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Abstract

Scale-space filtering (Witkin 83) is a recently developed
technique, both powerful and general, for segmentation
and analysis of signals. Asada and Brady (84) have amply
demonstrated the value of scale-space for description of
curved contours from digitised images . Weak continuity
constraints (Blake 83a,b, Blake and Zisserman 85,87) fur
nish novel, powerful, non-linear filters , to use in place of
gaussians, for scale-space filtering. This has some strik
ing advantages (fig 1). First, scale-space is uniform, so
that tracking across scale is a trivial task. Structure need
not be preserved to indefinitely fine scale; this leads to an
enrichment of the concept of scale - a rounded corner, for
example, can be represented as a discontinuity at coarse
scale but smooth at fine scale. And finally boundary con
ditions at ends of curves are handled satisfactorily - it is
as easy to analyse open curves as closed ones.

1 Weak continuity constraints

Weak continuity constraints are a principled and effec
tive treatment of the localisation of discontinuities in dis
crete data. Detailed discussions are given in (Blake 83a,
Blake 83b, Blake and Zisserman 85, Blake and Zisserman
87). Applications in computer vision include curve de
scription, edge detection, reconstruction of 2~D surfaces
from stereo or laser-rangefinder data, and others. This
paper deals with the application of weak continuity con
straints to description of plane curves. First a brief sum
mary of weak continuity constraints is given for problems
like curve description, in which the data is a 1D array.
Data may be obtained from a plane curve as an array (Ji

of tangent angle values at equal spacings in arc-length s .

The problem is to localise discontinuities in noisy, discrete
data. The notion of a discontinuity applies to functions,
not to discrete arrays so the problem is ill-posed, and this
is exacerbated by the presence of noise. One solution is
to interpolate the data by a smooth function such as a
gaussian, whose 1st derivative can then be examined. Of
course this is common practice in edge detection and in
spline interpolation (e.g. de Boor 78) . Such smoothing

can be regarded as fitting a function u(s) which tends to
seek a minimum of some elastic energy P. Energy P is
traded off against a sum of squares error measure D , de
fined as :

D = ~i(U(Si) - (Ji)2

by minimising variationally the total energy (or cost) P+
D. The result is a function u(s) that is both fairly smooth
and is a fair approximation to the data (}i. The simplest
form of the energy P is that of a horizontal stretched
string (approximately) :

where the parameter A governs the stiffness of the string.
If.>. is large then the tendency to smoothness overwhelms
the tendency (from D) to approximate the data well. In
the extremes, if'>' is very large, the fitted function is sim
ply u = canst , the least squares regression of a constant
function to the data (Ji; but if .>. ~ 0 then u interpolates
the data, linking the (Ji by straight lines.

Weak continuity constraints can be applied to a scheme
like the one above, to incorporate discontinuities explicitly
into the fitting of u above. Rather than fitting a u that
is smooth everywhere and then examining the gradient
u' , the function u is allowed to break (at knots, in spline
jargon) - it is piecewise continuous. The number and po
sition of the discontinuities is chosen optimally, by using
an augmented form of cost function E = D + P + S,
where the additional term S embodies weak continuity
constraints:

s = n' X (number of discontinuities)

- a fixed penalty a is paid for each discontinuity allowed.
This has the effect of discouraging discontinuities; u is
continuous "almost everywhere". But an occasional dis
continuity may be allowed if there is sufficient benefit in
terms of smoothness (P) and faithfulness to data (D) in
so doing . Clearly a is some kind of measure of reluctance
to allow a discontinuity.

In fact the two parameters a,'>' interact in a rather inter
esting way. Far from being "fudge factors" that must be
empirically set, they have clear interpretations in terms of
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Fig 1 Curve segmentation by weak continuity constraints. From left to right : a hand drawn curve; angle/arc-length
data (note quantisation noise); scale-space , at angle sensitivity of 450

- note: 1. vertical lines (uniformity) 2. the
rounded corner disappears from scale-space at fine scale (non-preservation of structure) and 3. structure near curve
ends causes no problems for segmentation (there are no spurious discontinuities near the ends).

scale and sensitivity (Blake and Zisserman 85,87). Here is
what they signify, in the context of plane-curve segmen
tation:

2 Algorithms: graduated non
convexity (GNC) and dynamic.programming

~o = ";(20:/>.) is a measure of angular sensitivity. If
plane curve data e, contains an isolated discontinuity
of magnitude ~ (e.g. two long straight line segments,
joined at a vertex making an exterior angle ~) then
the fitted function u(s) will have a discontinuity there
if and only if <1> > <1>0

>. is a characteristic scale. "Events" (e.g. steps) in the
data that are separated by more than>' are treated
as effectively independent by the fitting process. But
events spaced less that >. apart may interact and
small "glitches" in the data whose total extent is
much less than>' may well be ignored - filtered out.
This mechanism removes both noise and small-scale
structure.

/Co = <1>0/2>' is a curvature limit . If an extended arc
in the data has curvature k > ko then there will be
a discontinuity in the fitted function u somewhere
on that arc . This can be regarded as a limitation
on performance - the inability to discriminate be
tween high curvature arcs and angular discontinuities
- to be traded off against the previous 2 performance
measures <1>0, x

0: itself is a measure of resistance to noise. If 0: is large
compared with the variance (T2 of noise in the angle
data, then there will be no spurious discontinuities
due to noise.

Given a curve as a stream of coordinates (Xi ,Yi), the first
step is to convert it to ei(S) form. This is best done by
dividing the stream of (Xi, y,) into a sequence of strokes
(Perkins 78) of equal lengths ti.s . A stroke is formed by
least squares fitting a straight line segment to the (Xi, Yi)
that fall within the particular stroke. Length ti.s should
be chosen as short as possible to avoid blurring, but just
long enough to avoid undue quantisation error. In prac
tice, quantisation errors around ±100 may be acceptable.
The ei are not restricted to the range [00,3600

] but in
elude a "winding number" , so that curves with loops can
be correctly represented (fig 2). Of course, it is not quite
possible in practice to fit a function u(s) to the data, but
only a discrete representation of u(s). So u(s) is approx
imated, in accordance with the usual practice of finite
elements (see Terzopoulos (83) for applications of finite
elements to computer vision). For the simple stretched
string energy P above, linear elements are sufficient. The
function u(s) is represented by a sequence of points Ui
(at positions along the curve corresponding to the ei)'
interpolated linearly. The variational problem of the pre
vious section becomes a discrete optimisation problem, to
minimise:

F =Ei(Ui - eil + E,g(u, - ui-d
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Fig 2. The () - s representation of a curve includes winding number, so that even spirals can happily be segmented.

where the function

get) = ,\2t2 if ItI< va/'\, a otherwise

is an interaction function between neighbouring Ui (see
fig 3a) that incorporates both the membrane energy and
weak continuity constraint penalties. The term Esg( ...)
above is the discrete representation of the functional S+P
above. Details of the discretisation, and derivation of 9
are given in (Blake and Zisserman 85,87).

Nowa fundamental property of F is that it is non-convex,
and so may have many local minima. Its global minimum
cannot generally be found by naive downhill search over
the 'Ui. A rather general way of dealing with such non
convexity is to use "simulated annealing" (Metropolis et
aI53), a stochastic method, which works for cost functions
like F above (Geman and Geman 84) but is rather expen
sive computationally (Marroquin 84). Here two efficient
algorithms are described; both have been implemented
successfully on modest serial machines.

Graduated non-convexity

"Graduated non-convexity" (GNC) is fully described in
(Blake 83a,83b, Blake and Zisserman 85,87). Whereas
simulated annealing uses random processes to jump out
of local minima, GNC constructs a function F* which
is convex (and hence is free of spurious local minima)
and approximates F well. Then a family of functions
pep) p e [0, 1] is constructed with F(l) = F* and F(D) = F,
and F(p) varying gradually between the two as p varies
from 1 to o. The function F(p) is defined as F above, but
with g(p) in place of g, where

gP(t) =a - c(ltl- r)2 if q < ItI< r, get) otherwise,

where c = 1/2p, r = ..jaJ2/c + 1/'A2 , and q = aj('A2,'I )

- see fig 3b. The algorithm is to minimise a sequence of
r», by direct descent on each one, starting with F(l) and
ending with F(O). A sequence of 11 values of p 1.0,0.9,..0
proves to be more than adequate in practice. In fact, less
work is needed for small ,\ (e.g. ,\ :::; 4, where the fi
nite element between Ui, Ui+l has unit length) and it may
be sufficient to use the convex approximation F+ = F(l)

without bothering to descend on the remaining 10 F(p).

But for large ,\ (e.g. ,\=20) the whole sequence is needed.
GNC is an approximate method - it finds Ui close to the
optimum of F. It has been shown, however, to be exact
under certain conditions (Blake 83b, Blake and Zisser
man 87). Although execution times are relatively long
for large A, multigrid methods (Terzopoulos 83) might
effect a considerable improvement.

Dyriamic programrning

An alternative to GNC is to treat the minimisation of F
as an integer programming problem, by quantising angle
measures as a range of M values Ui (say to 10 or 20 accu
racy), and applying dynamic programming (Bellman and
Dreyfus 62). Details of this method are given in Papou
lias (85). It is applicable because the ID vector u; can
be expressed, for all i, as a union of two sets {UO, ..Ui}

and {Ui, .. UN} which have precisely one element Ui in
common. Note that no equivalent family of simple de
compositions exists for 2D arrays Usj and hence dynamic
programming is not usable for applying weak continuity
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Fig 3. Neighbourhood interaction functions: (a) g for th e cost function F ; (b) g(p ) for the sequence of funct ions r»
that approximat e F .

constraints to 2D data, as in edge detection or surface
reconstruction . Although a dynamic programming algo
rithm for the 2D problem could be defined, in theory, it
would involve th e use of tables with up to M N entries!
For similar reasons, it is not practicable to use dynamic
programming for higher order energies P , involving 2nd
or higher derivatives of 'U. Tables of size O(M2 ) would
be required (for P involving 'U") . GNC is quite usable ,
however, both for 2D data and for 2nd order P .

Following normal dynamic programming practice , the al
gorithm consists largely of constructing a pair of tables
(the return function fi and the policy function Pi) for each
i , each of length M. Total storage required is therefore
O(N M ) units . The value of f ie'Ui+l) is the minimal par
tial cost for 'UO ..'Ui for a given value of 'Ui+l , and Pie'Ui+l)
is the value of 'Ui at that minimum. Having constructed
the tables , there remains the task (requiring relatively
insignificant computation time) of tracing back through
the tables , from fN down to fo, to recover the optimal
'Ui. The complexity of the algorithm is O( N M 2) - so ex
tra precision in angle quantisation (large M) is expensive.
The expense can be mitigated to some degree by "table
reduction" (Papoulias 85), which works as follows. For
the cost function F for the weak elastic string, it tran
spires that each table Ii contains a non-constant interval
flanked by entries all of the same constant value. Those
constant entries can be treated for computational pur
poses as one entry. This effectively reduces the value of M.
The effective M appears, in practice, to be proportional to
va (independent of >.) ; so the reduction may be effective
even at large>. when GNC is least efficient. In practice,
reduction by a factor of up to 4 was obtained, reducing
execution time by a factor of up to 16. More recently,
an exact dynamic programming algorithm has been con
structed, that requires no quantisation at all (Blake 89).

Comparison of GNC and dynamic
programrmng

It has been mentioned that GNC is an approximate
method, whereas dynamic programming is exact. In prac
tice , no qualitative difference between solutions obtained
from the two methods is observed (see also Blake 89); this
is, in itself, a confirmation that soluti ons from GNC are
good approximations. As for efficiency, each method has
its advantages. For large values of >. GNC is slow, but
(for a given a) dynamic programming continues to work
well. Finally, GNC requires high precision arithmetic ,
unlike quantised dynamic programming. In practice (for
modest values of >.) it seems that GNC is faster on a
Motorola 68000, for example , if it has adequate hardware
floating-point support. For smaller values of >. , GNC runs
in about 1 second (SUN 2, SKY floating point , vector
length N=50, >'=2). This could be expected to improve
by an order of magnitude with the new 68000 floating
point co-processor.

3 Scale-space properties

This section discusses the properties of scale-space de
scriptions of curves, under weak continuity constraints .
An example was displayed in fig 1. Several notable prop
erties are illustrated: the most striking is the uniformity
of the scale-space - the locus of each discontinuity in scale
space is plumb vertical. Moreover, in this scale-space,
unlike gaussian scale space (Witkin, 83) in which the fin
gerprint theorem holds (Yuille and Poggio 84), structure
is not preserved - discontinuities may be created as scale
increases. We argue here that this lack of structure preser-
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vation is a desirable property. Four other issues are con
sidered: how to achieve an invariant parametrisation of
the curve, detection of curvature discontinuities and how
to treat the "curvature limit" described in section 1, and
boundary conditions for open-ended curves. Finally it is
worth noting that the new scale-space has an extra pa
rameter in addition to scale , namely angular sensitivity
(~o in section 1). Plots of scale-space shown here are at
fixed values of ~o(e.g. 45° in fig 1.).

Unifornlity

It is apparent in fig 1 that the locus in scale-space of
an individual feature (corner) is uniformly vertical, un
like gaussian scale spaces. This is a consequence of the
theoretically predicted, spatial stability with respect to
scale, that is inherent in optimal function fitting under
weak continuity constraints (Blake and Zisserman 87) .
It arises because the extra cost in F, if a corner were
slightly misplaced, is very large - far greater than the
relatively modest extra costs introduced by spatially in
coherent noise, or by extended but gentle curves (figure
4). Hence corners do not get misplaced.

F

cusp

o

Fig.4 The uniformity property is a consequence of the
sharp , cusp-like minimum in the energy F, plotted as a
function of edge position. For a displacement e in edge
position it can be shown (Blake and Zisserman, 87) that
the corresponding F is as plotted above . Hence there is
a strong attraction towards e = 0, the true edge position.

Alternatively, in the terms of Canny's (83) performance
measurers, the localisation is very good - as good , in fact ,
as a difference of boxes operator. (But it doesn 't have that
operator's multiple response problem!) A consequence of
uniformity is that anyone connected contour in scale
space must belong to only one physical feature on the
curve. This is untrue of gaussian scale-space , as fig 5.
shows.

Preservation of structure

Under weak continuity constraints, structure is not pre
served as scale increases. There is an example of this
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in figure 1, in which a rounded corner is represented in
scale space by a line that is present at large scale, but
absent at small scale (Ae:[0 ,5]). This is absolutely as it
should be. The rounded corner appears smooth at small
scale. It seems that the ability to represent this fact is im
portant. Whereas structure preservation is a must with
gaussian filters because it guarantees a successful track
ing algorithm - tracking from fine to coarse scale picks up
all zero-crossings - it is redundant under weak continuity
constraints. Tracking is trivial, due to uniformity.

Invariant paraIIletrisation

A problem with any scheme that uses arclength s to
parametrise curves is that the parametrisation is defined
with respect to the data rather than the interpreted curve
u(s). At small scale, this could mean extreme sensitiv
ity to sensor and quantisation noise ; in a practical vision
system, this would result in curve descriptions that were
unstable over time. A simple solution to this is adopted
by Asada and Brady (84) : they obtain their data from
images , by means of an edge detector that inherently su
presses noise. However there remains the lesser problem,
that intermediate structure could generate distortions of
scale (fig 6). An elegant solution to this problem, in
the context of gaussian scale space filtering, proposed by
Porril (85) , subjects the curve to a simulated diffusion
process. Under weak continuity constraints, an invariant
scheme could conceivably be attainable by fitting a curve
to data supplied as a sequence of coordinate vectors Xi ,
minimising curvature. Further work may be needed here.

Curvature limit and detection of discontinuities

It was explained in section 1 that /Co = i'f!0/2A is a cur
vature limit, such that curves of curvature /C > /Co are
segmented, even if there is no curvature maximum (fig
7).

Moreover the actual point of segmentation need not be
particularly spatially stable. This seems to be a limita
tion of the scheme, for which two partial remedies are pro
posed . One is to note that such segmentation points exist
only at large scale - but of course there may be "genuine"
structure too that exists only at large scale . A better rem
edy is to use a higher order scheme, in which P =Ju1/2•

This allows both tangent and curvature discontinuities to
be detected, rather than tangent only. It also pushes
the "spurious" segmentation problem to higher order (i.e.
spurious curvature discontinuities) - but at some extra
computational expense.

Boundary conditions

A very attractive property of the proposed scheme is that
boundary conditions on open-ended contours are dealt
with naturally. Naive gaussian filtering generates spuri
ous discontinuities near ends of contours, which may mask
genuine features near ends. Cures are of course possible,
such as using modified convolution masks near ends (thus
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Fig 5. The gaussian scale-space generated by a polygonal contour (a) , contains a bifurcation (b) which is unstable
(non-t ransverse). It is therefore uncertain to which fine scale zero-crossing the single coarse scale zero-crossing belongs.

losing the gaussian's t ime-saving factorisability) or a dif
fusion process as above. Fig 1 illustrates the correct han
dling of boundary conditions: the small feature near the
end is t reated much like the one in the middle.
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a) b)

Fig 6 Non-invariance in s-parametrisation of curves. Curve (a) has t wo corners . Curve (b) very similar "at large scale" l

but has some detail between the two corners . As a result it acquires a great deal of extra arc-length between those
corners, which distorts its scale-space diagram.

Fig 7 T he gradient limit: arcs above a certain threshold curvature lCo =~o/2>' may be segmented spuriously at larger
scales.


