[19] Consistency Maintenance in the REVgraph Environment

Jonathan B Bowen and John E W Mayhew

Al Vision Research Unit
University of Sheffield, Sheffield S10 2TN, UK

Reprinted, with permission of Butterworth Scientific Ltd, from Image and Vision Computing, 1988, 6, 12-15.

Introduction

The REVgraph is a data structure designed to represent a 3
dimensional model of a scene, built up from a stereo pair
of 2 dimensional images. The most important levels of
representation are Regions, Edges and Vertices, linked
together as a graph structure, though other intermediate
structures also exist.

The REVgraph is built up from our stereo processing
system, TINA!. This system runs a Canny edge detector
over both images, finds disparity values for the edge points
using the PMF stereo correspondence algonthm groups up
the points into edge segments, and produces a geometric
description of these edge segments in terms of straight
lines and circular arcs’. The REV graph contains representa-
tions for the outputs of all these primary stages of visual
processing.

The geometric descriptions of the edge segments are
typically fragmented due to noise and to the intrinsic
nature of the edge detecting processes which tend to break
up edges at, for example, vertices.

The use of the REVgraph is to enable reasoning
processes to reconstruct a geometrically consistent descrip-
tion of the surfaces in the scene from the various lower
levels of description. This will involve completion of bro-
ken edges, the finding of vertices and finally the
identification and description of regions bounded by edges
and vertices.

For the purposes of the reasoning process, any piece
of data in the REVgraph may be regarded an assertion or
fact. The nature of such facts will depend on the level of
the data : At the edge detection level, a fact will be the
presence of an intensity gradient maximum at a particular
pixel. At the geometric level, it will be the direction and
end points of a straight edge segment, and at higher levels
the existence of a vertex or region, or ultimately the
identification of a group of regions as a recognised object.

The reasoning processes required for this task utilise
a set of rules that express knowledge about the task. For
example, a typical rule is : "If 3 lines can be extended to
meet at point Then hypothesise a vertex at that point." It is
frequently a matter of considerable uncertainty as to which
rules should be applied at any one time due to ambiguity
in the initial data, so we require a method of exploring
several alternative lines of reasoning with the ability to
recover gracefully from contradictions and errors.

To this end, we have been exploring Truth Mainte-
nance Systems (TMS) as a method for controlling the rea-
soning system. We have studied three pamcular Truth
Maintenance algonthms in detail : Doyle’ s*, De Kleer's®
and McDermott’s®. In all three we have found limitations
which make them inappropriate for our domain, but all
have some very attractive properties which we have tried
to combine.

Truth Maintenance is concerned with taking a data-
base of facts (or assertions) some of which may be con-
tradictory, and, using the paths of justifications for the
facts, partitioning the database into one or more self-
consistent sets of facts. Such a set of self-consistent facts
we will in future refer to as a solution to the truth mainte-
nance problem. Some truth maintenance systems only fol-
low one solution explicitly, while others follow many com-
peting possibilities at once. Also, some only find the
solution(s) when all deductive processing has been com-
pleted, while others represent explicit part-solutions at
every stage through reasoning.

Existing Truth Maintenance Systems

Doyle’s Truth Maintenance System was evolved for non-
monotonic reasoning, where the belief of more assumptions
does not necessarily lead to belief in more facts, but may
result in fewer facts being believed. Thus the database of
True or believed facts does not necessarily grow as further
deductions are made. The system was designed to yield a
single consistent set of facts as a solution. If this solution
is rejected, by the discovery of a contradiction or by user
intervention, the system then backtracks, at considerable
expense, to find another solution.

McDermott’s TMS is an attempt to reconcile Doyle’s
ideas with some earlier ideas of contexts. The main exten-
sion to Doyle’s system is the facility for user programs to
label major decision points, and for the database at that
stage to be "pushed down", for easy recovery later. This
would allow a certain reduction in the thrashing behaviour
of TMS if such pushed down contexts were requested to be
re-instated after a contradiction.

De Kleer’s Assumption-Based Truth Maintenance
System (ATMS) arose with the need to represent several
solutions, one of which could then be chosen. Also, his
algorithms are highly optimised. Part of this increase in
efficiency is achieved by abandoning Doyle’s non-

monotonic justifications (eg If x=1 is true, then y=0 is
NOT true) in favour of representing known contradictions
in the database of facts explicitly. In the basic ATMS this
places some restriction on the domains that the system is
useful within, but in an extended version such restrictions
are removed with the penalty of reduced efficiency.

Reasoning Within the REVgraph

The style of reasoning we will be using with the REV-
graph is relatively straightforward. It involves a set of rules
which will search for certain patterns of data in the REV-
graph (antecedent data), and from this will generate new
data at a different level in the graph. From here on the
antecedent facts are referred to as the premises of the
deduction, and the new data is referred to as the conse-
quent of the deduction.

Due to the ambiguity in the initial data, some rules
may hypothesise more than one possible consequent, and
some deductions may result in geometric inconsistencies.
We intend to use truth maintenance techniques to keep
track of consistent solutions, and to aid decisions on which
facts and deductions to disbelieve.

The following behaviours would be required of any
™S :

1) Work done towards one solution should be automati-
cally inherited by other possible solutions wherever it is
relevant.

2) Different justifications for the same fact should not
become confused.

3) When a contradiction is found, the premises that gave
rise to that contradiction should never be allowed to co-
exist within a solution, nor should they be allowed to gen-
erate any new facts in the database.

4) A fact should not be allowed in a solution if all its paths
of deduction include itself. This is known as Circular
deduction and the problem is somewhat similar in nature
and complexity to garbage collection of circular data struc-
tures.

5) It should be possible for the user to intervene in pro-
cessing to arbitrarily add facts to or remove facts from the
database.

6) It would be desirable to provide facilities for the prob-
lem solver to be able to intelligently bound the potentially
very large search space. The burden of the intelligence, of
course, lies with the problem solver.

162

There are three properties we consider to be of
greatest importance for a TMS in the REVgraph :

1) At any time it must be possible to traverse a self-
consistent, if incomplete, graph, as further reasoning and
local inconsistency discovery can only be done by travers-
ing the graph. This is difficult with De Kleer’s scheme, as
there is no notion during processing of a part solution. De
Kleer states’ "It is extremely rare for a problem solver to
ask for the contents of a context." and uses this assumption
to increase ATMS efficiency. We are particularly interested
in cases where this assumption breaks down.

2) The initial data is ambiguous rather than wrong. Conse-
quently the rules used for reasoning will be based largely
on heuristics rather than on logical implications. Thus, in
a backtracking scheme, if a fact is found to be wrong,
there may be no reason to believe that its premises are
wrong. It may simply be that the heuristic that generated
the fact got it wrong on this occasion. None of the
schemes we investigated provide what we consider to be
an appropriate method for dealing with this situation.

3) Often, ambiguities may lead to radically different solu-
tions of the graph. Rather than find one solution and then
backtrack to find others, it would be more efficient to fol-
low the development of alternative solutions in parallel,
and compare final solutions to choose the "best". Doyle’s
TMS does not allow this, but De Kleer’'s ATMS was
developed primarily to give this property as efficiently as
possible.

The Proposed Solution : Consistency Maintenance

Since our reasoning system will be using heuristics rather
than logically correct rules, there is less an element of
solutions being True, and more of them simply being Con-
sistent. Hence we have called our proposed system a *Con-
sistency Maintenance System’ (CMS).

The key idea in CMS is that of the ’Context’: The
database of facts will be interconnected by logical depen-
dencies, such as "Factl justifies Fact2, therefore Fact2 can-
not exist without Factl". Also, some of the facts may be
contradictory, and therefore cannot exist in the same solu-
tion. It is possible to divide the database into subsets
within which there are no contradictory facts, and no paths
of justification are incomplete. Such a subset we refer to
as a "Context’.

163

Inheritance of work between contexts

eg Suppose :
Suppose in the above example 3 more deductions were
Factl and Fact2 justify Fact3. made :-
Fact4 and Fact5 justify Fact6.
Fact6 and Fact7 justify Fact8. Factl and Fact7 justify Factll.
Fact3 and Fact6 justify Fact9. Fact5 and Fact10 justify Fact12.
Fact10 doesn’t justify anything else. Fact7 and Fact10 justify Fact13.
AND Fact2 and Fact4 are known to be true, The contexts of Factll, Factl2 and Factl3 can be calcu-
AND Fact3 is then found to be contradictory to Fact6. lated from their justifications as shown in Figure 2.
The resulting database could be broken down as in Representation :

Figure 1. The proposed representation of this division of

" R Factl 1
the database into contexts is : Fact2 El)z)
Factl (¢)) Fact3 1)
Fact2 12) Fact4 12
Fact3 1) Fact5 2)
Fact4 12) Fact6 @
Faat5) Fact7 12
Fact6) Fact8)
Fact7 (12) Fact9 0
Fact8) Fact10 12)
Fact9 0 Factll m
Fact10 12) Fact12)
Factl3 12
Hence : Hence :
Context 1 Context 2 Context 1 Context 2
Factl Fact2
i:zg 11;:33 Fact2 Fact4
Fact3 Fact5 i:::i E::g
Fact4 Fact6
Fact7 Fact7 Fact7 Fact7
Fact10 Fact8 Fact10 Fact8
Fact10 Factll Factl0
* Fact13 Factl2
Factl3

These contexts are consistent partitions of the global database.

Context 1 Context 2

The rule governing inheritance is as follows :
The contexts in which a new fact is valid are the
intersection of the contexts in which its premises are valid.

Fact4 Fact7 Context 1 Context 2

Fact10

Fact4 Fact7
Fact13
Fact10

Fact5

Fact12
Fact8

Fact11
Fact9 ac

Figure 1 :- Division of Database after a contradiction

Fact9

Figure 2 :- Division of Database after further deductions

Multiple Justification of Facts.

Suppose in this example that one further deduction were
made :

Fact4 and Factl justify Fact12.

Factl2 already exists in context 2, justified by fact4
and factl0. However, the new justification makes it valid
in context 1. As this does not lead to any contradictions,
fact12 should now become valid in both contexts. See Fig-
ure 3.

Representation :
Factl 1)
Fact2 (12)
Fact3 (1)
Fact4 (12)
Fact5 2)
Fact6)
Fact7 12)
Fact8 ?)
Fact9 (6}
Fact10 12)
Factll 1)
Factl2 (12)

Fact13 (12)

Hence : Context 1 Context 2
Factl Fact2
Fact2 Fact4
Fact3 Fact5
Fact4 Fact6
Fact7 Fact7
Fact10 Fact8
Factll Fact10
Fact12 Fact12
Factl3 Fact13

Context Context 2

Fact4 Fact7
Fact13

Fact10
Fact12

Fact9

Figure 3 :- Division of Database with a multiple justification

The generalisation of the rule above is this : Each
justification for a fact is valid in a set of contexts which is
the intersection of the contexts in which the premises are
valid. The fact itself is valid in a set of contexts which is

164

the union of those contexts in which its justifications are
valid.

The Data Dependency representation.

As processing of the REVgraph progresses, we need to
record the deductions that have taken place. Following
Doyle, the data structure we have decided upon is a
directed graph consisting of two types of node, the 'Fact
node’ and the *Data Dependency node’.

Data Dependency Node (DD-node)

The DD-node represents a single deduction by the reason-
ing system.

+-> List of fact nodes which are
Premises List required to make this deduction.
empty if the consequence is an axiom
Consequence +-> Pointer to a single fact node, which is
the result of the deduction.
Rule Identifier |-> Pointer into the rulebase, for recording
information for the problem solver’s use
F-> List of contexts in which this justification
Context List is valid. It is the intersection of the
contexts of the premises, pointed to above.
Disallowed Contexts +-> Contexts in which this deduction is
invalid due to a contradiction
Fact Node

The fact node represents an actual item in the database.

F-> List of all the DD-nodes which form

Support-By List justifications for this fact.

I-> List of all the DD-nodes for which this

Support-For List fact is a premise.

I-> A pointer into the database to the actual

Value value which this fact node represents.

-> A list of the contexts of which this fact
is a member. This is the union of

the contexts of the Support-By DD-nodes.
F-> A list of lists of fact nodes. Each

2nd level list represents one contradiction
of which this fact is a part.

Context List

Contradictions

Constraints Between Facts in the Database

As we mentioned above, the development of the REVgraph
will be guided by heuristics as much as by logically
correct rules. The constraints between the premises and
consequence of a heuristic deduction are slightly different
from those between the premises and consequence of a
logically correct deduction. The following descriptions

165

apply to facts with only one justification. The generalisa-
tion to multiple justifications is given in the next section.

Suppose Factl, Fact2 and Fact3 together are evi-
dence for a heuristic rule to propose the existence of Fact4.
Let us refer to the premise set as P, and the Consequence
as C. Then, a context within which C is valid (or *True’), The Boolean table for the operator ¥ is :
must also contain the evidence for C (i.e. P must be True
as well). As an example, it would be ridiculous to propose P TC P rigorously justifies C

Defining P and C as above, let us see the effect of
this statement :

"P rigorously justifies C" or: (P ¥ C)

the existence of a vertex at a point if no edges terminated P S . .
: : 5 : T T T A context where the evidence is True and the
at that point. However, if P is True in a context, then C Sonsevins 14 Tie is vilii within/the CMIS.,
may or may not be True in that context, because the result T F F A context where P is True and P rigorously
of the heuristic operating on P cannot be trusted to be justifies C, but C is False, is not valid in CMS.
definitely correct. This argument can be represented in a F T F l-‘:-a context Wlfzre ﬂle_w;:)eguxg iS_;'lfuccd;giw
H . Ving no evidence 1s Vi within .
Boolean exiemon. F F T A congtext in which neither the evidence nor the
" P heuristically justifies C" or: (P ki C) consequence is True, is valid in the CMS.
The Boolean table for the operator h is : These are the constraints that the CMS must main-
tain between the premises and consequence of a logically

P nC P heuristically justifies C correct rule. They are a little more restrictive, having fewer
T T T A context where the evidence is True and the valid states than the heuristic 1mp11cat10n.

consequence is True is valid within the CMS.
T F T The evidence is True, but the consequence

is not trusted, and is made False.This is valid.
F T F A context where the consequence is True despite

avi vi i valid withi S. . i e

g @ }A c’;gle’;‘:;“g;'i‘s: :eiljh(:;rme s deﬁ‘;‘ gfme Other constraints that exist within the database :

consequence is True, is valid in the CMS. Suppose Factl and Fact2 and Fact3 are axioms (unjustified

facts) which the user wishes to believe in, then the con-

" hSo, fofr mti; deductive ste;t))e on its o;n, on}g context; straint that :

which satisfy that constraint between the evidence an . .

consequence, may exist. The job of the CMS is to maintain .(Factl A Fact2 x Fact3) is T re st hold mn all egn-
texts. i.e all contexts must contain these facts. Axioms that

those constraints properly, and never generate a context " ke veties fietn v SR
where the constraints are not satisfied, such as a context te:t: e Hacsl sk o PO any CODSHAIILS o SOl

which contains C but does not contain P.
Axioms in the CMS are, in fact, represented as either

It may be noticed that for any heuristic deduction henrisie v Sivnons Aednee At axiom. that
there are two possible contexts in which the premise set is SARISAG. OF HE0TOus MUCHODE, A, v "e us?'r
trusts is represented as a rigorous deduction from "True",

true. Rather than keep track of both contexts from the hil rth . .
outset, the CMS first follows the context that contains the while untrustworthy axioms, or assumptions, are
represented as heuristic deductions from "True". The treat-

consequence, but if this causes a contradiction it then falls .. . 5
“ ment of heuristic deductions as explained above means that

back to the context in which the premise is true but the rth . believed until th found
consequence is not. This -highlights an important property oo anoms ae belevar. ¢y are found to
cause a contradiction.

of the CMS, that of maximality of the contexts represented

: That is, for any context, the addition of further facts from Also, any time a contradiction is found, an extra con-
the database to that context would necessitate a contradic- straint is placed on the database : Suppose the combination
tion. of Factl, Fact2 and Fact3 is found to be contradictory, then

the constraint that —(Factl A Fact2 A Fact3) must hold in all
contexts. i.e. no context may contain all the facts involved
in a contradiction.

Logically correct, or rigorous rules : This is the kind
of rule of that Truth Maintenance systems have conven-
tionally dealt with, where if the premises are True, the

consequence is undeniably True . For example, if the end- Generalising the operators h and ¥, if a fact has
points of an edge are defined, then the direction must be several justifications of different types, the situation
the vector difference between them. Again, however, the becomes more complicated. If P1, P2 and P3 are 3 premise
consequence cannot exist without the evidence. Thus, if the sets each of which provides a rigorous justification for
end points of an edge are undefined, it would be silly to Factl, and P4 and P5 are premise sets each of which pro-
give a value for the direction. This can also be represented vides a heuristic justification for Factl, then the following
as a Boolean expression. constraint must be True :

((Factl = (P1v P2v P3v P4v P5)) A ((P1v P2v P3) = Factl))
Where each of P1 -> P5 is of the general form
(Factm A Factn FactN).

This embodies the information that if a fact is True
then at least one of its justifications is True, and also if any
rigorous justification of a fact is True then that fact must
be True. As described earlier, a justification is True if and
only if all the facts in its premise set are True.

In this way, the function of the CMS may be seen as
building a Boolean expression defining the constraints
between facts in the data base, under the guidance of the
reasoning system, and then solving the expression for its
True values to give all the allowable contexts. However,
we have not built it like this for the following reasons :

1) There are an enormous number of possible solutions to
a large and complicated set of constraints such as those
described, when the number of facts in the database
becomes large enough to be worth dealing with. It is possi-
ble to keep track of a few solutions, and when a constraint
is violated, to change one solution into alternatives which
were not previously interesting, and hence not previously
explicitly represented.

2) We do not build a Boolean expression as the database is
built up, but instead we build the DD network, which is
equivalent in the information contained, but far more con-
venient for maintaining the constraints.

The maintenance of the constraints of justifications is
conceptually straightforward. Whenever the contexts in
which a fact is valid are changed, either as the result of a
new justification or a contradiction, then the contexts of all
the justifications that fact is involved in are changed, and
the contexts of the consequences of those justifications,
according to the set operations described above. These
changes are recursively fed forward through the DD net-
work from premises to consequences until no further
changes occur.

There are two complications to this algorithm. The
first is that a context must not be fed through a heuristic
deduction that has already been disallowed in that context,
or any of its ancestral contexts. This can only occur when
new justifications are being made. The second is that if
contexts are being removed from facts, they might not be
removed properly from facts involved in circular paths of
deduction. This can only happen when a contradiction is
being resolved. Special mechanisms are incorporated into
the feed forward procedures to deal with these situations.

The SPLURGE Contradiction algorithm.

Imagine that the database consists of facts labelled * A, B
o v vgwsn

Now suppose that the reasoning system discovered
that facts A , B, C, D and E are contradictory facts.
They must be split up in some way so that they don’t all
occur together in any context. Using the terminology

166

above, a new constraint is added to the fact base, that of
—(A B C D E). Those contexts which violate that con-
straint must be examined so that new contexts which do
not violate the constraint may be found, and the old one(s)
destroyed.

Contexts are allowable with all the rest of the facts (
F,G, Z , ...) in the context, but with the following
combinations of those facts involved in the contradiction :

ABCD ABCE ABDE ACDE BCDE
ABC ABD ABE ACD ACE
ADE BCD BCE BDE CDE
AB AC AD AE BC
BD BE CD CE DE

A B C D E

This is the ’Complete Splurge’.

This generation of new contexts seems excessive.
(27T n)-2 contexts where n is the number of facts
involved in the contradiction. We do not actually need to
generate all these contexts, rather we have to be sure that
the smaller contexts are available from the larger ones if
the larger ones later become inconsistent themselves. This
we can be sure of if we follow up the top line of the above
list :

ABCD ABCE ABDE ACDE BCDE

This is the Maximal Splurge’.

This gives rise to n new contexts, where n is the
number of facts involved in the contradiction. By repeated
application of the maximal splurge algorithm to the new
contexts, one can regenerate all the smaller contexts in the
complete splurge. If any of the above contexts were not
followed up, an avenue of exploration would be cut off
from the CMS. This is basically how we follow only
interesting contexts, but when a contradiction is found we
are able to generate other contexts not previously explicitly
represented.

Now, suppose that we had prior knowledge that facts
A and B were actually trustworthy, but the rest were not.
Then only the following contexts need be followed:

ABCD ABCE ABDE

This is the 'Smart Splurge’.

This gives even fewer contexts, and after a few con-
tradictions the effect of simply knowing a couple of facts
are trustworthy enables the search through contexts to be
significantly reduced.

This example would be very simple if all the facts in
the contradiction had exactly one heuristic justification
each. However, in the general case, each fact will have
more than one justification, and each such justification may
be either heuristic or rigorous. Worse still, the different
justifications may well be valid in different contexts, some
of which contain the contradiction, and some of which
don’t. Determining what new contexts to create, and
which facts should be valid in which context is quite com-
plicated, but we here try to present a coherent outline of
the necessary procedures.

The first task is to identify all those contexts in
which the contradiction occurs. This is simply the set inter-
section of the contexts of the offending facts. For simpli-
city, we describe a version of the algorithm that treats each
such context in turn, eliminating the contradiction from
one context after another until all contexts are once again
consistent. In practice, this approach is inefficient, but the
actual algorithm implemented is essentially the same.

For each inconsistent context it is necessary to find
the axiomatic justifications of each fact involved in the
contradiction. An axiomatic justification for a justified fact
is a minimal set of axiomatic facts from which the justified
fact can be derived. Any fact may have several such
axiomatic justifications. Finding these justifications
involves traversing the DD network back through deduc-
tions until EITHER the item "True" is arrived at, OR a
heuristic deduction is found. The axiomatic justification of
a fact can then be recursively computed as follows : The
axiomatic justifications of a fact are simply the set union
of the axiomatic justifications of that fact’s justifications.
One axiomatic justification of a DD node is obtained by
taking one axiomatic justification from each premise and
unioning the elements together. All the axiomatic
justifications are found by doing this with all the possible
combinations.

This process is very similar to label generation in De
Kleer’'s ATMS’, but with important differences. First, a
heuristic deduction is its own label, irrespective of the
labels of its premises. Second, the labels need not be
checked for consistency and minimality until the end.

When all the axiomatic justifications of each fact
have been found, they can be checked for consistency and
minimality. Basically this means that any which are super-
sets of others can at this point be discarded. The impor-
tance of these lists of axioms and heuristic deductions is
that if a context existed which did not contain precisely
one fact from each axiomatic justification, then that context
would also not contain one of the facts involved in the
contradiction. Thus, that context would become consistent.
Only heuristic facts can be removed from a context, so all
axioms which are rigorous deductions from "True" can be
ignored from now on.

The axiomatic justifications for each fact are now
turned into lists of out lists. One out list is formed by pick-
ing one (heuristic) fact from each axiomatic justification
generated for one of the contradictory facts. This is done
for all possible combinations, and for each of the contrad-

167

ictory facts. Out lists which are supersets of other out lists
can now be discarded.

New contexts are created from the one under con-
sideration by creating a new context label for each out list.
Everywhere the original context appears in the database, it
is replaced with this new set of context labels. Then, for
each out list, every fact in that list is disallowed from that
out list’s corresponding context, and the resultant changes
are fed forward through the DD network. Actually, it is
heuristic deductions that are disallowed rather than facts,
but this would have been too confusing to explain from the
beginning!

In theory this process is repeated for every context in
which the contradiction occurs, resulting in a new set of
maximal and consistent contexts.

Optimisation of Context Lists

The representation of the contexts in which a fact is valid
is very inefficient when a contradiction is found. When a
context is split, it must be replaced everywhere it occurs in
the DD network by the new contexts, which means that
every fact node and every DD node in the database must
be examined, and a set membership operation performed
on every context list. It would be much better if only those
nodes leading to or resulting from contradictory facts
needed to be updated. We here present a representation of
context lists that makes this the case.

An individual context will no longer be a single
integer, but a list of integers. Each integer in this list
represents a point where a contradiction was found and a
context split into any number of new contexts. Thus, if the
context labelled (1 3) were split into three new contexts,
the new context labels would be (1 3 1), (13 2)and (1 3
3). However, facts still valid in all three contexts can still
be referenced by the single label (1 3). Thus, facts not in
any way involved in the contradiction need not have their
context lists adjusted at all. This representation of contexts
can be seen as a tree. An example of such a tree relevant
to the following discussion is shown in Figure 4. The origi-
nal context representations are shown enclosed in square
brackets, whereas the more optimal representations are
shown enclosed by round brackets.

Under this new scheme, a context list that previously
had the form:

{[51 [6] [71 [8] [9] [101}
would now have the form
{A DA 2)131D)

where the first three labels refer to original contexts 1 2
and 3, and the last label refers to both the original contexts

4 and 5. Thus, the context list is now a list of special
labels, rather than actual contexts.

Making sure that all the other algorithms carry over
is very simple. All the operations on context lists are set
operations, so in order that they carry across, it is only
necessary to define set operations on context lists using the
new labelling scheme.

11DA12) A2DA22)(123)(131)(132
([5]) (6] ([7])([8] ([9] : [10])([11])

Figure 4 :- Context Tree with 2 conlext representations

Set Membership

To Compute Set Membership, the shorter label
must be the head of the longer label :

(123)e ((122)} is False
Previously :

[9] € {[8]} is False

(123) e {(12)}is True
Previously :

9] e {[7]1 [8] [9]} is True

Set Union

{a 2)} v {3 D}={12)131)}
{a2)} v {d21)=1{12)}
{A2)qQ12)13nD}v
{azHan@as2}=
{12)11HQa31)@132)}
Previously, :

{[71 8] 9] [6] [10]} w

{[71 (51 [6] (111} =
{I51 [6] (7] [8] [9] [10] [11]}

168

Set Intersection
A2}~ {a3D}={}
A n{a2z2n}={a121)

@A2)A1DA3ZDIA{2DADA3ID}={121)12)]

Previously :

{[71 {81 [9] [6] [101} ~ {[7] [5] [6] [11]} = {[7} [6]}

Set Difference

{A - (A3 D} ={Q 2)}
Previously :

{71 [8]1 [91} — {[101} = {[7] [8] [91}

{a2a}1-{aznyj={122)
(123)

Previously :

{[71 18] [91} — {[71} = {[8] [91}

The set difference operator requires more informa-
tion than is available in the context list. To calculate the
last example, reference must be made to the context tree,
which is developed as contradictions occur. The set
difference operator is only used at one point in the algo-
rithms so far described, and that is when a new context is
being fed forward through a heuristic DD node. The resul-
tant contexts of the DD node is the intersection of its

premises’ contexts, less the contexts on its disallowed con-
texts list.

Comparison of CMS with Other Systems

We shall now compare the behaviour of CMS with Doyle’s
TMS, McDermott’s TMS and De Kleer’s assumption based
technique. To demonstrate how they are related, we will
return to the idea that the constraints discovered to exist
between facts can be represented as a Boolean expression,
and that valid solutions to the problem are those where the
expression is True. Let us take the situation where some
processing has been done, but no contradictions have been
discovered.

The Boolean expression may look something like this :

(AVBV..)A((AAB)V..) < C)A e A(oo <5 D)
T T T T T T T<TMS,CMS
T T T F . F
T F T F T F
T F T F F T
F T F T T T
F T F T F T
F F F F T F
F F F F F F
T T T T i\ T
. . F

etc.

Up to this stage, TMS will have done no backtrack-
ing, and will be following the topmost solution. CMS will
be in the same situation, whereas De Kleer will have kept
track of the constraints without explicitly solving any of
the truth values. Now consider what happens if a contrad-
iction is found between A and B. This adds a new clause
into the expression, —(A A B), which has this effect :

(AVBV.IOA(AAB)V.) = C)A.A(..<D)A-(AAB)
T T

T T T F F
T T T T F . B F
T F T F T T F
T F T F F T T <-TMS,

CMS

F T F T T T T <-CMS
F T F T F T T <-CMS
F F F F T i F
F F F B F T F
T T T T T T T
3 W s T F

etc.

The topmost solution has become invalid. TMS
backtracks to the next highest level solution, and if, in
future, this is invalidated, TMS will attempt to find the
next solution down, and so on. CMS keeps track of the
next several solutions, which are all the maximal contexts.
De Kleer’s method would set up a nogood set, but would
still have the work of interpretation construction to do.
Also, De Kleer’s method would not be able to show alter-
native ’part-solutions’ without doing that work, so that
development of the various solutions could not be easily
followed. However, the ATMS would be able to use that
nogood to prevent inconsistent facts from being used
together to form further deductions. McDermott’s TMS
will behave as Doyle’s, except that in response to user
requests it can also set aside other specific solutions which
it can move to quickly.

The main advantages of CMS over both these sys-
tems for our problem is that it caters for both rigorous and
heuristic types of rule, and it successfully keeps track of
equally valid alternative solutions as processing proceeds.

There are two major disadvantages of the CMS.
Although it is based on a simple idea, the machinery
necessary to put it into practice is very cumbersome, and
also, as the complexity of the problem increases, the per-
formance is likely to degrade exponentially. De Kleer's
methods of interpretation construction to some extent
reduce this problem, but CMS is likely to grind almost to a
halt as the number of contexts becomes large compared to
the number of facts in the database. In our domain, the
problem is well enough determined for this situation to be
unlikely to occur, and we are also investigating methods of
abandoning unpromising contexts during processing, thus
pruning the search.

The CMS as described above has been implemented,
and applied to a typical vision problem, one particular
stage in the process of WireFrame Completion. A brief
description of the problem, the algorithm used to solve it
and the role of the CMS follows, together with results that
demonstrate the existence of ambiguity to a limited extent
in this particular vision problem.

Prototype WireFrame Completion (PWFC)

The 3 dimensional geometric data recovered from the low
level vision suite is segmented and described in terms of
straight lines and circular arcs by the segmentation algo-
rithm. Also, individual straight lines and circles are broken
up due to noise, so that much of the topology of the edges
in the scene is missing at this level. The aim of the PWEFC
algorithm is to reconnect the geometric data to find ver-
tices and T junctions where appropriate.

The first version of this algorithm only works on the
straight lines in a scene, and was written while the
mathematics for circular arc geometry was being investi-
gated. Both these tasks are now completed and this algo-
rithm will soon be extended to include circular arcs.

At this stage there is a certain amount of ambiguity,
and it was proposed to use the CMS to aid in searching
parallel possibilities. Also, all the processing up to this
point has been bottom up in nature, but it should now be
possible to utilise top down information where available to
ease the wireframe completion task. The CMS is useful in
combining bottom up information with top down direc-
tives.

When we state that an object is justified, or given a
justification, what is meant is that in addition to creating
that object and linking it to others in the PWFC data struc-
tures, a request is sent to the CMS giving the object, those
objects which justify it and a tag relating to the point in
the program that this request is made. Similarly, when we
state that a contradiction is found, or that objects are con-
tradictory, what we mean is that a request is sent to the
CMS informing it that those objects in the PWFC data
sturcture have been adjudged to be contradictory.

Information relating to which objects are valid which
others (i.e. in the same context) is obtained by making
various requests to the CMS. The CMS can basically make

available information answering these two questions :
"What contexts are this object valid in?", "What objects
are valid in this context?". Any further information the
user may require can be phrased in terms of set operations
and those two questions.

Top Down Directives

(1) Focus on certain edges. The algorithm will only
attempt actively to form completions (into vertices or T
junctions) for a set of edges present in the interesting-wires
list. Thus, if the higher level processes only demand pro-
cessing of part of the scene, this can be achieved.

(2) Focus on certain pairings. The algorithm will ini-
tially attempt to form vertices between pairs of edges
present on the interesting-pairs list. However, if these pair-
ings are inconsistent, or very dubious, the use of the CMS
allows the algorithm to explore other more promising
routes.

(3) Restrict connections to a certain proximity. A
true breadth first search algorithm will form connections
between all possible combinations of edges. To restrict the
search, junctions are only investigated if they occur within
a user specified distance of the edge being completed.

How these top down constraints are implemented,
and how the CMS is used to constrain the search using
these constraints will be discussed in detail later on.

Data Structures

Wires : These represent straight lines as passed from
TINA. They are introduced to the CMS as trustworthy
axioms. Thus, all straight lines from TINA will exist in all
solutions.

Connectors : These are straight lines that connect wires to
each other, wires to vertices or wires to T junctions. These
basically fill in the gaps due to noise and segmentation.
How they are justified depends on the nature of the junc-
tion that is created.

Vertices : These are junctions where two wires can be
extended to within a certain distance of each other in 3
dimensions at their point of intersection on the image
plane. The two wires will be connected to the vertex by
one connector each.

T Junctions : These are junctions where two wires meet on
the image plane, but are further apart in 3 dimensions than
a certain threshold. The occluded wire is connected to the
T junction by one connector. The occluding wire must
either directly occlude the other, or have a connector
which occludes the other.

Super-vertices : where more than one vertex occur close
enough to be considered the same, a super-vertex is created
which groups them together. In this way, 3 or 4 directional
vertices can be built up from 2 way vertices without
further explicit representation.

170

Interesting-wires : As previously mentioned, this is a list of
wires where attention is to be focussed. :

Interesting-pairs : Another attention focussing list. This
consists of pairs of wires, which are joined together by the
completion algorithm in preference to other possibilities.

Candidate-lists : Each wire end has associated with it all
the possible junctions that can be made from that wire end,
within the user defined limiting radius. Initialisation of
these lists is explained below.

Initialisation .
Before the main algorithm can be run, various data struc-
tures must be initialised.

All the wires must be created from the GDB, and
introduced to the CMS. The user must then define the lim-
iting radius (which may be increased later), and must set
the interesting-wires list.

The candidate lists must be created for the end of
each wire in the interesting-wires list. This utilises the
Pairwise Geometric Relations Table, which is a utility
under the REVgraph. The PGRT delivers pairs of lines to
the user satisfying certain user defined geometric criteria.
For each such pair a number of geometric relations are cal-
culated, which are cached in a table should that pair be
requested again.

At this stage, the user may also define pairs of wires
to be placed on the interesting-pairs list, but this is not
necessary for the algorithm to run.

The Algorithm

The algorithm is object oriented, and arranged in a pass
structure. In each pass, each of the wires in the
interesting-wires list attempts to find a completion for both
of its ends, in a vertex or T junction or collinearity.
Between each pass, an optimal context is found, which is
the basis for further completions. Also between each pass
it is possible for the top down directives to be modified as
the user desires.

The method we used to decide on the optimal con-
text in this problem is very straightforward. The aim of the
algorithm is to connect wires together, so the most success-
ful context is the one in which most wire ends are con-
nected to something. Whenever a contradiction is found,
the context with the most objects is chosen for further
exploration. Such contexts are often suboptimal, but this
strategy gives the search a necessary breadth during each
pass of the algorithm.

For each end of each interesting wire the following
criteria are used to choose a new junction to create :

If the wire end is already linked to something in the
current context, then no attempt is made to create a new
junction. Otherwise, the candidate list of the wire end is
examined as follows.

First, all those candidates which have already been
used to create a junction are ignored. If there is a remain-
ing candidate pair which is tagged as having been con-
nected before segmentation, then that is chosen. Otherwise,
any pair which appears to be parallel, close and overlap-
ping is chosen. If there is still no successful candidate, then
the interesting-pairs list is searched for the presence of any
remaining candidates, and the first such candidate found
will be chosen. Finally, if all else fails, the pair which
would produce the junction closest to the wire end is
chosen.

Junction types and constraints

When a pair is selected to be instantiated as a junction, the
geometric relations provided by the PGRT are used to
determine junction type. Basically, measures of collinear-
ity, and distance between wires at their image crossing
point are used to place the junction in one of these
categories : Collinearity, Bar, Vertex, T junction, and
Maybe-Vertex.

For a collinearity, a single connector is created, each
end of which is attached to the relevant end of the two
wires. The new connector is heuristically justified by the
conjunction of the two wires.

For a bar, where two lines are close, parallel and
overlapping, then no connector is created, but the two lines
are linked directly to one another. Effectively, this provides
a rigorous justification for the link, as both wires are
rigorous axioms, but the link itself is not explicitly
represented as an object.

For a vertex, two new connectors and a new vertex
are created. The vertex is positioned in x and y according
to where the wires cross on the image plane, and in depth
half way between the two wires’ depths at this point. The
vertex is heuristically justified by the conjunction of the
two wires. Each connector is rigorously justified by the
vertex. If the vertex is found (by searching) to be
sufficiently close to another vertex, then the new vertex is
incorporated into the relevant super-vertex. The super-
vertex is then heuristically justified by the new vertex.

As often happens with trihedral vertices, one wire
will end up being connected to two vertices which are
judged to be in the same super-vertex. Thus each vertex
has one wire in common. In this case, a new connector is
not created for that wire, but the existing one is re-used,
and given a new justification.

For T junctions one new connector is created, and
one T junction object. The connector goes between the
occluded wire and the T junction. The new connector is
rigorously justified by the T junction. The occluded wire
may well not be occluded by the other wire directly, but
rather by a connector linking that other wire to another
junction of some kind. Several such connectors may exist,
in different contexts, so the T junction requires a new

justification for each such occluding connector that is
created.

171

Every time a new connector is created, it is tested
against all the relevant T junctions to determine if it
occludes any of them. If so, the T junction is given an
extra heuristic justification of the conjunction ‘of the
occluded wire and the connector.

Similarly, whenever a new T junction is created then
it is tested against all the relevant connectors, and
appropriate justifications are made.

If the junction type is Maybe-Vertex, then initially a
T junction is created (if possible), but if a vertex is ever
created close enough to this T junction, then this is taken
as enough evidence for the T junction actually being a ver-
tex, and a new vertex is created to replace the original T
junction. The new vertex is then considered to be part of
the same super-vertex as the vertex which was justified the
upgrading of the T junction.

If a junction type is a vertex, but the extension of
one wire meets the other along its length, then it is topo-
logically convenient to represent this as a T junction. How-
ever, if such a T junction is close enough to the end of the
other wire, then a vertex is created with one connector
going back along the length of the wire.

The sequence of events on creating a new junction is
as follows. First, all the new objects required for the junc-
tion are created, added to the lists of the relevant object
type, set to point to objects they are linked to, and
geometrically initialised. This thoroughly imbeds new
objects into the PWFC data structure. Then, the objects
must be introduced to the CMS, which involves a
justification request for each new object. At this stage, any
new connectors are checked against all T junctions, and
any new T junctions are checked against all connectors, to
see if any new justifications can be found for the relevant
T junctions. The final phase is to check for contradictions,
as described below. When all this has been done, a new
wire end is chosen, and the process of completion starts
again.

Contradiction Constraints

Any two connectors which occupy the same end of the
same wire are made contradictory to each other. Any con-
nector pair or wire and connector pair which cross on the
image plane are marked as contradictory, with an excep-
tion in special circumstances. These are the two "rules"
which deal with contradictions, and they are applied when-
ever a new connector is created.

These two rules are applied at very specific points in
the program. Whenever a new connector is created, any
wire it is linked to has its end checked for other links. Any
other object linked to the relevant end of the wire is made
contradictory to the newly created connector.

Whenever a new connector is created, it is tested
against all other wires and connectors in the database to
see if it crosses any of them. Every other wire and con-
nector it crosses is made contradictory to the new connec-
tor. Such an exhaustive search for crossing objects is not

totally necessary, and a little more time consuming than is
desirable.

The exception to the second "rule" is when the two
objects are connected to vertices which are part of the
same super-vertex. The geometrical description of lines is
such that the centroid of the line is known to a certain
error, and the direction of the line is known to a certain
error. This has the effect that the greatest positional errors
are at the line ends. Consequently, when connecting up
vertices of 3 or more wires, which are perfectly valid, it is
often found that the component connectors in the indivi-
dual 2 way vertices cross over each other, and cross over
component wires. Thus the necessary exception to the con-
nector crossing rule.

Sub-optimal context

-
|F_!r\\

Optimal Context

Figure 5 :- Before and After Wireframe Completion

172

Results

Figure 5 shows the initial data from one image for
Wireframe Completion, and 2 contexts after four passes of
the algorithm. During the fifth pass, no more junctions
were found, so pending further top down information pro-
cessing could be said to be complete after the fourth pass.
The bottom context is adjudged to be optimal, while the
middle one highlights the major ambiguities.

The image contains several lines with no depth infor-
mation, which account for most of the missed vertices, and
some T junctions which should be vertices. The interesting
wires were set to be all the wires with some depth infor-
mafion. The limiting radius was set to 15 image pixels,
which is relatively large and likely to make the algorithm
thrash a little more than is necessary. The circular arcs
which should be present round the top of the central object
are missing in this straight-line-only version of the algo-
rithm. Their inclusion in the algorithm should cause several
more vertices to be found.

Most of the work was done during the first pass of
the algorithm, which confirms our prediction that most of
the junctions are obvious, with only a few ambiguities. In
total, three ambiguities were found : On the far right hand
corner of the central object three T junctions are found to
be alternative solutions to the local connections, though
one in particular is considered optimal (labelled Al on Fig-
ure 5). On the left hand side of the same object, three
alternative solutions were eventually found, with the intui-
tively best solution being picked as optimal by the pro-
gram. (labelled A2 on Figure 5).

The development of this latter ambiguity as the pro-
gram runs is interesting, and is shown in detail in Figure 6.
Initially, the worst solution is found, where the straight line
on the left hand object is extended through a break in the
bounding line of the central object to form a spurious T
junction. (Figure 6b). This is found to be inadequate, as
the bounding contour cannot be completed in such a con-
text, so a second solution is found, which involves a T
junction and vertex in close proximity, and one line seg-
ment being completely unconnected. (Figure 6c). The
unconnected line segment runs close and parallel to the
new connector, so close that in the display they run into
each other, appearing in the figure as one thicker line
rather than two distinct lines. Finally, the “correct” solution
is found. (Figure 6d).

There are also some unfortunate errors in this
sequence of processing. One particularly unpleasant
feature is the vertex on the right hand block which
involves an extension of one of the wires from the central
object (labelled V on Figure 5). That wire should be
occluded by the short bounding line at the rear of that
object, but unfortunately there was insufficient depth infor-
mation to make any completions to that line, so the spuri-
ous vertex remained.

The total number of contexts produced as a result of
these ambiguities was six. The time spent by the CMS pro-
cessing the various constraints was less than, though of the
same order as the time spent searching for junctions and

17

creating the necessary data structures. While we will admit
that very careful thought had to be given to the structuring
of the constraints, and that this particular example problem
might have been more efficiently processed using a con-
ventional breadth and bound search technique, we feel we

3

have shown the potential value of a CMS in the vision
domain, where ambiguity is comparatively infrequent, and |
caused by failings in heuristics rather than contradictory
data. Higher level reasoning schemes which are more pro-
cessor intensive, such as might attempt to start assigning
surfaces to completed regions in the example would possi- T

T

. v--

|

bly benefit greatly by utilising a TMS such as this.

_I‘ ; /',—;/ \ o —
j\ < ? N & e Sobitn
e

a : Original Data

Y

—
d : Optimal Solution
Figure 6 : 3 Solutions to Ambiguity A2 in Figure 5

——
b : Incorrect Solution

References :

1 Porrill JP, SB Pollard, TP Pridmore, JB Bowen, JEW
Mayhew, JP Frisby (1987) TINA : The Sheffield
AIVRU vision system, AIVRU memo 027.

2 Pollard SB, JEW Mayhew and JP Frisby (1985) PMF: A
stereo correspondence algorithm using a disparity
gradient limit, Perception 14, 449-470.

3 Pridmore TP, J Porrill, JEW Mayhew and JP Frisby
(1985) Geometrical description of the CONNECT
graph #1 : Straight lines, planes, space curves and
blobs, AIVRU memo 011.

4 Doyle J (1979) A Truth Maintenance System , Artificial
Intelligence 12 , 231-272.

5 De Kleer J (1984) Choices without backtracking ,
Proceedings National Conference on Artificial Intelli-
gence, August 1984.

6 McDermott D (1983) Contexts and Data Dependencies :
A synthesis , IEEE Pattern analysis and machine
intelligence.

7 De Kleer J (1986) An Assumption-based TMS , Artificial
Intelligence 28 , 127-161.

174

