stochastic
algorithms

A measurement procedure for determination of success
and convergence rate of stochastic algorithms has been
set up. This makes it possible, first of all, to compare
performance of the three stochastic algorithms described
in section 2.

Performance is somewhat dependent on the relative noise
level s of the data. At low noise (figure 5a) all three algo-
rithms are successful at scales up to A = 8. For A > 8 the
mixed annealing algorithm fails. At a higher noise level
(fig 5b) the mixed annealing algorithm fails at all scales.
(This continues to be true even when site visitation is
random and when the optimal relaxation parameter w is
used.) Mixed annealing therefore appears to be much less
powerful than the other two. Of those two, Heatbath and
Metropolis-Heatbath, it seems from figure 5 that each is
of similar power in that they fail (figure 5b) at the same
value of A. But Metropolis-Heatbath is a little more ef-
ficient. Therefore Metropolis-Heatbath will be used in
comparisons with the GNC algorithm.

4.3 Relative performance of determinis-
tic and stochastic algorithms

At last the main purpose of the paper can be accom-
plished - comparison of the power of-the GNC algorithm
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Figure 6: Comparison of stochastic and deterministic algo-
rithms, as a function of varying scale. Dotted lines as figure
5.
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Figure 7: Comparison of stochastic and deterministic algo-
rithms, as a function of varying scale. Dotted lines as figure
5.

with that of the chosen stochastic algorithm. Compar-
ative results are obtained as a function both of scale A
and noise level s. Variation with scale, at moderately
high noise level, shows that up to a certain critical scale
Metropolis-Heatbath requires between 10 and 20 times
more iterations than GNC does (figure 6). Increasing lev-
els of noise (figure 7) and increasing scale (figure 6) cause
both algorithms to do more work, though GNC remains
comparatively much more efficient. Beyond the critical
scale Metropolis-Heatbath fails altogether to find a so-
lution (within 8000 iterations). This justifies the claim,
made at the beginning of the paper, that GNC is both
more powerful and more efficient. Figure 8 shows that
these conclusions hold also for parallel (chequerboard) im-
plementations of the algorithms.

Finally a more complex signal is shown in figure 9.
Uncorrelated gaussian noise is added to give a signal-to-
noise ratio of about 1:2. The result of the GNC algorithm
is shown in figure 9c. Not only is the signal retrieved from
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Figure 9: A more complex signal (a) with added noise (b)
- signal-to-noise is roughly 1:2. Deterministic GNC algo-

rithm produces a correct reconstruction (c) with parameters
A = 16, = 5000. Stochastic algorithm fails (d).

the noise, but the reconstruction is verified by the assay.
A reasonably large scale A must be used to retrieve the
signal because of the high noise level (s=0.23). (This is
because high resistance to noise (large o), with reason-
able sensitivity (small \/a/}), demands large scale \.)
The stochastic algorithm can be expected to fail. This is
just what it does in 100% of 10 runs. In a typical run
it never visits the correct state3. An example state (af-
ter 8000 iterations) contains extra, spurious breakpoints
(figure 9d) in addition to some correct ones.

5 Conclusions

First of all, a “test-bed” for a piecewise continuous recon-
struction problem has been established, by means of the
assay described in section 3. The dynamic programming
algorithm is relatively straightforward to implement?.
Reconstructions for data used in this paper have been ver-
ified by the assay for certain values of «, A, s (appendix
B.).

Comparison of the deterministic GNC algorithm with
three stochastic algorithms has shown the latter to be
considerably less efficient. Furthermore they are less pow-
erful in that they cannot practically deliver correct so-
lutions for problems involving moderately high levels of
noise (and which therefore demand large scale in recon-

31t therefore fails even under the Lundy and Mees [19] criterion
4Code in POP11 is available from the author on request.



struction). This is true both of serial and parallel imple-
mentations of the algorithms.

Finally the theoretical power of simulated annealing, at
least for the practical annealing schedules used, is not re-
alised in practice. This is consistent with experimental
results from another study [12]. This suggests that the
apparent freedom to “design” MRFs to represent prior
knowledge is severely curtailed in practice, since it is un-
known whether available estimation techniques will be
powerful enough to apply that knowledge. Hence this pa-
per reinforces earlier arguments [8] that the potential of
MRFs as a general vehicle for specifying and integrating
visual tasks must be regarded as highly questionable.
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