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Abstract
A .matching strategy for combining two or more three
space descriptions, obtained here from edge based binocu
1ar stereo, of a scene is discussed. The scheme combines
features of a number of recent modelmatching algorithms
with heuristics aimed to reduce the space of potential rigid
transformations that relate scene descriptions.

1. Introduction

The topic addressed by this paper is the matching of
stereo-based 3D edge descriptions obtained from two or
more different views of a scene. We describe a matching
algorithm with wide potential application in the temporal
aggregation of scene descriptions for scene model evolu
tion and autonomous vehicle guidance.

The algorithm is for example of use as a precursor to the
combination of data about the 3D geometry of a given
edge into an improved estimate (porrill et all). It is also
useful for obtaining an accurate estimate of the location of
the viewpoint with respect to the scene. Moreover, the
algorithm is shown to be useful as a primitive model
matcher in which a visual description of a known model
can be matched to an instance of the modelled object in a
cluttered scene.

The algorithm can also be used for a purely visual method
of creating an object model description. Given descrip
tions of the object-to-be-modelled from multiple
viewpoints, the algorithm can combine these into a single
description which can then serve as a model of the
object-to-be-recognised in subsequent views of cluttered
scenes containing the object. For this and other model
matching applications it will clearly be desirable to incor
porate into the model description some organisation of its
view potential2-4 including the flagging of non-rigid rela
tionships (eg hinges). However, whilst we have obtained
some success in this regard it remains a topic beyond the
scope of the current paper.

The reasonable assumption that the geometry of the scene
remains constant between views provides a powerful
matching constraint. It allows our goal to be defined as
identifying the best set of matches that is consistent with a
single rigid transfonnation. The rigidity constraint can
either be explicit, requiring each primitive to undergo the
same global transformation, or implicit, requiring that
local geometrical relationships between primitives be
preserved. Tree searching strategies based upon each have
been exploited by Faugeras et aZs, 6 and Grimson et az7-9
respectively. Constraints based upon local geometrical
relationships have the computational advantage that such
relationships can be precompiled for each scene and stored
in look up tables, with the result that simple pairwise
comparisons are all that is necessary to exploit rigidity.
Under the alternative strategy, each potential global

transformation requires both computation and then appli
cation to each descriptive primitive in one scene to locate
matching descriptive primitives in the other.

The matching strategy described here differs from that of
Grimson et a1 in that tree search is replaced by a
hypothesis and test strategy based upon a number of focus
features 10, 11. Exhaustive tree searching strategies are only
computationally efficient where all the data in one scene
is known to be present in the otherl 2. 13, otherwise, despite
the powerful constraint provided by rigidity they tend to
be combinatorially explosive. Here, unfortunately, due to
the difference in viewpoint, the vagaries of the image for
mation process, and the imaging process itself the map
ping between two geometrical descriptions of the same
scene is generally many-to-many. Hence major computa
tional problems will arise with simple tree search. Con
centrating initial attention to the matches of a relatively
small number of heuristically determined focus features
allows, at the expense of some generality, the search space
to be reduced considerablely.

2. Geometrical Description

The task of matching three space descriptions of well car
pentered scenes is discussed. For brevity and simplicity
we shall restrict our attention to scenes, or regions of
scenes, that are amenable to characterisation by their
straight surface discontinuities. However extensions to
include both circular and space curve descriptions in the
matching process are currently under investigation. All
such descriptions are obtained here from edge based bino
cular stereo trtangulation'v'". Matched edge points are
aggregated into extended edge structures' and described
by a process of recursive segmentation and description as
either straight, circular, planar or space curves 17-19. The
grouping of edge descriptions in this way provides an ini
tial, though impoverished, viewer centred scene descrip
tion called the Geometric Descriptive Base20 (GDB).

In the GDB straight lines are represented (in an overdeter
mined fashion) by the triple (V,PbP2), that is, their two
end points PI and P2 and the direction vector between
them v. The centroid of a line (its midpoint (Pl+P2)/2)
shall be denoted c. Where the actual physical occupancy
of a line is not important it is sometimes helpful to
represent them by the vector pair (v,c),

3. The Matching Problem

In general it is not possible to place a restriction on the
allowable transformations that take primitives from one
scene description into another unless an a priori estimate
of the difference in their viewpoint is available. Of course
in the domain of autonomous navigation and scene evolu
tion it is likely that just such an estimate exists. If for
instance the temporal delay that separates scene descrip-



tions obtained by an autonomous vehicle is sufficiently
small (ie the frame rate is sufficiently high) the transfor
mation that takes one view point into another will be of a
limited magnitude. Alternatively if a less intensive rate of
low level image processing is to be preferred an estimate
of the trajectory could be used to approximate the
geometry that relates successive viewpoints. The design ~f

our matching algorithm is general in this regard. An esti
mate of the global transformation is not required to
achieve successful matching; if however such information
is readily available it can be exploited to reduce the set of
potential matches and thus also the computational require
ments.

Given the somewhat impoverished nature of our descrip
tive basis and the potential for unfortunate, and unfore
seen, occlusion relationships to arise, it seems prudent not
to restrict potential matches on the basis of the descriptive
properties of the line primitives (eg length, contrast etc).
Hence in principle, each primitive extracted from one
scene is able to match with each of the primitives in the
other. Furthermore we do not feel, at the present time,
able reliably to obtain higher level features and topologi
cal relationships (eg vertices or connected edge segments
describing a polyhedral face) and focus initial matching
about these. Frequently relationships of this kind will not
be preserved between views. It has not even assumed that
the locations of the end points of lines remains constant as
continuous lines in one image may appear broken in the
other. Lines are however expected to overlap significantly.

Figure 1. Geometrical relationships are illustrated for a
pair of lines. These are: their orientation difference a, the
distance m between their extensions, and the distances al
and b, from the ends of the physical line to the point of
minimum separation.

3.1. Exploiting Rigidity

Matches for two non-parallel. line segments are sufficient
to constrain all six degrees of freedom that constitute a
putative transformation between scene descriptions'', Once
a transformation is hypothesised, rigidity provides a
powerful constraint upon other consistent matches (subject
to tolerance errors; the details of which are not discussed
here for reasons of brevity). As discussed above rigidity
can be exploited more cheaply (though less strongly) if
expressed in terms of the consistency in a number of pair
wise relationships. Here we adopt just three, they are
(illustrated also in figure 1):
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(i) orientation differences, given by a=cOS-1(Vl.VZ).

(ii) minimum separations between (extended) lines. The
unit vector in the direction of closest approach (nor
mal to each line) is given by u = (vIxv~/lvIXVzl and
component of the vector difference between the
lines in that direction by m = (CZ-el). u. However if
the lines are close to parallel it is more sensible to
simply measure the perpendicular distance between
the lines m = I(CrCl)-«CrCl).Vl)V11.

(iii) distance to the beginning and end of each physical
line with. respect to the point of minimum separation
and in the direction of the line. This relationship is
only applicable for non-parallel lines. The vector
between the points of closest approach is given by
m = «CrCl).U)U. Adding m to C2 gives c'z, where
lines (VttCl) and (V2,C'~ are coplanar and meet at the
point of closest approach on (VI,CI). The signed dis
tance to that point from Cl in the direction VI is
given by 11 = «V2XVI). (vzx(c'rcl)))/lv2XVl IZ• Hence
the distance from Pl

1
and P1

2
to that point are given

by al =11+(CI-Pl
1)·Vl

and bi = 11+(CI-PI
2).Vl

respec
tively. Similarly for distances to the point of closest
separation on the other line a2 = 12+(C2-P2

1).V2
and

b2 = lz+(c2-p:z.).v2.

Potential matches for each pair of descriptive elements
from one scene 'description can be checked for geometrical
consistency in the other. Rigidity implies that each of the
pairwise relationships will be preserved between scene
descriptions, hence any measured discrepancies must lie
within a range predicted by the magnitude of allowable
errors. Furthermore a pair of consistent non-parallel
matches provides a powerful constraint upon the remain
ing matches. Hence they can be thought to represent,
implicitly and weakly, a global transformation. The
representation is weak because it is possible, on occasion,
for matches that are not consistent with a single global
transformation to satisfy the pairwise relationships. In
practice such problems are not major. Furthermore if the
basis of the implicit transforms is raised. from a pair to a
triple, quadruple or even a quintuple of matches, such
inconsistencies are far less likely (additionally the margin
of allowable error on each new match will be reduced).

3.2. Look Up Tables

The pairwise geometrical relationships, upon which local
constraints are based, have the advantage that they can be
precomputed for each pair of lines independently for each
scene description and stored as look up tables [as with
7-9.12]. Each relational property is stored as a range of
values consistent with the allowable error. It is these
ranges that must overlap for a pair of matches to be con
sidered geometrically consistent. Errors in centroid loca-
tion and orientation are considered separately and com...
bined in a conservative fashion that simply adds their con...
tributions resulting in the largest feasible range of pairwise
geometrical relationships.

Given a pair of lines with allowable errors 1£II<CXl and
1£21<CX2 on the location of their centroid and solid angles
4>1 and <1>2 on their direction vector the following ranges
can be derived:
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interval

a

Figure 2. Part (a) is a stereogram of one view of a syn
thesised scene (arranged for cross eyed fusion). Part (b)
shows GDB descriptions of this scene from eight equally
spaced viewpoints.

(8) extended cliques are ranked on the basis of the sum
of the length of their matched lines. the contribution
from each match being the lesser of the lengths of
its constituent lines;

Note that any/all of the focus features are potentially able
to discover the implicit transformation (clique of correct
matches) that takes one viewpoint into the other. Hence
only allowing focus features to match conservatively does
not greatly hinder the matching strategy. Furthermore
some unnecessary computation can be avoided if con
sistent cliques arrived at via different focus features are
identified and combined prior to their extension in step
(6).

Insisting that at least one focus feature obtains a match
places a bound upon depth of search to which current
assignments are allowed to be all null. In a similar
fashion, restricting the set of focus feature matches
reduces the breadth of search. Furthermore requiring that
mutually consistent matches be found for C of the S near
neighbouring primitives further controls the search. Con
sider each matched focus feature to be the origin of an
independent search tree; paths below the depth S are
bounded unless at least C matches occur above them. In
practice it is this constraint that provides the greatest
prune, as very few incorrect transformations satisfy this
requirement.

3.3. Feature Focus

Our current approach to matching is to apply heuristics
similar to those of feature fOCUS10

• ll in order to avoid
unbounded search. The strategy is to concentrate initial
attention upon a number of salient features. Only matches
associated with these features are subsequently entitled to
grow hypothetical transformations. Currently processing
terminates only after all focus features have been con
sidered. As an alternative it could be possible to complete
computation once a sufficiently good match has been
located. However. at the present time, a suitable definition
of sufficiently good is not available. The feature focus
strategy adopted here differs from those considered previ
ously as familiarity with the scene it is not assumed. As a
result focus features and matching strategies are not an
integral component of our scene description: they must be
generated at run time.

Focus features are identified in a single scene description.
Currently they are chosen simply on the basis of their
length, a property associated with salience. Some effort is
expended to ensure that all regions of the scene are
represented by chosen features. ie a feature is identified as
a focus if there are not more than a certain number of
longer features within a predetermined radius of it.

Our matching strategy proceeds as follows

(1) a focus features is selected (in tum);

(2) the S closest features to it with length greater than L
are identified;

(3) potential matches for the focus feature are con
sidered. unlike matching in general. these are
selected conservatively on the basis of length (which
must lie within 30% of each other);

(4) consistent matches for each of the neighbouring
primitives are located;

(5) this set of matches (including that of the focus
feature) is searched for maximally consistent cliques
of cardinality at least C. each of these can be
thought of as a potential implicit transformation;

(6) each clique is extended by adding new matches for
all other lines in the scene if they are consistent
with each of the matches in the clique;

(7) mutually consistency can be ensured by some
further (cheap) tree search;

(iii) on the distances to the beginning and end of each
physical line with respect to the point of minimum
separation: the approximate intervals

al +/- (1l1+112+112Itan<!>z/sinS)

b1 +/- (1l1+11z+llzltan<!>z/sinS)

a2 +/- (1l1+1l2+lllltan<!>l/sinS)

b2 +/- (1l1+11z+lllltan<!>tlsinS)

(i) on orientation differences: the
[max(G--<!>1--4>2,O).min(S+<!>1+4l2.7t)] ·

(ii) on minimum separations between (extended) lines:
the interval
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view 2 is computed by the least squares method discussed
by Faugeras et at> in which rotations are represented as
quaternions (though for simplicity the optimal rotation is
recovered before translation). In figure 3a view 1 is
transformed into view 2 (the error in the computed rota
tion is 0.48 degrees) and matching lines are shown bold,
many of the the unmatched lines are not visible in both

c

Figure 3. The results of matching the first two views in
figure 2 are shown in (a); matched lines are shown bold.
All views when combined by the matcher result in (b).
Those lines that have been matched (and hence appear in
more than one view) are shown in (c).

b

a

4. Matching Experiments

Performance of the matching algorithm is illustrated quan
titatively for artificial stereo data provided by the IBM
Winsom22 body modeller and qualitatively for natural
stereo data. The former is used to obviate the accurate
stereo calibration problem which is a current research
topic in the laboratory.

Consider first the synthesised scene depicted in the stereo
gram in figure 2a. GDB descriptions of this scene,
obtained from eight equally spaced viewpoints (45 degrees
apart) are shown in 2b. Each description consists of
approximately 40 above-threshold GDB line primitives.
These are to be matched between viewpoints to construct
a more complete model of the scene. The results of the
matching process between the first two views is illustrated
in figure 3. The ten focus features chosen in view 1
obtained a total of 174 potential matches in view 2. Set
ting S to 7 and C to 4 only 13 independent implicit
transformations result. After extension the best consistent
transformation included 18 matched lines. The best rigid
rotation and translation (in that order) that takes view 1 to

The power of our focusing heuristics are dependent upon
the choice of S and C; if C is too small many putative
transformations will be explored at great expense, hence C
must be large enough to impose considerable constraint
upon potential transformations. Conversely, whilst S must
be sufficiently large that C amongst them will locate con
sistent matches, if S becomes too large the time spent
searching increases dramatically. In practice, as will be
illustrated below, very few consistent sets of matches,
beyond the correct one, are found if C =4 and S =7.

The set of S primitives are chosen to neighbour the focus
feature in question for two reasons. First, the constraints
provided by pairwise consistency are strongest over mod
est physical separations as the allowable error ranges are
smaller. And second, in the absence of a more sophisti
cated scheme, neighbouring primitives are thought
more likely to occupy similer view potentials and hence
appear simultaneously in scene descriptions obtained from
different views.

The number of focus features used for matching is
increased with n (in the experiments below approximately
0.2xn). Similarly the number of potential matches, the
number of potential transformations, and the cost of
extending each transformation all increase with n. How
ever as S and C remain constant the the expense of
exploring each focus match will on average also remain
constant. Hence whilst computational expense is high
(increasing with some multiple of n4

) combinatorial explo
sion is avoided. Furthermore if an appropriate computer
architecture were available it may be possible to do some
proportion of this work in parallel (for example the con
sideration of each match of each focus feature).

A similar matching strategy has been proposed recently by
Ayache et al21

, except that they consider transformations
for all consistent matches of pairs of privileged lines
(equivalent to chosing C to be 2), of which there may be a
great many. Furthermore each pair of such matches is
used by them to compute an explicit transformation, rather
than the implicit representation we prefer.
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Figure 6. A real bin picking scenario is depicted in (a),
with corresponding GDB description in (b) (current cam
era calibration is unreliable). Model instances are
identified in (c) and (d). Mismatch results in (e).

a

A similar sequence of processing has been performed for
the artificial test object shown in figure 4a Noisy and
clean models obtained for it are shown in figure 4b and 4c
respectively. Notice that few of the occluding contours
that arise from the cylinder are ever matched. The matcher
does not match the circular section of object, the unso
phisticated update procedure simply passes through circles
that were observed in the last known view. Matching was
not hindered by the presence of circular data.

Once obtained this simplistic model (consisting of 41 line
sections) can be matched in a bin picking scenario. Fig
ures 5 and 6 illustrate this process for artificial and natural
disparity data. The latter suffers camera calibration error;
the resolution of our current calibration technique is suit
able for epipolar stereo matching but not for accurate
disparity interpretation. Figures 5a and 6a show scenes of
a number of test objects, and figures 5b and 6b GDB data
extracted from these. The best match of our model is
superimposed, and shown bold, over each in 5c and 6c.
Whilst the match for artificial data is near perfect, some
geometrical distortion is visible in the real data. Removing
matched portions 'of the GBD data allows the second
(figures 5d and 6d) and third (figures 5e and 00) best
matches to be located. Unfortunately the third match of
the real data results in mismatch.

5. Concluding Comments

A matching strategy for combining two or more three
space descriptions of a scene has been discussed. It com
bines features of a number of algorithms that have
appeared recently in the literature on three dimensional
model matching. Its has two principal (almost novel)

ed

a

Figure 4. A single view of a synthesised test object is
shown in (a). Noisy and clean models are shown in (b)
and (c) respectively.

Figure 5. A synthesised bin picking scenario is depicted in
(a), with corresponding GDB description in (b). Model
instances are identified in (c), (d) and (e).

a

b

views. If the model is matched and updated with respect
to each view in the sequence (chosing focus features only
from the features that were matched in the previous cycle)
the scene description in figure 3b results. This description
contains a large quantity of noisy data that appeared in
one or other view. A cleaner model can be obtained by
filtering out primitives that have never been matched (see
figure 3c).



features. First, a number of pairwise relationships are seen
as implicitly specifying the rigid transformation that
relates the scenes. And secondly, search has been con
trolled by requiring that local cliques of mutually con
sistent matches must be located in the vicinity of at least
one of a number of focus features, with the result that
very few hypothetical transformations require attention.

A number of extensions to this strategy are currently
under investigation. These fall into two categories: (i)
those concerned with description and model building, eg
the primitive base, occluding contours, partial rigidity, and
view potential (all discussed briefly above); (ii) and those
concerning the matching process itself. Currently the pair
wise relation table is computed exhaustively, relationships
between every primitive are stored. It should be possible
to exploit rigidity using only a subset of the pairwise rela
tions. Furthermore the scheme could be expanded to
include unforeseen non-rigidity (when acquiring a model
of a scene with moving objects in it).
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