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Abstract
To retrieve models from a data base for recognizing
objects in stereo, a new formulation of patches of
Dupin's Cyclide provides a succinct representation of
surface shape.

The parameters can be extracted from the Weingarten
Map and its derivatives at a point where a contour
meets an extremal boundary.

Introduction
This work is part of a project to design and build a data
base of object descriptions' for use together with a
stereo vision system such as that proposed by Blake
and Mayhew- in order to recognize objects in a scene.

There is here a requirement for a succinct represen­
tation of surface shape in order to keep the data base
search reasonably simple and to ensure that shapes that
are intuitively similar have similar search arguments.

Considerable effort has gone into exploring various
representations for surface shape for the purposes of
object recognition and also for geometric reasoning.
Ikeuchi' advocates use of the extended Gaussian image.
Pentland- has produced some impressive graphics
based on super-quadrics enhanced by the use of
fractals. Other representations include Bezier (bi­
cubic) patches, B-splines, planar patches, quadrics,
Coons patches and generalized cones.

The requirements are that a representation be eco­
nomical, expressive, recoverable from real image data
and stable under different conditions. Surface patches
all suffer from lack of economy when the need arises
to describe irregular surfaces precisely. Any formu­
lation of surface patches can be made to fit to an actual
surface shape by sufficientlyfine sub-division but some
require less sub-division than others at the expense of

needing more parameters. Planar patches are at one
extreme, requiring few parameters but fine sub­
division. Cyclide patches - as formulated here - are near
the middle of the range, having five numerical param­
eters plus patch size. Moreover, one of these parame­
ters - the ratio of the principle curvatures at a point of
symmetry - seems to capture something of the essence
of shape to a remarkable degree.

Recoverability from real image data is perhaps the
most stringent requirement for a representation. The
extended Gaussian image requires knowledge of the
surface normal at every point on the surface, some­
thing that even the human visual system is incapable
0:{3. A super-quadric under a general translation and
rotation requires 15 points to be known on a surface
(see ref. 4, footnote 11, p .2l). This may well be too
many.

Koenderink and van Doorn" make a case for repres­
enting a surface shape qualitatively in terms of view­
point catatrophes that appear as the observer moves
about the object . For the problem of representing
surface shape from a single stereo pair in order to rec­
ognize an object, the idea of qualitative representation
can be thought of as deciding whether the surface is
synclastic, anticlastic or developable (i.e. the Gaussian
curvature is positive, negative, or zero, respectively)
and distinguishing concave from convex (both
synclastic) and recognising cylinders, cones and planes
(all developable).

Such a representation would see a torus as composed
of a convex outer patch with an anticlastic inner patch.
However, it would not distinguish a rugby ball from a
soccer ball. It is therefore recoverable and economical
but not expressive. Problems may also arise in classi­
fying surfaces that are on the borderline between two
types (e.g. almost flat).

For these reasons the cyclide representation is pre­
ferred. This uses numerical parameters but can be re­
lated very simply to the qualitative description.



Tlte eye/ide
Differential geometry teaches us that the shape of a
surface in three dimensions is characterized by its lines
of curvature, which form an orthogonal mesh upon it.
(The tangents to a line of curvature are principal di­
rections.) Hence at any point there are two orthogonal
lines of curvature, one being the line of greatest curva­
ture and the other being the line of least curvature.
Working on applications to Computer Aided Design,
Martin? and Nutboume examined the class of patches
having plane circular arcs as their lines of curvature.

Describing surfaces in terms of such patches is in some
ways analogous to describing lines in terms of straight
and circular segments as done by Pridmore et alB.

The general class of surfaces having (planar) circles as
their lines of curvature seems useful for object recog­
nition because it provides a reasonable descriptive
power but is based on simple geometric primitives.
This class was first discovered by Dupin? in 1822 ­
whence the name Dupin's cyclide - and was studied
by James Clerk Maxwell'? (for its applications to op­
tics), Cayley'! and Darboux'! in the last century.

The Dupin's cyclide is a surface of the fourth order
having as special cases the torus, the cylinder, the cone
and the sphere. Another interesting cyclide shape is
the spindle which I call the right spindle when its axis
is a straight line. It is the closest approximation to an
ellipsoid of revolution when the lines of curvature are
constrained to be circular arcs. It resembles a rugby
ball or an American foot ball.

Figure 1. Special cases of the cyclide. Also the right
spindle and ring cyclide

It is notable that these are the shapes proposed by
Fisher'! for modelling objects for purposes of recogni­
tion. There are obvious advantages in having a com­
mon parametrization to them, as furnished by the
cyclide formulation. A more general case is the ring
cyclide, sometimes called a "squashed torus", Essen­
tially, a ring cyclide is to a torus as a cone is to a cyl­
inder.
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Cayley's Construction

Dupin defined the cyclide as the locus of a variable
sphere touching three fixed spheres, but Cayley!' gives
a much simpler construction based on centres of sym­
metry of two circles.

Figure 2 shows the centres of symmetry S and T of
two circles outside one another. It can be shown that
Sand T are at respective distances ~ and ~ from the
centre of the smaller circle, where

R2E R2E
£1 = and E;. -

R\ +R2 - R\ -R2

E being the distance between the centres. Similarly
their respective distances from the centre H of the
larger circle are

I R1E R1E
E \ = and E'2 =

R} + R2 R\ - R2

T

<

Figure 2. Centres of symmetry at Sand T

These formulae apply also when one circle is inside
another or when they are touching. Hence we can in­
terpret Cayley's construction paraphrased as follows
and illustrated in Figure 3.

Consider two circles in a plane. From either one
of their centres ofsymmetry (S or T) , draw a line
cutting the circles at points A, B on the first circle
and P, Q on the second. Now the tangent at A is
parallel to the tangent at one of the two points P
or Q. Let P be that point. On the line AQ con­
struct a circle in theperpendicularplane havingAQ
as diameter. Do the same on BP. As the line is
rotated about S or T, the locus of these two circles
is a cyclide.

A different cyclide results if the other centre of
symmetry is taken.

With the help of this construction, it is easy to visualize
several cases of the cyclide. Consider the two circles
in Figure 3. The centres of symmetry are marked.
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Using the centre of symmetry S at distance E'I from
the larger circle, the surface constructed is a ring cyclide
like the one shown in Figure 1. If the circles become
concentric the ring cyclide becomes a torus. \
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Figure 4. Locus of centres of circular lines of curva­
ture. Also points of symmetry

I
\

AI
I
I
I
I
\
\

\ Q

S '

Figure 3. Example of Cayley's construction (ring
cyclide)

If we continue the line of centres until it intersects the
two circles, we find four points CDEF. These I call
the points ofsymmetry of the cyclide .

As the radii of the circles tend to infinity while they
remain concentric, the torus tends to a cylinder. If they
are not concentric but their radii tend to infinity, the
ring cyclide tends to a cone.

If the centre of symmetry at T instead of S is used, a
spindle cyclide is constructed. The spindle itself is the
central part, so that the small circle is its cross-section
with its ends pointing upwards and downwards above
and below the paper, as it were.

The locus of centres of the circles standing on AQ and
PB is either an ellipse (see Figure 4) or a hyperbola.
It can be shown14 that the eccentricity of this conic is
equal, in the respective cases, to

E
& =

R1 ±R2

I call this quantity the eccentricity of the cyclide. It can
also be shown" that the eccentricity in the limiting case
of the cone is equal to the sine of the half angle, or
slope, of the cone.

The Cyclide Patch
Martin? and Nutboume parametrize a cyclide patch in
terms of the lines of curvature at a point. These can
be continued to generate a complete cyclide if desired.

One of the difficulties in describing shape is that in or­
der to give the complete differential geometry of a sur­
face one needs the principal curvatures at every point.
In machine vision, such information is not usually
available. Sometimes it is difficult to extract even for
one point. If it can be found at a point, it is useful to
have some geometrical conventions on how the cur­
vature might then be extrapolated over the surface.

The assumption that the surface has circles as its lines
of curvature provides such conventions. Nutboume
and Martin show that once the two lines of curvature
are given, the shape of the patch is constrained to
within one further parameter. Their interpretation of
this parameter is not suitable to our purpose and so
we appeal to the underlying geometry of the cyclide for
a more suitable formulation of this parameter. The
eccentricity seems to be appropriate in this role.

Given a surface normal frame aligned with the princi­
pal directions of curvature at a point, a line of curva­
ture is specified with three parameters.

1. Curvature K of the line (reciprocal of radius)
2. Angle 4> between the curve normal and the surface

normal (so that the principal curvature of the
surface in this direction is K cos 4>)

3. The arc length s
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We adapt the notation of Forsythls•14 and name the
two radii of principal curvature at a point on a cyclide
RB, R.; and the two angles between the normals e, '1'.
Angle e is illustrated in Figure 4 and 'I' is analogous
in a perpendicular plane. There are two position pa­
rameters e, "" related to the angles e, 'I' by

tan 'I' = l.. tan t/t and tan e = ..£ sin (J
~ ~

where ~2 = 1-&2. Following the usual parametrization
of an ellipse, (J is the angle about the centre of the el­
lipse in Figure 4 on page 3. It is characteristic of the
cyclide that e and Ro are independent of t/t and that
'¥ and R.; are independent of e.

I parametrize the cyclide in terms of the ratio p of the
principal curvatures at a point of symmetry , one of the
principal curvatures there and the eccentricity s, The
ratio is defined as p = "1/"2 where ,,( and "2 are the
principal curvatures with "I < "2 and therefore p :s: 1.
It has the same sign as the Gaussian curvature with
p = 0 indicating a developable surface (e.g. a cylinder
or cone) while p = I indicates a spherical surface.

The second parameter is taken to be <T = "2' also at a
point of symmetry. Then <T = Ilr for a sphere or cyl­
inder of radius r.

Figure S. .The Weingarten Map

A proftle is the three dimensional curve at an extremal
boundary, the line at which the surface normal is per­
pendicular to the line of sight. A contour is a line on
the surface; it may be an intersection with another
surface.

Taking the point of symmetry to be where
(] = 1t and t/t = 1t we can write the radii of curvature at
an arbitrary point asl4

Curvatures from a Profile and a
Contour

The next sections explain how to find at some points
the curvatures, the angles e, '¥ and the eccentricity
from stereo data so that the values of p and <T can be
determined as described in this section.

Thus if the curvatures , angles and eccentricity can be
found at some point in a scene, the parameters p, <T can
readily be found . In particular, if we know the scale
independent ratio P = RBIR.; we can find p independ­
ently of <T. In fact, from equation (1),

pes + sec tIt) - s(l + cos 0)
p = P(l+sect/t)-(l+scosB)

The derivative of the Gauss Map is the Weingarten
Map 17 (Figure 5) written D, N. This means the deriv­
ative of the surface normal'W in the direction of the
tangent vector l" along the proftle. Dt N is a tangent
vector that differs from ~.~ess 1p h'1lPpens to be a
principal direction. The weingarten Map maps tan­
gent vectors into tangent vectors. The eigenvectors of
the Weingarten Map are the principal directions and its
eigenvalues are the principal curvatures.

At a profile, the surface normal can be determined
from a monocular image or a stereo pair, since it must
be othogonal to the tangent of the curve and to the line
of sight. In fact if I is the line of sight then l:f. is given
by the vector product.

1p «l
l:f.=

l1p xll

Note that the same analysis applies to a line of shadow
on a surface if the position of the light source is known.
We would simply replace I by a vector representing a
ray of light.

Proceeding purely from the local differential geometry
of a point on a regular" surface in real Euclidean
3-space, it is possible to determine the principal cur­
vatures and principal directions at a point where the
proftle meets a contour. This is because the surface
normal (the Gauss Map) is known along a profile and
can therefore be differentiated along it, yielding a vector
that is tangent to the surface and therefore has two in­
dependent components. This is not generally true of
contours.

(10)

(I tIt)
1

(1 ) [p - s - (1 - p) sec t/t J
<Tp - S

1
(1 ) [p - e - s(1 - p) cos OJ

<Tp - s
Re =

Rv,=

and
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The VISIOn system" delivers a usable geometric de­
scription of a profile from a stereo pair, although
strictly speaking the correspondences made are inexact.
Since the surface normal is available along the profile,
it is possible to calculate its derivative from a stereo
pair as well. Differentiating the surface normal in the
direction of J" yields a vector

Dr!::!" = -11KtcoSy-12K2siny (2)
~

Ke = Ii + (Kp - Ii) cos 2P - T sin 2P

This is a linear equation in H. Equation (5) then gives
a linear expression for S'J and equation (4) determines
y.

A Surface Frame

Therefore, after substituting cos 2)' and sin 2)' from
equations (3) and (4),

(9)

(11)

d"e dC-----K
dv dv

dK
dv cos 4>

Here

and

dC
dv

where

DLlI. = -11 K l cos (1. -12"2 sin (1.

. [I<:I cos (1. tan 'Y ]3(Kt-"2)cOS(1.SID(1. . t t;;\ (10)- "2 SID (1. an \21

Rate of Change of Curvature

similarly to equation (2) and the derivative of 11 must
be obtained from the stereo image data.

The derivation of equation (10) is given elsewhere",
as are those of equations (12) arid (13) below, which
are obtained by differentiating equation (2).

Progress has been made" in estimating not only the
curvature but also the rate of change of curvature from
a stereo pair of images. It is therefore realistic to con­
template using these quantities to determine the cyclide
patch parameters e and 'Y. To interpret the derivatives
in this way assumes that the surface is a cyclide patch,
whereas the derivation of the curvatures in the previous
section makes no such assumption.

Differentiating all three quantities "p' -r and K. yields
three equations in two unknowns, leaving some re­
dundancy that might be used to estimate how close the
patch is to being part of a cyclide.

Let v be the displacement in the direction of the tan­
gent L to the contour at Q. We wish to find an ex-

pression for ~K ,the rate of change of curvature ofthe
line, since tlii~ quantity should be obtainable from
stereo images by discovering curvatures along the curve
near Q.

Write C = cos 4> = n./f..Then, differentiating equation
(7), .

We now have the principal curvatures at Q and a sur­
face frame U1, b, HJ there since

11 = !.p cos)' + 10 sin )' and 12 = !.p sin y - 10 cos y

(8)

(4)

(7)
KeK=--

cos eP

where L =11 sin y - Ia cos y. Therefore

-r = S sin 2y

We have two equations, (3) and (4), in the three un­
knowns H, S and y. Summing the squares to eliminate
y we obtain

2 2 2(Kp-f-{) +1" = S (5)

If a contour - such as a surface intersection - meets the
profile at a point Q, we can discover all three quantities
at such a point. Let the tangent to the curve at this
point be 1".

If (1. is the angle between L and the principal direction
( cos (1. =1".11)' the surface (normal) curvature in the
direction of L is given by Euler's relation

K e = KI COS2(1. + K2 sin2(1. (6)

Here (1. = y +P where p is the known angle between
the profile and the intersection (cos P= L.J,,) and y is
as in equations (3) and (4).

The curvature of the contour at Q is given by
Meusnier's theorem as

where 11 and b are principal directions, K( and KJ are
the principal curvatures and y is the angle between J"
and 11

16. Hence, writing J" = 11 cos Y+b sin y, the
(normal) curvature of the surface along the pro me is

2 • 2
"» = -!p.D!,,!::!.. = KI cos Y+ K2 SID y

which is Euler's relation. By setting H = (K I + K~/2

and S = (K1 - K2)/2 it can more conveniently be written

Kp = H + S cos 2y (3)

The vector D, N also has an orthogonal component
which we will'fill T.

-r = -ie.Dr!::!" = KlcosysinY-K2sinycosy
:p

where cos eP = n.li.with 11 being the normal to the
contour curve. The curvature K. is thus readily avail­
able by a linear equation (7). Then, rewriting equation
(6) to be consistent with equations (3), (4) and (5),

"e = H +S cos(2)' + 2P)
= H + S( cos 2Pcos 2)' - sin 2Psin 2)')

L ,



202

- !.n .Dr (Dr t:D
-,.. '" '"

. [ K\COSytan'Y ]= 3(Kl - K2) cos y SInY _ K2 sin y tan 8
(12)

The underlying cyclide may be derived by the methods
of "The Cyclide Patch".

Right and left eye ; iews of an intersection
bctwccn a torus and a spindle

Figure 6.

A Test

To verify the abo ve principles, a test was condu;cted
using the stereo vision system I.'roduced at the Uru,,:er­
sity of Sheffield! on stereo unages prepared using
Winsom'? the IBM Winchester Solid Modeller. The
test data i~ shown in Figure 6 where the left image is
on the right and vice versa S? ~hat s0l!le readers ,~ill

be able to obtain a stereoscopic impression by crossing
the eyes. The scene is the intersection of a torus with
a spindle.

Although internally the Sheffield system calcula~es

curvature and rate of change of curvature at e~ch po~t

of every edge, this information was not used directly ill

this test but only indirectly, in that the vision system
itself uses it to classify edges as straight, circular, plan~r
or space curves. These classifications and the as~oel­

ated geometrical descriptions were used here to infer
the parameters at the point at which the contour meets
the profile.

The radius of the profile was found by the vision sys­
tem to be 289 (in pixel units) . Thus K p = 1/289 and
T = O. Note that the system is not able to distinguish
profiles from other edges an~ this labelling. was. done
manually. The radius of the circular approximatron to
the intersection curve was 53. The angle rjJ between the
normal n to this curve and the surface normal/:!.. was
34° . Th~ angle Pbetween the cont~ur and th~ profile
was 97°. Substituting these values mto equations (7)
and (8) gives a value for H of 0.009648. Then from
equation (5) we obtain S and thus K 1 and K2'

The ratio K./K2 was 0.22 as against the true ratio of t~e

small and large radii of the torus which.was 0.25 . Th~s

discrepancy can be explained by the circular approxi­
mation made to the curve of intersection and by the
vagaries of the stereo process itself, sensitive as it is to
pixellation errors and the like, particularly when con­
verting from disparity to depth. It is also true that the

(15)

(14)

(13)

(J 6)

The details appear in a fuller paper!' where it is shown
that differentiating equation (12) (or equation (10)
along a contour) results in an equation of the form

[

KI cos Y :u (tan 'II) ]
P=Q d

- K2 sin Yd;; ( tan 8)

This leads to a quadratic in £2 as follows.

r
2 1

(I - s )P

. sec2'Y+ tan28 2
- QK1K2 cos Y S1l1 Y( 2( 2

8
2\11\)-£ sec ~ -tan AJ

2 2 2 2 2 21'1= 4(& sec 8 - tan 8)( sec 'Y - t: tan 'I J

-/:!...Dc(Drt:D =
'" '"

Note that this relationship is not unique to cyclides but
follows directly from twice differentiating the equation
J:!..J:!. = I and substituting equation (2).

Eccentricity

This is a higher order quantity that can be obtained
geometr icalIy from considering tW? points. P and Q at
both of which a profile meets an mtersection. In the
most notable special case, the cone, geometrical meth­
ods are obviously applicable, as the eccentricity is the
sine of the half angle (see "Cayley's Construction").

More generally, a local method is more satisfactory,
not least because it affords, in principle, an exact de­
termination at the point in question . This involves a
further differentiation along a profileor an intersection
and a somewhat lengthy calculation, so there must be
some reservat ions about the accuracy of numerical
methods from stereo images for this purpose.

and

-!c.Dr (Dc t:D
"P "P

[

KI cos y(1 - 3 sin2y)tan 'II ]
K- K). 2
(I 2 _ K2smy(l-3cos y)tan8

These are readily solved for tan 8 and tan 'Y.

We note that equation (12) represents the rate of
change in the direction t , of the surface (normal) cur-

, .:.p h d .vature in the direction t . On the other an, equation
(13) represents the rat;' of change, in the direction 1.,
of the surface (normal) curvature in the direction 1".
The second derivative of If.. also has a compon~nt

normal to the surface. This yields no new information
but might be useful as a check on the accuracy of the
differentiation. In fact ,

2 2 2 . 2
K 1 cos y + K2 sin y

iiiii



Sheffield system takes no special account of the error
in depth estimation at the profile caused by the fact
that correspondence is made between slightly differing
points on the surface in the two images, since the right
eye sees a bit more of the surface, so to speak, than the
left eye.

Equation (4) implies that y = O. Equations (12) and
(13) both vanish, implying that both e and '¥ are zero.
Also , in equation (16), P = 0 and Q= 0 implying that
e = O.

Describing Surfaces
Once the geometry of a surface at some points is de­
termined, a description of the surface as a whole is
needed. Such a description has two purposes: recog­
nition and geometric reasoning. As stated in the in­
troduction, recognition in a data base of stored models
is the primary focus of this work.

For this purpose, a stable description of the overall
shape between edges is needed. If information is only
available from one point, the surface may be assumed
to be an extrapolation from there . Recognition , how­
ever, needs to proceed from a consistent point, not
from the point that happens to be known. Appeal to
the underlying geometry suggests the use of a point of
symmetry of the cyclide. To be exact, we take a point
at which the parameters e, '¥ and hence 8,1/1 take the
value 11: as stated in "The Cyclide Patch".

The two principal curvatures at that point then be­
come the primary candidates to be arguments in
searching a data base of object descriptions . The ec­
centricity can also be a search argument when avail­
able.

The ratio of the principal curvatures is probably more
useful for recognition than the principal curvatures
themselves. The ratio is all that is required to charac­
terize the appearance of the profile. .

Its utility is most apparent where only a plane inter­
section with an unknown surface is available with no
other information about the surface. In such circum­
stances, it is possible to interpret the curve as an ap­
proximation to the Dupin indicatrix at a point P in the
middle if the curve is close to a conic section. With
suitable choice of co-ordinate direction, the equation
of this curve is

K1X2 + K2J!2 = 2<5

where <5 is a small (unknown) perpendicular displace­
ment between the tangent plane at P and the plane of
intersection, which are assumed parallel in this ap­
proximation. Hence the ratio p can be estimated even
though K 1 and KJ cannot.

If p is interpreted as the first parameter of a patch, the
second parameter is most naturally taken (also at a
point of symmetry) to be (1 = KJ. Thus a flat surface is
indicated by (1 = O. In this case p is indeterminate.
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The Gaussian curvature K = KIKJ does not seem to be
useful in machine vision, a point noted also by Brady
et al20• The mean curvature H = (KI + KJ)/2 does not
appear suitable either, mainly because of its ambiguity
when KI and K2 have opposite signs .

More Information

When several points are known, a method for approx­
imating a larger patch to fit a number of smaller
patches is needed. The method chosen depends partly
on how much is known. It may be that the principal
curvatures at many points are available as would be the
case using the "weak plate' method of surface interpo­
lation described by Blake and Zisserman",

If, however, the differential geometry at just a few
points is known, a possible approach would be to try
to fit a large patch as close as possible to the smaller
ones. A geometrical method would be to consider ev­
ery patch's centre of symmetry and find the mean of
their position, orientation and parameter values
p and (1 if some threshold is not breached. Some ac­
count would have to be taken of the reliability of the
measurements of the patch parameters, based on the
reliability of the data itself.

Further study of these possibilities is needed.

Conclusions
In stereo vision using normal lighting it is often im­
practicable to obtain a complete description of a sur­
face in a scene. Rather. information about its
curvature at some points can be gleaned from various
sources, such as shading, specularities, extremal
boundaries, and intersections.

Patches of surfaces from Dupin's cyclides have a
parametrization that permits representation of surface
shape with varying specificity. Given the principal
curvatures at a point, the remaining three parameters
of a patch, e , 'l' and e, determine how the lines of
curvature can be extended as circular arcs into the
neighbourhood of the point.

The eccentricity t: relies on a higher order derivative
than the other quantities and, in general, is likely to
be available less often than the other parameters. The
default assumption s = 0 can conveniently be made
when the data is unavailable, meaning that the surface
patch is interpreted as part of a surface of revolution.

Once the parameters at certain points have been de­
termined, they provide a basis for extrapolating the
surface shape nearby. For purposes of geometric rea­
soning, methods for fitting and blending Cyclide
Patches developed by de Pont-' can be used .

For recognition, an overall shape description is needed,
and this is perhaps best stated in terms of the scale in-



dependent ratio p of principal curvatures and the factor
a . These need to be given at a consistent point irre­
spective of viewpoint and a point of symmetry of the
cyclide appears a particularly suitable place, the analy­
sis then being at its simplest.

Among the various possible sources of information
about shape, we have examined the surface normal and
its derivatives along a profile (extremal boundary) and
shown that, where a contour meets the profile, all five
parameters can be determined locally. This has been
tested on a pair of synthetic stereo images. Note that
the use of the Weingarten Map along a profile to de­
termine the local differential geometry is independent
of the use of a cyclide representation. The assumption
only affects the interpretation of the derivatives of this
map.

Since the cyclide patch parameters are based on fun­
damental and well known quantities in differential ge­
ometry, other sources of estimation such as shading
and specularity will also yield these parameters.
Blake-', for instance, derives equations for determining
(under certain conditions) the Hessian of the height
function of a surface in the neighbourhood of a point
by using specular stereo. The principal curvatures and
directions are readily obtainable from this Hessian's,
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