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Location and Description of Textured Surfaces Using Stereo Vision
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We describe a stereo algorithm, called Needles, specialised
to deal with smooth textured surfaces. Constraints of local
surface smoothness and global surface continuity are used
to solve the correspondence problem. The algorithm is edge
based. First the left image is divided into square patches,
and a disparity histogram of the potential edge matches is
constructed in each patch. Above-threshold peaks in the
histogram are passed into a Hough transform, which fits
a plane to a subset of the potential matches lying around
the peak, forming local hypotheses for the range and ori-
entation of the visual surface along with the edge matches.
Next, hypotheses in adjacent, overlapping paiches are con-
nected if they share enough common matches. A region
growing procedure locates large areas of mutually connected
hypotheses, corresponding to continuous, possibly overlap-
ping surfaces. When surfaces overlap, the largest one is
chosen. Needles has been implemented on a Sun worksta-
tion and a Transputer network. Results are presented for
two stereopairs, and compared with physical measurements.

In approaches to solving the stereo correspondence prob-
lem in computer vision to date, little explicit attention has
been paid to the special problems posed by highly tex-
tured surfaces. Edge maps associated with such surfaces
tend to be dense, fragmentary and noisy. These charac-
teristics make the correspondence problem much harder
to solve than normal. This paper demonstrates an algo-
rithm, called Needles, which can overcome these difficulties
.for smooth surfaces by implementing a strong form of the
smoothness constraint widely used in stereo algorithms.

One of the advantages of Needles is that it generates a vi-
sual surface description directly as part of the matching
process. In many feature-based stereo algorithms, some
species of smoothness is exploited in the form of mutual
support propagated between matches that could lie on a
“smooth” surface. In subsequent surface reconstruction, as
proposed by Grimson [5] and Terzopoulos [15] for example,
the information used in the application of the smoothness
constraint at the matching stage is then discarded: a thin
plate surface is fitted to all matches whether or not they
supported each other. In contrast, although Needles dis-
cards most of the potential matches by application of a
local smoothness constraint, final matching decisions are
postponed until the stage at which a surface description
is selected. Unlike algorithms that solve the correspon-
dence problem by propagation of local constraints, such as
Barnard and Thomson’s [1] and PMF [10], Needles uses a
combination of local and global constraints, the latter be-
ing based on continuous whole surfaces rather than local

patches.

The general approach of integrating matching and sur-
face reconstruction has been used previously, for exam-
ple by Boult and Chen [2] and by Hoff and Ahuyja [6].
However, Needles differs in using a global region-growing
procedure to link neighbouring local patches of potential
smooth-surface matches if they share a sufficient number
of matches in their region of overlap. Final disambigua-
tion is applied to the continuous surfaces formed in this
way. Like [2] and [6], Needles integrates surface reconstruc-
tion and surface discontinuity detection. The global dis-
ambiguation mechanism distinguishes Needles from other
algorithms that use a locally planar model of disparity,
such as [6] and that of Otto and Chau [9].

1 The Needles Algorithm

The Needles algorithm is feature based, using at present
edgels produced by the Canny edge detector [4]. It is as-
sumed that at the scale at which the algorithm is applied
(defined by the image patch size, see below) the varia-
tion of the visual surface from a plane is small relative to
its extent. This assumption provides a very strong con-
straint on the possible edge matches. A brief summary
of the algorithm is as follows: one image (the left) is di-
vided into small square overlapping patches. In each patch
a histogram of the disparities of the potential matches is
constructed. Peaks in the histogram provide hypotheses
for the disparity of the visual surface in the patch. A
Hough transform then selects from the potential matches
near each hypothetical disparity a set of them all of which
lie near a plane. The other potential matches are rejected.
Sets of matches from adjacent image patches that contain
enough matches in common are labelled as connected (i.e.
as part of the same surface). A region growing procedure
finds large regions of mutually connected sets of matches.
Where regions overlap the strongest region (in.the sense
defined in section 1.4 below) wins, and its matches are
selected.

Needles thus uses local (within patch) matching con-
straints to form hypotheses for the visual surface in each
patch. The incorrect hypotheses are eliminated using
global surface connectivity information, i.e. each surface is
located as a whole. Surface smoothness is used in two ways:
a local smoothness constraint to generate local surface hy-
potheses, and a surface continuity constraint to make ex-
plicit the connectivity of the local hypotheses.



Figure 1: The four lateral (left) and four diagonal (right)
neighbours of an image patch. The central patch is shown
in bold. The arrows mark the differences in position of the
adjacent patches with respect to the central patch.

1.1 Preprocessing

The left image of the stereopair is divided into overlap-
ping square patches of width H = 32 pixels. The patches
are arranged in a grid so that diagonally adjacent patches
overlap by 3/4 of their length in each direction, while lat-
erally adjacent patches overlap in half their area. Each
patch thus has eight neighbours as shown in figure 1. A
simple test on texture density rejects an image patch if the
number of edges within it is less than a threshold! 2H.

The edge positions are rectified to the positions they would
have been in had the camera image planes been parallel®.
This is done using camera parameters obtained from Tsai’s
camera calibration method [16]. Edge detection and rec-
tification take place within AIVRU’s TINATOOL stereo
vision environment [12]. Corresponding edges in the two
images are now assumed to lie in the same image raster.
Given a pair of edges with rectified positions (x1,y) and
(z,,y), disparity is defined as d = z, — z;.

Each edge pair lying in the same raster must satisfy five
compatibility conditions in order to be accepted as a po-
tential match. The conditions are:

1. The disparity of the edge pair must lie within a (large)
initial range extending 0.375s on either side of the con-
vergent point of the optic axes of the cameras, where
s is the size of the image in pixels.

. The contrasts of the edges are compared. If the ratio
of the larger to the smaller is greater than a threshold,
set at 4, the pair is excluded.

. Neither edge can have an orientation within 5° of hor-
izontal. Near horizontal edges give rise to large dis-
parity measurement errors.

The orientation of the edges must be the same side of
horizontal, i.e. an edge marking a boundary between
a light region on the left ahd a dark region on the
right can only match with another edge of the same
type. This is an analogue of the contrast sign rule
characterising human vision (but see [11]).

1Note: due to lack of space, full explanations are not given for the
values of all the parameters quoted, but they are given in [8]. The
quoted values have been found to give good results on all the images
so far tested.

2This corresponds to a rotation of the cameras about their optical
centres to bring the image planes into alignment.
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5. Edge orientations correspond to the orientations of
boundaries in the images, which may be due to object
boundaries, surface texture etc. For a pair of edges
to be matched it must be feasible for the orientations
to be projections of a boundary in the world. Since
Needles imposes a disparity gradient limit on the sur-
faces it finds (as explained below) it is reasonable to
impose a limit on the disparity gradient of the line in
disparity space (z,y, d) formed by back-projecting the
edge orientations. This is set to 1.

1.2 Disparity Histogramming

A local disparity histogram [14] is constructed for each
square patch. The disparity range is divided into blocks
of size 0.2H, and an accumulator assigned to each block.
Each compatible edge pair contributes a vote to the cor-
responding disparity block. The magnitude of the vote is
the weight assigned to the left edge of the pair. This is
an integer dependent on the position of the edge within
the square patch. The weighting function is a pyramid
with its peak at the centre of the patch. The weights are
used throughout the algorithm, and the increased weight
assigned to central edges means than matches are less in-
clined to congregate on one side of a patch. This gives rise
to more reliable connections between adjacent patches.

The histogram is smoothed by Gaussian convolution, using
a mask with ¢ = 1.5 blocks. The peaks in the smoothed
histogram are then thresholded. The threshold is set to
0.1W, where W is the sum of the weights of the left edges
in the square patch. Each peak above the threshold is
localised by fitting a quadratic to the histogram accumu-
lator values at and on either side of the peak value. The
maximum of the quadratic is taken to be the disparity at
the peak, which is then passed into the next stage, plane
fitting.

1.3 Planar Patch Fitting by Hough Trans-
form Method

The transformation between disparity space and world
space preserves planes. The plane fitting can hence be
done in disparity space. For each peak in the disparity
histogram an attempt is made to fit a plane through the
disparity points lying near the peak. A large number of
these points will be incorrect, so direct fitting, by least
squares for example, would not work. A Hough transform
is used to select a large subset of the points which lie near
a plane. This point set, along with the plane parameters,
constitutes a local surface hypothesis.

For each image patch the origin of the left image coordinate
system (z,y) is reset to the centre of the square. The
equation of a plane in disparity space can be written as

d=azx+by+c (1)
where a, b and ¢ are constant (a and b are the disparity
gradients in the z and y directions respectively). For a
given point (z,y,d), eq. 1 describes a plane in parameter
space (a, b,c) defining the set of values of a, b and ¢ that
give rise to a plane in disparity space passing through the



point (z,y,d). Points lying on the same plane in dispar-
ity space define planes in parameter space which meet at
a single point. The problem is to find that point. The
standard Hough transform approach is to divide param-
eter space into blocks in each direction. For each point
(z,¥,d), and each block in parameter space that the plane
in eq. 1 passes through, an accumulator assigned to the
block is incremented. At the end the block whose accumu-
lator that received the most votes is the best planar fit to
the data.

The Fast Hough Transform (FHT)

The above method has two main drawbacks: large mem-
ory requirement and slowness. In order to find the plane
parameters accurately, parameter space must be divided
finely in all three directions, and. an accumulator assigned
to each block. The Fast Hough Transform (FHT) described
in [7] gives considerable speed up and reduces storage re-
quirement.

The FHT applies to those Hough transform problems in
which the equation relating features to parameters is lin-
ear in the parameters. In this case each feature votes for a
kyperplane in parameter space (a k —1 dimensional gener-
alisation of a plane, where k is the dimension of parameter
space). The parameters are scaled so that their initial
ranges form a ‘hypercube’ (generalisation of a cube) in pa-
rameter space.

A coarse Hough Transform is applied to the initial ‘root’
hypercube in parameter space by dividing it into 2% ‘child’
hypercubes formed by halving the root along each of the
k dimensions and assigning an accumulator to each child.
Each hyperplane passing through a child hypercube con-
tributes a vote to its accumulator. (In fact, a hyperplane
is tested for intersection with a hypercube’s circumscribing
‘hypersphere’. This is approximate but is faster than the
exact method.) Those children receiving greater than a
threshold T votes are recursively subdivided, and so on. A
limit is set on the level of subdivision, which is equivalent
to setting a required accuracy.

An extra speed up is possible by keeping track of which
features vote for (i.e. which hyperplanes intersect) each
hypercube. Only those features need be tested for inter-
section between hyperplane and child hypercubes, since
children lie inside their parents.

Plane finding using the FHT

In the FHT plane finder, ‘hyperplanes’ are planes and ‘hy-
percubes’ are cubes. The initial range of the parameters
are: a: is -0.6 to 0.6. b: -0.8 to 0.8. ¢ dpeaxx — 0.4H to
dpeak+0.4H where dpeak is the disparity of the peak in the
disparity histogram. The vertical disparity gradient limit b
is set larger than the horizontal limit a because Needles is
less sensitive to the shear distortion between images caused
by & than the horizontal compression/expansion caused by
a, since a shear preserves the area of an image patch.

The FHT threshold T is set to 0.6W. A lower threshold
would allow a fit to a smaller number of points, but would
slow the algorithm down. The value 0.6W has been suit-
able for all the stereopairs so far tested. Normalising T
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using W is justified since one edge can only contribute one
vote to the winning hypercube (this is proved in [8]), so
that the value of T' used implies that at least 60% of the
edges in a left image patch must be matched.

Right Image Texture Density Test

The FHT plane fitter implicitly maps the left image patch
into a parallelogram-shaped patch of the right image spec-
ified by the plane parameters (a,b,c¢). If the two patches
are indeed projections of the same surface in the world, the
texture density of the two patches should be similar. This
test rejects a planar fit if the right image patch contains
disproportionally more edges than the left image patch (in
the reverse case a good planar fit could not have been ob-
tained in the first place). Thus the planar fit is rejected if
the ratio of number of right image patch edges to left image
patch edges is greater than a threshold, set to 1.5(1 + a).
1+a is the ratio of areas of the patches (right/left), so the
test therefore rejects the planar fit if the number of right
image edges is more than 1.5 times what we would expect.

1.4 Region Formation and Hypothesis
Disambiguation

The next step is to join surface hypotheses in adjacent im-
age patches if the two surfaces agree in their area of over-
lap. The test is based on the number of common matches
in the sets of matches selected by the FHT. If this is > 5,
the hypotheses are labelled as connected. When one hy-
pothesis could be connected to several hypotheses in the
same patch, the one with the best planar fit is chosen, i.e.
the one reaching the highest subdivision level in the FHT,
or failing that the FHT accumulator values are compared.

A region growing process now explicitly labels regions of
connected hypotheses. Each hypothesis becomes part of a
numbered region. Hypothesis disambiguation then elimi-
nates all but one of the surface hypotheses in each patch,
with the set of remaining hypotheses assumed to be true
representations of the visual surface. Discontinuities are
located implicitly at the boundaries of regions. The stages
are interleaved in the following way:

1. First region growing stage. Regions of connected
hypotheses are grown by taking those hypotheses that
are connected to neighbours in all eight (lateral and di-
agonal) directions as ‘seeds’, which grow into the net-
work of hypotheses along their connections. Such hy-
potheses are used in descending order of the goodness
of the planar fits. A seeded region expands breadth-
first along the eight connection directions.

. Hypothesis disambiguation. Competition be-
tween hypotheses in an image patch is resolved accord-
ing to the ‘strength’ S of a region, calculated by sum-
ming the FHT subdivision levels of all the hypotheses
in the region. Hence region strength represents the
area of the region and the strength of the hypotheses
within it. In each patch, the surface hypothesis be-
longing to the region of highest strength is declared
the winning hypothesis in the patch. Hypotheses not
part of any region are rejected.



3. Second region growing stage. Connections to hy-
potheses eliminated at the previous step are removed,
and all region data is nullified. The region growing
step 1 is then repeated. This is necessary because
step 2 may split a region into two parts, still wrongly
labelled as the same region.

. Elimination of weak regions. The strengths of
all the regions are recalculated. Those regions whose
strength S falls below a threshold (20) are removed.
This is designed to eliminate only very small regions.

Each continuous textured surface in the scene should be
represented as a single region. Boundaries of a region
should correspond to boundaries of the surface, e.g. step
discontinuities, object boundaries. Note that a region may
contain a step discontinuity if a connection route exists
around it.

1.5 Least Squares Plane Fitting

The final stage in the Needles algorithm is to obtain more
precise estimates of the local plane surface parameters than
the quantised values obtained from the FHT plane finder.
For the winning hypothesis in each patch, orthogonal re-
gression is used to fit a plane to the disparity points that
contributed to the winning plane in the FHT, minimis-
ing the sum of the squared perpendicular distances of the
disparity points from the plane. Mathematical details are
given in [13].

2 Parallel Implementation

The most time consuming parts of Needles take place inde-
pendently in each image patch. The only non-local steps
are region growing and final disambiguation, which take
very little time. There is therefore great scope for using
parallel processing to increase efficiency. Needles has been
implemented on the MARVIN Transputer architecture de-
veloped in AIVRU, which is described in [3]. Using a nine
Transputer system gives approximately an eight-fold de-
crease in running time over a Sun 3/60. Since one proces-
sor could in theory be assigned to each image patch, this
is clearly a limited parallel implementation of Needles.

3 Results

We present results for two steropairs. The first is of a hu-
man face model, shown in figure 2. The face has been fixed
to a backplate, painted white and dotted using a black pen
to introduce texture. The images are 512 x 512 pixels,
each pixel having a grey value between 0 and 255. Figure
3 shows the orientations of the local planar patches found
by the Needles algorithm, shown superimposed on the left
image. Each pin is centred on the centre of an image patch.
The needles (hence the name) point in the direction of the
surface normal in the world. The surface of the face is
shown in figure 4a, plotted in world space. This was con-
structed by fitting a surface to the edge disparity points.
For comparison, figure 4b shows the results of running the

178

PMF stereo algorithm [10]. This general-purpose algo-
rithm employs a disparity gradient limit between matches
that support each other, a weaker constraint than that im-
posed by Needles, resulting in occasional bad matches that
cause glitches in the fitted surface. Since PMF is about
two magnitudes faster than Needles, an obvious research
direction is to try to incorporate the speed of PMF and the
surface smoothness of Needles, to take advantage of both.

We have compared measurements of the face produced by
Needles with height measurements of the face above the
backplate made along cross-sections using a clock gauge.
Both sets of measurements were relative to fixed axes
marked on the backplate. The results are shown in graphs
A to K of figure 5, representing the positions on the face
shown in figure 4a. Solid squares mark the clock gauge
data, outlined squares the Needles data. Gaps in the clock
gauge data represent places where the slope was too steep
for an accurate measurement to be made. Sub-millimetre
accuracy has been achieved over large parts of most of the
cross-sections, corresponding to sub-pixel accuracy in dis-
parity. The large errors in graphs B, E and I seem to be
caused by prominent surface features which are smoothed
over by Needles, such as the eyes (E) and mouth (I).

The second stereopair, shown in figure 6, contains six more
or less textured objects. The images are again 512 x 512
pixels. Figure 7 shows the planar surface normals found
by Needles. Needles segmented the scene into the separate
objects, in particular finding the discontinuity between the
lego house and the telephone directory. The surfaces of
the objects are shown in figure 8a. We also ran PMF and
imposed the segmentation provided by Needles on the dis-
parity data. The result of surface fitting is shown in figure
8b. The main difference between the results is the smooth-
ness of the Needles surface for the telephone directory and
the book. Repetitive texture, such as that on the book,
is difficult for stereo algorithms to match correctly, since
shifting either image by the ‘wavelength’ of the texture
gives a match that is almost as good as the correct one.
The global disambiguation mechanism employed by Nee-
dles causes the correct matches to be chosen since they will
make up the largest region of connected surface patches.

4 Conclusion

We have implemented a stereo algorithm designed for
smooth textured surfaces. It uses a local surface smooth-
ness constraint and a novel global disambiguation mecha-
nism that locates each surface as a whole. The algorithm
has been implemented on a Sun and a network of Trans-
puters. Extensions that have been made to the algorithm
include crease discontinuity detection and calculation of
surface curvature. These are described in [8].
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Right Left

Figure 2: Stereopair of head model.
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Figure 3: Local planar surface normals found
by Needles algorithm.

Figure 4: Surfaces of head found by a) Needles b) PMF.
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Figure 5: Cross-section graphs of head.




181

Right Left
Figure 6: Stereopair of six textured objects.
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Figure 8: Surfaces of six objects, showing segmentation. a) Needles b) PMF, using segmentation provided by Needles.
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