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Abstract
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Figure 1: Specular stereo - the basic principle: specularities
appear behind a convex mirror but in front of a. conca.ve one.

addresses problems of geometric inference rather than of
specularity detection but for the purposes of demonstrat­
ing a working system an achromatic specularity detec­
tor has been used. It builds on the ideas of Ullman's
S-operator [25] and on the retinex process of Land and
others [16,13,3], and will be the subject ofa future paper.

(B)

These ideas have been incorporated into an existing stereo
vision system, and shown to work well with real and sim­
ulated images.

A new algorithm is described for accurate computation of
horizontal and vertical stereoscopic disparities of specu­
lar points, relative to nearby surface points. Knowledge of
such disparities is shown to restrict principal curvatures
(with known light-source position) to lie on a hyperbolic
constraint-curve. Monocular appearance of specularities
is known also to constrain surface shape. We show that,
at best, there remains a fourfold ambiguity of local sur­
face curvature. In the case of a light source that is of
unknown shape but known to be compact (in a precise
sense), elongated specularities have geometrical signifi­
cance. The "axis" of such a specularity, back-projected
onto the surface tangent plane, approximates to a line of
curvature. The approximation improves as the specular­
ity becomes more elongated and the source more compact.

Relatively recently the problems for VISIon presented
by specular reflections have begun to receive attention.
In particular it has been noted that the monocular
and stereoscopic appearance of specular reflections, and
their dynamic behaviour, contain local shape information.
Work reported here contributes to the understanding of
specularity in several ways.

1 Introduction

Specular reflection represents both a problem and an op­
portunity in vision.' It is a problem in that it disrupts
processes such as edge-detection and stereoscopic match­
ing, but an opportunity in that highlights or specularities
are cues for surface geometry.

Clearly, to make any progress, it must be possible to de­
tect specularities. Various processes have been proposed
and tested. Some involve chromatic analysis [9,17] oth­
ers achromatic analysis of intensity [25,8]. This paper
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A discussion of the inference of shape from specularity is
given by Koenderinck and van Doorn [15]. They elegantly
expound the qualitative behaviour of specularities under
viewer motion. Specularities travel freely in elliptic or
hyperbolic regions, speeding up near parabolic lines, an­
nihilating and being created, in pairs, on the parabolic
lines. They travel most slowly in regions of high curva­
ture and hence, for a given static viewer position, spec­
ularities are most likely to be found where curvature is
high. More recently a number of quantitative analyses
of specularity have emerged. Several involve active vi­
sion systems extending photometric stereo [26] to deal
with and profit from specular reflection [7,14,20]. Other
approaches are based on mathematical models of specu­
lar reflection, including specification of reflectance map,
fixing various free parameters of the model by measure-
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Figure 2: An example of a specularity whose "motion" relative to surface features is oblique - vertical relative disparity is not
zero.

ments from individual specularities [1, 11,12]. In view of
the difficulty of achieving adequate photometric models
for specularity and of fixing their parameters from image
data [11] it seems reasonable to try to restrict modelling
to simple ray optics and the law of reflection. Koender­
inck and van Doorn 's work is in this vein, and other more
quantitative models have been investigated [21,24,2]. In
this paper we extend that theme and illustrate it by in­
corporating analysis of specularity in a stereoscopic vision
system.

2 Stereoscopic analysis of specu­
lar reflection

lines of curvature on the surface.

Analysis of the stereoscopic viewing geometry will estab­
lish the relationship between surface shape and measured
disparities. It is helpful to consider two different kinds
of analysis. The first is approximate, a linear system
"driven" by the interocular separation, with disparities
as its output. The characteristics of the linear system
depend on surface geometry (curvature and orientation).
This analysis appeared in earlier work [2] and is useful for
characterising degeneracies - special alignments at which
geometric inference will fail. An exact analysis is more
convenient for computation as well as being more accurate
and a method has been developed for accurate computa­
tion of relative disparities, together with error bounds.

2.1 Viewing geometry

1 The assumption of known light source position is of course a
strong one. However it can be computed from just one stereoscopic
observation of a highlight on an object of known shape.

A few equations suffice to describe this geometrical ar­
rangement. First, there are three cycles amongst the vec­
tors:

The geometry for stereoscopic viewing of a specularity
is shown in figure 3. Vectors d, the stereo baseline, is
assumed known, as is S , the position of the light source
1 . The directions V,W of vectors V, Ware given by
the measured positions of the specularities in the left and
right images. The projection of displacement vector r
onto the left (say) image plane forms the observed relative
disparity vector.

(1)V+d-r-W= 0,

The basic principle of "specular stereo" is illustrated in
figure 1. According to the simple physics of curved mir­
rors , a specularity will appear behind a glossy, convex
surface but (generally) in front of a concave one. Here
this simple idea is expanded. For example, how does a
specularity appear in a hyperbolic surface? Whether it
appears behind or in front depends on the orientation of
the surface. Even on elliptic, non-umbilic surfaces, astig­
matic effects produce apparent depth variations as orien­
tation is changed. In fact the notion of apparent depth
is ill-defined here - what we actually observe are horizon­
tal and vertical relative disparities (relative to disparities
of surface features). Specularities, unlike physical surface
features, need not satisfy the "epipolar" constraint [18] so
vertical disparity may 'be non-zero. This is illustrated by
the example of figure 2, in which relative displacement of
the specularity in the right image (relative to the left) is
oblique. Both horizontal and vertical disparities vary as
the orientation of the stereo baseline changes relative to
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Figure 4: Point C lies on the surface at a little distance from
A. Along this distance the surface curves gently out of the
tangent plane. So the "tangent plane assumption" is only an
approximation.

(6), given that V = V IV is known from the position
of the specularity in the left image, by the iterative al­
gorithm given in figure 5. This algorithm has not been

Right eye

Figure 3: A smooth patch of surface is illuminated by a point
source along vector L. Light striking point A is specularly
reflected along vector V into the left eye. Similarly, light in­
cident at B traverses W into the right eye..Surface normals
at A and Bare ft and it. respectively. Vector r separates A
and B. The stereo base-line lies along vector d. A surface
marking lies nearby A at C.

i
V(i)

L(i)
fl(i)

V-L-S=O (2)

i=O , IV\(i)=/FI.
repeat

= i+ 1,
= IV/(i)V,
= V(i) + S,

= (V +LCi)) IIV+LCi)I,
IVI(i) = (nCi).F) I (nCi).V).

while !IVI(i)_IVI(i-l)! > O.OlIFI.
V=V(i), n=n(i), L=L(i).

and
L - L' - r = O.

The physical law of reflection is expressed in the following
equations:

Figure 5: Iterative algorithm for computing V, the position
at which the reflected ray strikes the specular surface.

n= V+L
(4)

IV+LI

il'=
Vv+f/

(5)
IVv+f/1

proved to converge, but seems well-behaved in practice.

2.3 Local surface shape

2.2 Computation of surface depth

Of course G does not lie exactly in the tangent plane, but
the error is small provided the surface reference C is not
too far away from the ray intersection point A (figure 4).

We need to know surface depth V = IVI but, so far, know
only the depth of a nearby non-specular "reference point"
on the surface. In fact V can be computed from equation

(7)

So much for surface orientation - but what about local
surface curvature? Curvature is expressed in terms of
the Hessian matrix H. Choosing coordinates such that
x = (x, y) is the restriction of r = (z , y, z) to the tangent
plane at A:

(The choice of coordinates allows an arbitrary rotation in
the tangent plane, which is conveniently fixed by choosing
the (0,1,0) direction to be orthogonal to vector V - L.)

It is clear that, having computed V as above, n can be
obtained from (4) and (2). In other words, knowing the
light source position, and observing a nearby surface ref­
erence point C suffices to compute surface orientation at
the specular point A.

(6)(F - V).n =O.

Finally, the vector F is computed from conventional
stereoscopic viewing of the surface reference mark C, and
it is assumed to lie in the tangent plane to the surface at
A, so that



150

Differentiating (7), one can obtain

(8)

where

6n.x d
A= lonl2 an B = (12)

where on is the component of ft' - ft lying in the tangent
plane. Now ft is known already, so to compute on we need
ii' - which can be calculated from (5) ifW is known. Ob­
serving that r .n =0 and substituting this into (1) yields
the following formula, in terms of measured quantities,
for IWI :

as shown in figure 6. Without loss of generality, we can
require rl ~ r2, so that the constraint set includes only
one curve of the hyperbola. For example, the family of
surfaces allowed by the constraint in figure 6 is illustrated
in figure 7.

(9)

r2

(rl ,r2) space

2.4 Graphical representation of geomet­
ric constraints

Figure 7: Specular stereo - constraints on local shape. A
typical constraint, illustrated algebraically in figure 6, admits
a one-parameter family of interpretations. Generally either
concaveor convex interpretations are excluded - in this case
concave ones.

(10)H:r:y)
Hyy ,H= (H:r::r:

H:r:y

so it has 3 independent components. Clearly, further in­
formation is required to fix all 3. This can be obtained
either by moving the stereo baseline or by monocular ob­
servation of the shape of the specularity. Both possibili­
ties will be discussed in due course. In the meantime, it is
natural to ask whether the 2 constraints already obtained
represent intrinsic information about the surface - that is,
do they constrain principal curvatures of the surface?

Brelstaff [4] has shown that there is indeed an intrin­
sic constraint. The principal curvatures "'1, "'2 are con­
strained to lie on a hyperbola. Equivalently, the corre-

Measurement of 6n = (onl' on2) imposes 2 independent
constraints, via equation (8) , on the components of the
hessian H. But H is a symmetric matrix:

(A, A)

Note that a concave interpretation is excluded - the sur­
face must be either convex or hyperbolic in this case. Gen­
erallya concave or convex interpretation is excluded ac­
cording as the sign of A is positive or negative respectively
- that is, according to the sign of on .x . Recently a simi­
lar condition has been obtained by Zisserman et al. [27]
but with the additional advantage of being independent
of light source position. In that case, the discriminant
is simply the scalar product of the projections onto the
image plane of x (i.e. the relative disparity vector) and
the baseline d.

Figure 6: Stereo analysis constrains the principal radii of
curvature Ti = 1/"'i, i = 1,2 to lie on the upper curve of a
hyperbola.

2.5 Test for umbilic points
sponding principal radii of curvature rl, r2 lie on a hy­
perbola:

(11)
Spheres are an interesting special case for specular stereo.
Since H ='" I on the surface of a sphere, we can see from
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equation (8) that On and x are parallel vectors or, in
practice:

intimately related to the relative stereoscopic disparity 6,
as follows :

Ion x x] « lonllx\. (13) x=VP6 (19)

(20)
where

P _ (secO' 0)
- 0 1 .

The two-component vector 6 represents the horizontal
and vertical disparities of the specularity, relative to the
disparities of the nearby surface reference point. The con­
ventional view of stereoscopic vision is that useful depth
information is encoded entirely in horizontal disparities.
Vertical disparity is fixed by epipolar geometry, so its pos­
sible influence is limited to calibration of view geometry
and, in human vision, an associated illusory distortion,
the induced effect [19].

If the parallelism test is passed the point may be umbilic ­
but of course this is not guaranteed. For instance it could
be on any surface patch specially oriented so that one
line of curvature lies (locally) in the plane of the incident
and reflected rays. So the test can be used to eliminate
umbilic interpretations.

3 Specular stereo as a linear sys­
tem

The previous section explained how constraints on geom­
etry can be inferred from stereoscopic observation of a
specularity and a nearby non-specular "reference" point.
Further analysis can be applied, linearising the relation­
ship between displacement vector x and baseline vector
d . Whilst this offers no particular improvements in con­
venience of computation of shape constraints, it affords
insights into geometric degeneracies, and clarifies the re­
lationship with conventional stereoscopic disparity.

For specularities, this is not the case. Vertical dispar­
ity plays a strong role, in two ways. First, vertical dis­
parities that violate epipolar geometry are evidence that
specular reflection is occurring. Second, as we just saw,
measured vertical disparity imposes an independent con­
straint on curvature, in addition to the one imposed by
measurement of horizontal disparity. Both of these com­
putational "truths" call for psychophysical investigation.
Is either theory exploited in human vision?

Simplifying previous analysis [2], the linear system can
expressed as 3.2 Degeneracy

- a term familiar from the elementary ray-optics of lenses.
It can be thought of as an "apparent curvature" induced
on a viewed plane, owing to the finite distances from the
plane to source and viewer. This linear approximation
is valid whenever the baseline is relatively short, that is,
when

2V(MH - K:VLI)x = w,

where
w = (-d1 +d3tanO',-d2l ,

M = (se~O' CO~O')

0' is surface slant at A, and

K:VL = ~ (.!. + .!.)
2 V L

(14)

(15)

(16)

(17)

Inspection of the linearised imaging equation (14) reveals
degeneracy when

det(MH - K:VLI) =O.

What exactly is observed physically? First of all, this can
happen only on non-convex surfaces (M H is negative def­
inite on a convex surface) and even then only for special
alignments - when the viewer collides with one or both
"focal surfaces" [27]2. A convex surface lies in front of
its focal surfaces; the viewer cannot collide with a focal
surface because the convex surface is in the way. When
degeneracy does occur, stereoscopic analysis fails for the
very simple reason that the specularity is visible only in
one eye. Moreover, the focusing effect ensures that when
it is visible, it is likely to be very bright.

Idl « IVI cos 0', (18)

and provided the surface does not focus incoming rays
to a point or line close to the centre of projection (see
discussion of degeneracy below).

3.3 Combining information from two
baselines

3.1 Horizontal and vertical disparity

One insight that equation (14) affords is that the spec­
ular stereo constraints on H depend solely on imaging
geometry (K:VL, V,M, w) and on the displacement vector
x, So the only measured quantity involved is x, which is

A final result from the linearised view is that when two
independent baselines are used, for instance when a stereo
observer is in motion, the baselines should not be nearly
parallel. If they are not, H can be recovered completely;
if they are, computation of H is ill-conditioned. Details
ofthe argument are given in [2].

2The specularity is focussed onto a line or onto a blob, according
as the rank of MH - I<vLI is 1 or 0 respectively.
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Monocular analysis of specular
reflection

and P,H,M, K;VL are defined as previously. Since T is
symmetric, the mapping is a linear scaling in two orthog­
onal directions.

A simple theory of monocular analysis of specularity [2]
is summarised here, and possible ambiguity of interpreta­
tion is explored. In the case of a circular source, assuming
that the diameter of the source is known, there is a pos­
sible fourfold ambiguity of interpretation, corresponding
roughly to independent inversion of each-principal curva­
ture, but generally accompanied by some rotation (about
the surface normal) of the lines of curvature.

The geometrical arrangement for monocular viewing ,
with a distributed source; is shown in figure 8. It mirrors
the earlier stereo geometry but with the baseline between
stereo views replaced by virtual baselines between pairs of
points on the source. This duality can be tapped mathe­
matically to derive a linear mapping relating the position

Distributed light source
I

Surface

Figure 8: Monocular analysis: A distributed light source of
known shape is reflected by a curved surface as a specular
image region. Surface curvature information may be inferred
by measuring the shape in the image. A point on the source,
transforms to a point on the specularity. The angular positions
of two such points are specified by a and Sm, for source and
specularity respectively.

Om of a specular point (in polar projection) to the angu­
lar position a on the source from which the illuminating
ray came.

TOm = a (21)

wher e
T = 2Vp-1 A{H* P, (22)

where
H* = H - K;VLM-1 , (23)

Consider the case of a circular source, so that points on
the outline of the source satisfy

aTa =p2. (24)

The shape of the ellipse (on the polar projection) is ob­
tained using the transformation (21) to give (using the
fact that T is symmetric):

o';;,T2o
m =p2. (25)

If we assumed the source radius p were known, then ob­
servation of the elliptical shape of a highlight determines
T2, via equation (25). Hence T is known up to a fourfold
ambiguity (the signs of the two eigenvalues of T are un­
known). Then H can be computed directly from (21), so
again there are four possibilities (figure 9). These four in-

Concave InterpretatiOn:"

Figure 9: Observation of an elliptical specularity, with a cir­
cular source of known radius, determines local curvature up
to a fourfold ambiguity, as illustrated.

terpretations generally do not share common lines of cur­
vature; but the discrepancy is small if the slant is modest.
Moreover, provided principal curvatures are neither small
nor nearly equal in magnitude -

11K;11- 1K;211::;}> 2K;VL sec (1' ,

the four possibilities for dir ections of lines of curvature
collapse down to just two possibilities - this is the case in
the example of figure 9.

Usually, real cameras do not form an image by polar pro­
jection, but by perspective projection. However the dif­
ference is more or less cosmetic. At a given point on the



image, perspective projection is related to polar projec­
tion by a linear transformation {jm = QX, where X is a
position vector on the projection plane, and Q is a ma­
trix. The elliptical specularity that appears on the image
plane is given by

(26)

Measurements made within the image plane can pro­
vide (QT T 2Q) , from which T2 can be computed.

4.1 Assuming a circular source

The analysis above assumed that the angular diameter
(subtended at the surface) of the source was known. Of­
ten a more reasonable assumption is that the source is
circular, but of unknown radius. There are now two pos­
sible cases.

1. The surface is locally almost flat - the magnitudes of
the principal curvatures are of the order of KVL or
smaller.

2. At least one principal curvature Kl is large - that is,
it satisfies

Kl > KVL sec (J'.

This is much the more likely state of affairs since
specularities tend to cling to highly curved patches
- hence the likelihood of observing a specularity on
such a patch is relatively great. In this case , since
the 2VKVLI term in (22) is negligible, and since
T 2 is known up to an arbitrary multiplicative con­
stant, H can be computed from (22) up to fourfold
ambiguity and an arbitrary multiplicative constant.
However, computed curvatures are accurate only to
within KVL sec (J'.

So even when absolute source size is unknown, monocu­
lar observation of a specularity still allows some inference
about surface shape. This is what might be expected in­
tuitively; an elongated specularity, for example, seems to
suggest very unequal principal curvatures - a locally cylin­
drical surface in the extreme case . In fact this particular
example might be expected to hold good even when the
source is not known to be circular, but merely to be "com­
pact". That expectation is justified below.

4.2 Assuming a compact source

First we must define what is meant by a compact source.
A source of compactness I< > 1 is defined as one that is
bounded by concentric circles, with radii in the ratio I< :
1, as in figure 10. The most compact source is therefore a
circle (I< = 1). The absolute size of the source is assumed
to be unknown.
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Figure 10: Definition of compact source, in terms of bounding
circles.

The task now is to use the monocular specularity equa­
tions (21 , 22, 23) to make some inference about surface
curvature, even though the shape of the source is un­
known, merely constrained. It is proposed to estimate
the direction of least curvature on the surface as follows.
Take the direction in which the diameter of the specu­
lar blob is greatest (figure 11), and back-project it onto
the surface tangent plane. If this estimate proves reli­
able it provides a third constraint, in addition to the two
already provided by stereoscopic analysis. Then surface
curvature, represented by the three parameters of H, can
be computed [2] .

However, there are three problems to be addressed:

1. The direction in which the diameter of the specular
blob is greatest does not correspond exactly to an
eigenvector direction of T .

2. If u is an eigenvector of T, then in the limit that its
eigenvalue>. -+ 0, it can be seen from (22) that Pu is
an eigenvector of H* (with eigenvalue 0). However,
when>. ::ft 0 u only approximates to an eigenvector
of H*.

3. Even if the eigenvectors of H* are successfully esti­
mated, they correspond only approximately (23) to
eigenvectors of H.

What does all this amount to? Our procedure for esti­
mating directions of lines of curvature works, but is only
approximate. The approximation improves as

• the blob becomes more elongated

• the source becomes more compact

• the surface slant decreases

• the surface becomes more curved (either cylindrically
or elliptically) .



Theorem 3 The angle between eigenvectors of H , H· is
bounded by
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bounded by

min[ sin- 1 {sinu (1- sec2uf)-'} ,

sin-l{tanu(cos2ui-1)-'} ].

{ )'}• _ . Kminl K 2
sin 1 SIDU (3 !K

m a
",I+ 8 A sec a .

(28)

(29)

Figure 11: Measuring the direction in which the diameter
of a specular blob is largest. This corresponds approximately
to an eigenvector of T . The approximation improves as the
blob becomesmore elongated, and as the source becomes more
compact.

The last of these factors deserves an additional comment.
In fact our approximation will break down when the sur­
face is close to planar (both curvatures small compared
with II:VL sec u). In that case nothing further can be in­
ferred from the shape of the specularity. However this
case will be relatively uncommon; specularities prefer to
cling to highly curved surfaces. A specularity on a plane
tends to be relatively fleeting, disappearing at the slight­
est viewer motion, especially when the total field of view
is relatively narrow. In the remainder of the section these
claims are backed up by the statement of formal results.
Proofs use standard results oflinear algebra, but are omit­
ted here for lack of space.

The following three theorems answer, in turn, the three
problems raised above, by providing error bounds. First,
some definitions and assumptions. The source has com­
pactness K . The specularity has aspect ratio A > [(2 (A
is the ratio of maximum diameter to minimum diameter).
The surface has curvatures II:m a", , II:min with

The surface is non-planar:

Theorem 1 The angular error in taking the direction in
which the diameter of the specularity is greatest to be an
eigenvector of T is bounded by

(27)

Theorem 2 If u is an eigenvector of T then the angu­
lar difference between Pu and an eigenvector of H* is

5 Results from the implemented
system

Some of the principles described above have been incor­
porated in a software system. The main components are:

Feature detection Features for conventional stereo
matching are obtained from an edge detector em­
ploying directional derivative-of-gaussian operators
[6]. A combination of global and local analysis of
the spatial distribution of intensity is then applied
to identify specular reflections [4]. Those edge fea­
tures which subsequently proved to be specular are
then pruned from the list of "surface" features. Re­
maining surface features can then be matched using
standard methods, and computed depths can safely
be regarded as representing points that lie on a real
surface. The danger of treating matched speculari­
ties as surface points is thus removed.

Feature description Specular features form "blobs"
which may be irregular, but are often elliptical. The
feature description consists of the direction of elonga­
tion of the blob, its length and its aspect ratio. In the
case of an elliptical blob this is more or less equivalent
to measuring the directions and lengths of the ellipse
axes . For each specular feature, a nearby surface fea­
ture must also be identified, to serve as a "reference"
for depth or disparity. The system ,simply chooses
the surface feature that is closest to the specularity
(in the left image); the closer it is the more accurate
it is as a reference. However, features consisting of
almost horizontal line segments are avoided as they
are well known to yield inaccurate depth measure­
ments.

Stereoscopic correspondence Our system employs
the PMF software for stereoscopic correspondence
and depth computation. This delivers depths of sur­
face points, including those to be used as disparity
references. Correspondence must also be established
between specularities in right and left images . A con­
ventional matcher is unsuitable here because epipo­
lar constraints do not apply. On the other hand ,
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Figure 12: An interactive implementation of the analysis of specularities. (a) Stereo image pair. (b) Results of processing: edge
detection output is labelled with specularities (marked 1 and 2) ; slant, tilt and line of (least) curvature for specularity number
2 are displayed at the bottom left.
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scene[Zl lIu-(9 +- 6). lIxy-(-l1 +- 7)

Figure 13: Constraints from stereoscopic analysis of specu­
larity number 2, in figure 12.

the problem of false matches negligible for specu­
lar features since they are usually sparse. A simple
matcher, employing rough comparison of blob fea­
tures, has proved sufficient in our experiments.

Geometric inference Stereoscopic and monocular in­
ference of geometry proceed separately, as detailed in
previous sections, and finally inferences are pooled.
In some cases local curvature is completely deter­
mined, in others merely constrained. Results are dis­
played by means of appropriate graphics, together
with error bounds. They are also accessible at
program-level for use in model-matching, geometric
reasoning or other applications.

Error treatment Each measured quantity in the stereo
analysis has uncertainty associated with it ; this
can be represented crudely by propagation of error
bounds. By combining the errors it is possible to
quantify the uncertainty of the quantities in the con­
straint equation (14). This can be done by summing
square errors [22] at each step in th e analysis. This
method of combination strictly only applies to inde­
pendent sources of uncertainty. As the uncertainties
involved here are unlikely to be completely indepen­
dent, room exists for refinement.

0.868 -0.434 0

-'~j
-0.868

0.434

r1(m)

0.868

r 1(m)

0 .8580.434o

0.434

-0 .434

-0.858

scene[Zl IIxx-(9 +- 6)i lIxy-(-11 +- 7)
rl--(4 +- 2l(- a , r2-(S +- 3)E-2m

r2(lIil
0.858

0 .858 -0.434

An example of the system in operation is shown in figure
12. Subwindows allow user intervention at various levels,
from selection of images to tracing the inference steps.
Line drawings at the bottom show detected, matched
specularit ies, labelled 1 and 2. Results of geometric infer­
ence are summarised in the display at the lower left . The
ellipse and needle indi cate surface orientation. Numerical
slant and tilt values are also shown. The line indicates
th e direction of the line of least curvature - note that this
appears to coincid e with the axis of the cylindrical cup
on which the specularity (number 2) lies. In fact the cup
is not quite cylindrical, and the system has inferred (see
COMBINED EVIDENCE window) that the surface is hyper­
bolic. Further detail can be obtained by selecting "graph"
to illustrate st ereoscopic and monocular inferences, and
their combination. The graph for stereoscopic inference is
shown in figure 13. In an ideal, error-free world it would
be simply a hyperbola as in figure 6. The effect of allow­
ing for error in the components of the Hessian H is that
the hyperbola is "thickened" . So on the basis of stereo­
scopic information, the principal curvatures may take any
values in the shaded set . Note that the directions of the
lines of curva ture are not fixed , but differ for different
points in the set.

Now when monocular information is taken into account ,
only a small portion of the shaded set remains feasibl e ­
shown in black on figure 14. The combination of infor­
mation works very simply: the specularity is observed to
be very elongated, and this more or less fixes the direc­
tions of the lines of curvature (see earlier discussion). The
black region consists of those solutions from the shaded
set which corr espond approximately to those computed
directions.

Figure 14: Combined stereoscopicand monocular constraints
restrict the set of possible solutions for surface curvature to
the black region.
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Stereoscopic analysis for the other specularity (number
1 in figure 12) is shown in figure 15. In this case the

scene[l] Hxx-(2 +- 1)x10, Hxy-(9 +- 8)

so nearly circular that ellipse axes cannot be reliably com­
puted. Nonetheless, the shaded set does contain (just!)
the measured values of surface curvature. Moreover, the
black window at the bottom of the graph indicates that
the system has found that the surface could be locally
spherical (umbilic), according to the tes t described ear­
lier (13).

Figure 15: Stereoscopic analysis of specularity number 1 in
figure 12 restricts local surface curvatures to values within the
shaded set.

specularity appears as a small blob , too small reliably to
determine its shape. Hence (in the absence of information
about the absolute size of the source) monocular analysis
does not constrain local shape any further.

0.169 -0 .0847 0

~'""j
-0 .169

0 .0847 0 .169 0 .254

6 Conclusions

Analysis of specularity is of potential assistance to ge­
ometric inference in machine vision . Stereoscopic and
monocular analysis are complementary, and together can
entirely determine local shape. A further role for vertical
disparity has been demonstrated, in addition to its role in
calibration of viewing geometry. Analysis of specularity
has been incorporated into a stereoscopic vision system,
and shown to yield usably accurate results. Some ques­
tions remain . How can such local shape measurements
be integrated? Quantitative methods involving stereo­
scopic reconstruction are certainly available [11, 23] - can
qualitative methods, bypassing depth maps, be found?
Another question concerns motion: how much surface in­
formation can be extracted from specularities under ex­
tended displacement of the viewer?

A number of questions are raised too for human vision.

The pair of stereo images in figure 16 is computer gen­
erated, using a narrow field of view to exaggerate dis­
parities. This makes it easy to see relative displacement
of specularities, and how they relate to the shape of the
underlying surface. The specularity is displaced both hor­
izontally andvertically relative to surface markings. That
is, there are both horizontal and vertical relative dispari­
ties - a vivid illustration of the earlier assertion that spec­
ularities may break epipolar constraints. (The specularity
tends to cling to the line of greatest curvature, hence the
relative motion is oblique.) Indeed, the non-zero relative
vertical disparity is evidence, in principle, that the bright
blob is indeed specular. The horizontal disparity is pos­
itive, leading correctly to a prediction that the surface
is convex [27]. The true values of principal curvatures
(denoted by the white cross) lies within the black region
that indicates predicted curvatures with error bounds. Of
course the data is computer generated and free of noise,
but this does at least indicate that the error bound com­
putations, which determine the extent of the feasible set
(in black) in terms of image measurement errors, are cor­
rect .

Finally, a real image (figure 17) is shown below, together
with the results of geometric inference from specular­
ity analysis . Surface curvatures have measured approxi­
mately , and fall within error bounds computed by the sys­
tem. There are stereoscopic constraints as shown, but no
monocular constraints; this is because the specularity is

• Is vertical disparity - violation of epipolar constraints
- used to identify bright features as specular?

• Can perceived surface curvature be manipulated by
adjusting the disparities of a specularity?

• Can predicted fourfold ambiguity of curvature be re­
alised in monocular views of specularities?

• Do monocular and stereoscopic analysis of speculari­
ties combine to fix perceived curvature, as predicted
theoretically?

• Can the direction of displacement of a specularity
in right and left stereoscopic views , resolve reversal
ambiguities , as is theoretically predicted?
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Figure 16 : Inner surface of of a torus ring with surface markings (artificial images) . Stereoscopic constraints, shown shaded,
are restricted to the black region by monocular analysis. The correct values of curvature (used in the geometric modeller) are
indicated by a white cross.
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Figure 17: Beach ball of 12 cm radius.
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